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Abstract

We denote by NB the nilpotent commutator of an n× n nilpotent Jordan

matrix B of partition P , and let A denote a generic elsment of NB in a

standard form. We denote by Q(P ) the partition given by the Jordan form of

A. Using results of R. Basili, we show that Q(P ) = P iff the parts of P differ

by at least two. Let Pow(P ) be the n × n matrix whose (u, v) entry is the

smallest non-negative integer i for which (Ai+1)uv = 0. We give an algorithm

to determine Pow(P ); and we find the index (largest part) of Q(P ).

The Hilbert function H of K[A, B] is a natural invariant of a pair (A, B)

of nilpotent commuting matrices. We use standard bases to study the pencil
1Version of March 2, 2007. Section IV has been revised and augmented since the talk.
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A+λB, showing that for an open subset of λ ∈ P1, P (A+λB has the maximum

partition P (H) with diagonal lengths H. Thus, Q(P ) has decreasing parts.

NOTE: Prof. B. A. Sethuraman kindly showed us after our talk a preprint of

Polona Oblak in which she had determined the index of Q(P ) [Oblak 2007].
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1 Given a partition P = PB, B nilpotent Jordan,

find Q(P ) = PA, for a generic A ∈ NB.

Let K = algebraically closed field,

N (n, K) = {n× n nilpotent matrices with entries in K}.

Fix B ∈ N (n, K) in Jordan form, of partition P = (u1, . . . , ut).

NB = {A ∈ N (n, K) | AB = BA}.

[Basili 2000] using [Turnb, Aitken 1931] shows:

Thm 1.1. NB is irreducible.

Problem 1.2. Determine the Jordan partition Q(P ) of a

generic element of NB. Determine all others for A ∈ NB.

Note: Q(P ) ≥ P . Open2: Is Q(Q(P )) %= Q(P ) in general?

Def. S a string : (max part of S −min part S) ≤ 1.

Let rP = min{k | P = P1 ∪ · · · ∪ Pk}, each Pi a string.

Thm 1.3. [Basili 2003] The # parts of Q(P ) = rP .

So ∃ a dense open of A ∈ NB | rank(A) = n− rB.
2This has since been answered by P. Oblak and T. Košir: see Theorem 4.8 and [KoOb 07]

3



Let sP = max {# parts of S for any string S ⊂ P}.

Thm 1.4. [Basili 2003] Let A ∈ N (B). Then

rank(AsP )m ≤ rank(Bm).

Notation: 2P = (u1, u1; u2, u2; . . . ; ut, ut).

By P = (u, 1s) we mean P is

(
u, 1, . . . , 1︸ ︷︷ ︸

)

s

Cor 1.5. [Basili-I1] P is stable under P → Q(P ) ⇔

sP = 1 (i.e. the parts of P differ by at least two).

Also P stable, c > 0 ⇒ Q(cP ) = (cu1, cu2, . . . , cut).

Lem 1.6. (Basili) P = (u, 1s), and u ≥ 3 ⇒

Q(P ) = (max{u, s + 2}, min{s, u− 2}).

Ex 1.7. P = (4, 4, 1, 1) ⇒ Q(P ) = (8, 2).

But P = (4, 13) ⇒ Q(P ) = (5, 2). Also, P = (5, 4, 3) ⇒

Q(P ) = (9, 3), and P = (7, 2, 14) ⇒ Q(P ) = (8, 5).
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Moral: P having parts of different multiplicities makes Q(P )

more complex.

2 The integer matrix PowA, for A a non-negative

nilpotent matrix.

N (n, R) = {nilpotent matrices in Mn(R), R = R or Z[X ],

X = (x1, . . . , xe)}. (See Remark 3.18 for a comment on R).

Define PowA, a matrix of non-negative integers as follows:

(PowA)uv = min{k | Ak+1
uv = 0}. (2.1)

Lem 2.1. Let A ∈ N (n, R), R = R or Z[X ]), have

non-negative coefficients, and assume that

Auv = 0 ⇒ (A2)uv = 0.

Then, for k ≥ 0,

(Ak)uv = 0 ⇒ (Ak+1)uv = 0. (2.2)

Also, PowA depends only on the pattern of zero, non-zero

entries of A.
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We now justify the last statement. First define

S(PowA, u, v) = {pairs ((PowA)uk, (PowA)kv), 1 ≤ k ≤ n}.

(2.3)

Lem 2.2. Suppose that A satisfies the hypotheses of Lemma 2.1.

Then we have

I. Let (PowA)uv = s > 0. Then each integer t, 0 ≤ t < s

appears in the u row and in the v column of Pow(A).

II. Let (PowA)uv = s. Then the set of pairs

{(t, s− t), 1 ≤ t ≤ s− 1} ⊂ S(PowA, u, v). (2.4)

Conversely, if the set of pairs on the left of (2.4) is

the complete set of those elements of S(PowA, u, v) not

having a zero component, then (PowA)uv = s.

This and an induction on s shows that Pow(A) depends only

on the pattern of zero, nonzero entries of A.
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3 The integer matrix Pow(P )

Recall from R. Basili’s talk, the form in a good basis E, of

A ∈ NB, where B is a nilpotent Jordan matrix of partition P .

(See [Basili 2003, Lemma 2.3]). Given E we write A ∈ NB,sp

Ex 3.1. Let P = (3, 3, 2). Then there is basis E for which

A ∈ NB,sp has the following form:




0 a2
11 a3

11 a1
12 a2

12 a3
12 a1

13 a2
13

0 0 a2
11 0 a1

12 a2
12 0 a1

13

0 0 0 0 0 a1
12 0 0

0 a2
21 a3

21 0 a2
22 a3

22 a1
23 a2

23

0 0 a2
21 0 0 a2

22 0 a1
23

0 0 0 0 0 0 0 0

0 a2
31 a3

31 0 a2
32 a3

32 0 a2
33

0 0 a2
31 0 0 a2

32 0 0





with entries in the ring Z[a2
11, . . . , a

2
33] in 18 variables.
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Lem 3.2. Let A be generic in NB,sp. Then Auv = 0 ⇒

A2
uv = 0. When char K = 0, (Ak)uv = 0 ⇒ (Ak+1)uv = 0.

Def. Pow(P ) = PowA, for A generic in NB.

Index i(Q) = largest part of Q.

Note: index of Q(P ) = 1+ maximum entry of Pow(P )

Ex 3.3. For P = (3, 3, 2), we have Pow(P ) is



0 3 6 1 4 7 2 5

0 0 3 0 1 4 0 2

0 0 0 0 0 1 0 0

0 2 5 0 3 6 1 4

0 0 2 0 0 3 0 1

0 0 0 0 0 0 0 0

0 1 4 0 2 5 0 3

0 0 1 0 0 2 0 0





.

The index i(Q(P )) = 7 + 1 = 8 and Q(P ) = (8)

Since rP = 1 this follows also from Thm. 1.3.
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Notation: We introduce a compressed notation CPow(P )

listing the top rows of key small blocks of Pow(P ), one for

each pair of integers (q, p) occurring as parts of P . For q < p

the key (q, p) block Bqp of Pow(P ) is the one in the lower left

corner of the set of q × p small blocks.

When q = p we take for Bq,q any diagonal small block

among the q × q blocks in Pow(P ).

We also include the top row of the small block Bpq in the

upper right corner of the p× q small blocks, for p > q.

We arrange the top rows of these key blocks according to

their relative positions in Pow(P ).

Ex. For P = (3, 3, 2) the compressed notation is



0 3 6 2 5

0 1 4 0 3



 .

(See the Pow(P ) matrix on just previous page.)
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Ex 3.4. For P = (4, 2, 2, 2), we have Pow(P ) is




0 1 4 7 1 4 2 5 3 6

0 0 1 4 0 1 0 2 0 3

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 3 6 0 3 1 4 2 5

0 0 0 3 0 0 0 1 0 2

0 0 2 5 0 2 0 3 1 4

0 0 0 2 0 0 0 0 0 1

0 0 1 4 0 1 0 2 0 3

0 0 0 1 0 0 0 0 0 0





.

The index i(Q(P )) = 7 + 1 = 8; since rP = 2, Q(P ) = (8, 6).
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The matrix CPow(P ) for P = (4, 2, 2, 2) is



0 1 4 7 3 6

0 0 1 4 0 3



 .

Ex 3.5. For P = (5, 32, 1a), a ≥ 2 we have i(Q(P )) = (6+a),

and CPow(P ) is




0 1 3 5 5 + a 2 4 4 + a 2 + a

0 0 1 3 3 + a 0 2 2 + a 1 + a

0 0 0 0 3 0 0 1 0




.

Since rP = 3, Q(P ) has three parts. Is Q(P ) = (6 +a, 4, 1) or

(6 + a, 3, 2)?3

But for P = (5, 32, 1) we have CPow(P ) is




0 1 3 5 7 2 4 6 3

0 0 1 3 5 0 2 4 2

0 0 0 0 3 0 0 1 0




.

and Q(P ) = (8, 3, 1).
3Theorem 4.8 of T. Košir and P. Oblak implies Q(P ) = (6 + a, 4, 1).
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For P = (5, 32, 13) we have for Pow(P )




0 1 3 5 8 1 3 6 2 4 7 3 4 5

0 0 1 3 5 0 1 3 0 2 4 0 0 0

0 0 0 1 3 0 0 1 0 0 2 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 4 7 0 2 5 1 3 6 2 3 4

0 0 0 2 4 0 0 2 0 1 3 0 0 0

0 0 0 0 2 0 0 0 0 0 1 0 0 0

0 0 1 3 6 0 1 4 0 2 5 1 2 3

0 0 0 1 3 0 0 1 0 0 2 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 5 0 0 3 0 0 4 0 1 2

0 0 0 0 4 0 0 2 0 0 3 0 0 1

0 0 0 0 3 0 0 1 0 0 2 0 0 0





Thm. CPow(P ) and P determine both Pow(P ) and the

index i(Q(P )). (Drawing of fish – What is fishy about this “theorem”?)
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Proof. Trivial, as P determines both Pow(P ) and Q(P )! !

However, we will develop a more precise version.

Def. Let q ≤ p be integers occurring as parts of P . For q ≤ p

denote by U(q, p) the q × p matrix that is zero except for an

upper triangular rightmost q × q submatrix, whose nonzero

entries, all entries above or on its main diagonal, equal one.

We let U(q) = U(q, q) and SU(q) = U(q)− Iq.

Definition 3.6. A translation of the key q × p, q ≤ p block

Bqp by s ≥ 0 is the block

Ts(B
qp) = Bqp + s · U(q, p).

A translation of a q × q diagonal block Bqq by s is adding

s · U(q) for s > 0, and subtracting |s| · SU(q) for s < 0.

A reflection of Bqp, q < p (or, respectively, of Ts(Bqp)) is

the p × q block whose leading (top) q × q subblock is the

rightmost q × q submatrix of Bqp (respectively, of Ts(Bqp)),

and whose last p− q rows are zero.
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Thm 3.7. Let q ≤ p be integers occurring as parts of P .

A. When q < p all the small q × p blocks of Pow(P ) may

be obtained from the key q× p block Bqp by translation,

taking s to be the rook distance between the subblocks.

B. All p × q subblocks of Pow(P ) may be obtained from

the appropriate q × p subblock by reflection. All q × q

small blocks of Pow(P ) may be obtained from Bqq by

appropriate positive or negative translation by |s|.

(Here |s| is the distance from the main diagonal.)

C. All long diagonals (parallel to the main diagonal) of the

set of q × p, q ≤ p blocks of Pow(P ) are constant.

Question. The theorem shows how CPow(P ) and P deter-

mine Pow(P ). But how do we determine CPow(P )?. We begin

with the special cases P = ma and P = (ma, nb).

Notation. Henceforth in this section (only) we consider N ×N ma-

trices, and partitions of length N , as we use n as a part of P .
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Thm 3.8. Let P = (ma). Then CPow(P ) is

(0, a, 2a, . . . , (m− 1)a),

the largest entry of Pow(P ) is ma− 1, and Q(P ) = (ma).

Note: Add a− 1 to each entry of the key row above to obtain the top

row of the rightmost m-block, (a− 1, 2a− 1, . . . , ma− 1).

Thm 3.9. Let P = (ma, nb), m ≥ n + 2. We have rP = 2,

Q(P ) = (max{ma, nb + 2a}, min{nb, (m− 2)a}).

For CPow(P ) we break into cases.

A. Suppose a ≥ b, and m ≥ 2n, (m, n) %= (2, 1) then

CPow(P ) is



(0, a, 2a, . . . , (m− 1)a) (a + b− 1, 2a + b− 1, . . . , na + b− 1

(0m−n, 1, 1 + a, . . . , 1 + (n− 1)a) (0, b, 2b, . . . (n− 1)b)





B. Suppose a ≥ b and n + 2 ≤ m < 2n, then CPow(P ) is



(0, a, 2a, . . . , (m− 1)a) (a + b− 1, 2a + b− 1, . . . , na + b− 1

((0m−n, 1, 1 + a, . . . , 1 + (n− 1)a) (0, b, 2b, . . . (m− n− 1)b, t1, . . . , t2n−m)





where tk = max{(m− n− 1 + k)b, ka + b}.
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C. Suppose a ≤ b, and m ≥ n + 2, then, letting

k = m− n− 1,

αi = αi(a, b, m, n) = max{(i− 1)a, a + (i− (m− n)b},

CPow(P ) is (note the first entry is (α1, . . . , αm))



(0, a, . . . , ka = αk+1, αk+2, . . . , αm) (a + b− 1, a + 2b− 1, . . . , a + nb− 1)

(0m−n, 1, 1 + b, . . . , 1 + (n− 1)b) (0, b, 2b, . . . (n− 1)b)





D. Arranging the small blocks of Pow(P ) in quadrants



E F

G H





we have, the n×n sub-subblocks F ij topmost of each m×n

subblock of F , and the n × n rightmost sub-subblocks Gij

of each n×m block of G satisfy

F ij = Gb+1−j,a+1−i | 1 ≤ j ≤ b, 1 ≤ i ≤ a. (3.1)
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Proof. By induction on | a − b |. For the equal multiplicity

case b = a, P = (ma, na), m ≥ n + 2, Pow(P ) has a simple

form, and by Cor 1.5 we have Q(P ) = (ma, na).

Second proof: see algorithm for the general case, below.4 !

MORAL: Oldies of age m cease to influence youngies of age n

when their ages satisfy m ≥ 2n, even if there are many more

oldies. Youngies always influence oldies whenever there are

more youngies.

OR: When a > b, and 2n > m ≥ n + 2 the last 2n −m en-

tries of the diagonal n-blocks are affected by the a-multiplicity.

When b > a the last n entries of the top row of the diagonal m

block are the max of the sequence ((m−n−1)a, . . . , (m−1)a)

and the translation Ts(Bnn) by s = a + b− 1.

Cor 3.10. Let P = (ma, nb), m ≥ n + 2; then Q(Q(P )) =

Q(P ). Equivalently (in this case) Q(P ) has two parts, that

differ by at least two (See Cor. 1.5).
4A variation uses an involution σ on NB,sp. See Remark 3.18 H.
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Ex 3.11. Let P = (67, 42). Then Q(P ) = (42, 8) and CPow(P )

is 


(0, 7, 14, 21, 28, 35) (8, 15, 22, 29)

(0, 0, 1, 8, 15, 22) (0, 2, 9, 16)





Note that the topmost right 6-block of Pow(P ) has top row

(6, 13, 20, 27, 34, 41), being a translation by a − 1 = 6 of the

top row (0, 7, 14, 21, 28, 35) of the key 6-block B6,6.

Since 2n −m = 2, the last two entries of B44 are affected

by a. Thus, the entry 9 can be understood as a product of the

top row (0, 0, 1, 8, 15, 22) of B46 times the third column

(22, 15, 8, 0, 0, 0)T of B64: that is,

9 = max{0 · 22, 0 · 15, 1 + 8, 8 · 0, 15 · 0, 22 · 0)}.

Likewise, the last entry 16 in the top row of B44 can be under-

stood as the lead entry of the fourth column of the product of

B46 and B64. (See ∗ product defined before Thm 3.15).

But the second entry 2 of the top row of B44 agrees with

that entry of the one-row CPow(42) = (0, 2, 4, 6).
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Ex 3.12. Let P = (63, 45). Then Q(P ) = (26, 12), and

CPow(P ) is



(0, 3, 8, 13, 18, 23) (7, 12, 17, 22)

(0, 0, 1, 6, 11, 16) (0, 5, 10, 15)





Here in (ma, nb) we have b = 5 > a = 3 so there is an effect of

45 on the last four entries of the top left row r(6) of CPow(P ),

which come from the block B66 in Pow(P ). The third entry is

(see Theorem 3.9 C),

8 = max{2 · 3, 3 + 5},

here one more than 7, the first entry of B64, which is a+ b−1.

Lem 3.13 (CPow(P ) for a String P ). Let P = (ma, nb), n =

m− 1 and set c = a + b. Then rP = 1, Q(P ) = (ma + nb),

and CPow(P ) is



(0, c, 2c, . . . , (m− 1)c) (c− 1, 2c− 1, . . . , nc− 1)

(0, 1, c + 1, . . . , (n− 1)c + 1) (0, c, 2c, . . . , (n− 1)c)




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Def. We let m = u1 be the largest part of P , and we use the

exponent notation, ni is the number of parts equal to i in P :

P = (mnp, (m− 1)np−1, . . . , 2n2, 1n1), ni ≥ 0, (3.2)

a partition of N =
∑m

i=1 i · ni.

The jump index of the occurring part i of P is

ji(P ) = max{ni + ni−1, ni + ni+1}

We let

si =
∑

k>i

nk.

Thm 3.14 (Index of Q(P )). We have

index(Q(P )) = max1≤i≤m{2si + ni + (i− 1)ji}. (3.3)

Comment. This follows from the next theorem. Note that,

since the maximum entry of Pow(P ) occurs in the top right-

most m×m block of Pow(P ), we need only consider the effect

of ni for smaller parts i on the last entry in the top row of

Bmm, then add the multiplicity nm to the result. !
20



The principle for the following theorem can be seen in the

case P = (ma, nb), m > n. In particular

• The a-th nonzero entry (so a + 1-st entry) of the diagonal q

row of CPow(P ) is influenced only by the multiplicity nk in P

of integers k satisfying q − a ≤ k ≤ q + a.

• We give an order of steps to construct CPow(P ). It suffices

to specify the non-zero entries.

1. We specify the first nonzero entry of all rows at once;

2. We specify inductively the a + 1-st non-zero entry of each

row as a maximum of integers arising from “products”

involving previously chosen partial rows.

Def. For rows a = (a1, a2, . . . , ap) and b = (b1, b2, . . . bq) we

define the “∗-product”

a ∗k b = max′{a1 + bk, a2 + bk−1, . . .}

where max′ excludes pairs with a zero summend.

21



We label the rows of CPow(P ) by r(q, p) or r(q) for r(q, q).

Thm 3.15 (Algorithm). We construct CPow(P ):

A. The first non-zero entries of rows of CPow(P ) satisfy

i. For r(q), the jump index jq. (it is 2nd entry)

ii. For r(q, p), q < p, 1+sq−sp−1 = 1+nq+1+· · ·+np−1.

(it is the (p + 1− q)-th entry).

iii. For r(p, q), p > q, (np + np−1 · · · + nq)− 1.

B. For a > 1 the a-th non-zero entries of rows satisfy

i. For each r(q) row, the maximum of

1. a · jq,

2. max 2q>p>q+1 {r(q, p) ∗a+1 r(p, q)},

3. max q−a≤i<q−1 {r(i)i+a+1−q + ni + 2si − 2sq − nq}

(it is the (a + 1) entry of r(q))
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ii. For each r(q, p), q < p row, the maximum of

1. r(q)a+1 + 1

2. r(q, p) ∗p−q+a r(p).

Note. The integers to be maximized in B(1)(iii) involve the

a + (i − (q − 1)) ≤ a-th entry of each r(i), i < q; these are

the a− 1 or earlier non-zero entries of r(i), i < q, which have

already been decided.

Ex 3.16. Let P = (52, 43, 24, 17). Then Q(P ) = (25, 12) and

CPow(P ) is




(0, 5, 10, 15, 23) (4, 9, 14, 22) (8, 19) 15

(0, 1, 6, 11, 19) (0, 5, 10, 18) (6, 17) 13

(0, 0, 0, 4, 15) (0, 0, 1, 12) (0, 11) 10

(0, 0, 0, 0, 8) (0, 0, 0, 5) (0, 1) 0




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Ex 3.17. P = (107, 74), Q(P ) = (70, 28). Then CPow(P ) is




(0, 7, 14, 21, 28, 35, 42, 49, 56, 63) (10, 17, 24, 31, 38, 45, 52)

(0, 0, 0, 1, 8, 15, 22, 29, 36, 43) (0, 4, 8︸ ︷︷ ︸, 12, 18, 25, 32︸ ︷︷ ︸)

m− n t1, t2, t3, t4





This is the case a > b, and n < m < 2n when the (n, n) entry

of CPow(P ) is affected by ma. By formula, we have

t2 = max(4b, b + 2a) = max(16, 18) = 18.

Using the ∗ product underlying this formula we have, t2 is the

maximum of two such products,

(0, 4, 8, 12, ? . . .) ∗5 (0, 4, 8, 12, ?)

= max{0·?, 4 + 12, 8 + 8, 12 + 4, ? · 0} = 16

and

= (0, 0, 0, 1, 8, ? . . .) ∗5 (10, 17, 24, 31, 38, ? . . .)

= max{0 · 38, 0 · 31, 0 · 24, 1 + 17, 8 + 10} = 18.

Note: The star product is just a convenient way of noting the

Hankel property of Pow(P ) that each small block has constant

diagonals.
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Remark 3.18. 5

A. Typically, algebraic closure of K is needed to assure that A has

a Jordan form; however, since A is nilpotent, it is not needed for

this purpose. The results of R. Basili that we use concerning the

form of A ∈ NB and the invariants rP , sP are valid for all fields K.

B. The argument used in Lemma 2.1 concerning PowA requires a sum

of “positive” terms to have no cancellation, so it does not work

in characteristic p. However, for Pow(P ) it appears that one can

show there is no cancellation, by keeping some track of the sums

of monomoials comprising the entries (Ak)uv for A generic in NB:

such an argument would extend Lemma 3.2 to all characteristics.

We plan to do this, but have not yet; there is no issue for k = 1.

C. R. Basili’s Theorem 1.3 gives Q(P ) regular when rP = 1. When

rP = 2, knowing the index determines Q(P ): these cases are readily

enumerated and involve P having no more than four nonzero ni.

D. The statements in Corollary 1.5 readily generalize to give Q(P ) =

(|S1|, . . . , |St|) for P a union of strings separated from each other

by at least two.
5Added January 31, 2007, revised March 2, 2007.
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In general, the map P → Q(P ) remains mysterious to us.

E. The scheme NB is irreducible, but it is not in general closed (see

Example 4.2). Thus, even if we know Q(P ) the set PN (P ) =

{PA, A ∈ NB} is not understood. Let NP,Q = {A ∈ NB, | PA = Q}.

What can we say about the schemes NP,Q and their closures NP,Q?

Can we determine their dimensions? Are the closures Cohen-

Macaulay?

F. A. Zelevinksy has pointed out to us the article of S. Poljak [Pol 1989],

obtaining the maximum possible rank of the power Ap of a matrix

A with a given pattern of zero, non-zero entries, in terms of the

number of independent p-walks on a digraph giving the pattern.

See also [KnZe, p. 278 ff].

G. Since the talk, P. Oblak and T. Kosir have shown that Q(P ) is

stable Q(Q(P )) = Q(P ), by showing that for a generic A ∈ NB

the ring K[A, B] is Gorenstein. See Theorem 4.8 and [KoOb 07].

H. There is an involution on NB,sp that underlies several of the sym-

metries in Pow(A), in particular the “reflections”, and diagonal

“translations”. We will treat this in [Basili-I1].
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I. An auxiliary matrix

Powx(P ) : Powx(P )uv = As
uv | Pow(P )uv = s

has a quite simple structure that underlies the symmetries of Pow(P ).

See [Basili-I2].

J. T. Harima and J. Watanabe have also studied the structure of NB

[HW1 2005, HW2 2006].
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4 The Hilbert function of K[A, B]; Q(P ) has de-

creasing parts.

In this section6 we assume that K is an algebraically closed

field, and denote by R = K{x, y} the power series ring, i.e. the

completed local ring at (0, 0)) of the polynomial ring K[x, y].

We denote by M = (x, y) the maximal ideal of R.

Def.. Given a pair of commuting n × n nilpotent matrices

(A, B), consider the Artin algebra

A = AA,B = R/I, I = ker(θ), θ : R → k[A, B].

Let H(n, K) = {(A, B) ∈ N (n, K) | AB − BA = 0} and

U(n, K) be the open subset such that dimK(AA,B) = n.

We denote by H = H(A) the Hilbert function of A.
6Augmented and substantially rewritten after the Workshop
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4.1 Note re inverse systems and punctual Hilbert scheme

The inverse system I⊥ of A is generated by elements of the

divided power ring KDP [X, Y ] in dual variables. In the com-

plete intersection (CI) case, where I has two generators, there

is a unique polynomial generator of I⊥. Then there is a further

structure on A∗ = GrM(A), the associated graded algebra (see

[I2]). The CI case was studied in the early 1900’s by F.H.S.

Macaulay, and C.A. Scott [Scott 1902, Mac 1904].

However, the Hilbert Burch structure theorem for height two

ideals, and as well the parameters for HilbH(R) of J. Briançon

á la Hironaka, [Br 77, I1] have been the main “elementary”

tools in studying the Hilbert scheme in two variables, not so

far the inverse system. Recently, H. Nakajima, M. Haiman and

others have used deeper tools to greatly develop the study of

this punctual Hilbert scheme.
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4.2 Irreducibility of HilbnR and H(n, K)

. J. Briançon and subsequently M. Granger of the Nice school,

showed that the family HilbnR of length-n Artinian quotients

of R is irreducible, in characteristic zero [Br 77, Gr 83]. It was

a slight extension to show their proofs applied to char K > n

[I1].

V. Baranovsky, R. Basili, and A. Premet connected this

problem to that of the irreducibility of H(n, K) [Bar2001,

Basili 2003, Premet 2003]. Recall that we set

U(n, K) = {(A, B ∈ H(n, K) | dimK(AA,B) = n}.

By the universal property of the Hilbert scheme, there is a

morphism,

π : U(n, K) → Hilbn(R) : π(A, B) = AA,B.

It follows that the irreducibility of H(n, K) was equivalent

to that of Hilbn(R). V. Baranovsky used this to prove the

irreducibility of H(n, K), for char K = 0 and char K > n.
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R. Basili gave an “elementary” proof of the irreducibility of

H(n, K), that worked also for char K ≥ n/2. A. Premet later

gave a Lie algebra proof of the irreducibility of H(n, K) that is

valid in all characteristics. Incidently, that K be algebraically

closed is necessary as the Hilbn(R) is reducible over the reals

(see [I1]).

It would be of interest to see how the R. Basili or A. Premet

proofs would look, directly applied to Artinian quotients of R.

4.3 Hilbert function strata:

Let H be a fixed Hilbert function sequence. There has been lit-

tle study of the connection between the Hilbert function strata

ZH = HilbH(R), and the analogous subscheme

HH(n, K) = π−1(ZH) = {pairs (A, B) | H(AA,B) = H}.
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ZH is irreducible, and has a cover by affine spaces [Br 77]. We

have the projection

π : ZH → GH,A → GrM(A)

to the irreducilbe projective variety GH parametrizing graded

quotients of R having Hilbert function H . ZH, GH and the

fibres of π each have covers by opens in affine spaces of known

dimension [I1]. The homology groups of GH are known but

the homology ring structure is understood only in a few special

cases ([IY]). The Nice school studied specializations of ZH , see

work of M. Granger [Gr 83] and J. Yaméogo [Yaméogo 1994a]

but the problem of understanding the intersection ZH ∩ZH ′ is

in general difficult and unsolved. Let Zν,n parametrize order

ν colength n ideals in R = K{x, y} (completed local ring at

the origin of K[x, y]): that is

Zν,n = {I | Mν ⊃ I, Mν+1 ! I}.
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J. Briançon’s irreducibility result can be stated,

HilbnR = Z1,n.

M. Granger showed, more generally,

Zν,n ⊃ Zν+1,n, ν ≥ 1.

The Hilbert function of an Artinian quotient A = R/I of

R = K{x, y} satisfies,

H = (1, 2, . . . , ν, hν, . . . , hc), ν ≥ hν ≥ . . . ≥ hc > 0, (4.1)

or, when ν(I) = 1 (i.e. I " (x, y)2), H = (1, 1, . . . , 1).

We denote by ∆H the difference sequence ∆Hi = Hi−1−Hi.

Thm 4.1. [I1, IY] The dimension of GH satisfies

dim GH =
∑

i≥d

(∆Hi + 1)(∆Hi+1).

Def. The diagonal lengths HP of a partition P are the

lengths of the lower left to upper right diagonals of a Ferrer’s

graph of P having largest part at the top.
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We denote by P (H) the maximum partition of diagonal

lengths H : it satisfies ui(P (H)) = length of the i-th row of

the bar graph of H .

Ex. P = (3, 3, 3) has HP = (1, 2, 3, 2, 1). H = (1, 2, 3, 2, 1), P (H) =

(5, 3, 1).

Note. The length n Hilbert functions satisfying (4.1) cor-

respond 1-1 via H → P (H) to the partitions of n having

decreasing parts.

Let I be an ideal of colength n in R = K[x, y] and let

H = H(A), A = R/I . Consider the deg lex order, and the

monomial initial form ideal Eλ for I using the standard basis

for I in the direction y + λx, λ ∈ P1. The monomial cobasis

Ec
λ = N 2−ED may be seen as the Ferrer’s graph of a partition

P (Ec
λ) of diagonal lengths H .

We now give an example illustrating the connection between

Hilbert function strata ZH of Artinian algebras and those of

commuting nilpotent matrices. Here are some features. As-
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sume k[A, B] ∈ HH(n, K). Then

i. The ideals that occur in writing k[A, B] ∼= R/I are in

general non-graded.

ii. The partition P need not have diagonal lengths P (H).

iii. The partition Pλ arising from the action of B +λA, λ sat-

isfies Pλ = P (H) for a generic λ (all but a finite number).

iv. The closure of the orbit of P includes a partition of diag-

onal lengths P (H).

Ex 4.2 (Pencil and specialization). Recall that for P =

(3, 1, 1) we have Q(P ) = (4, 1) by Lemma 1.6. Take for B

the Jordan matrix of partition (3, 1, 1). By [Basili 2003, Lem-

mma 2.3], a good basis may be chosen so that A ∈ NB satisfies

B =





0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0





, A =





0 a b f g

0 0 a 0 0

0 0 0 0 0

0 0 e 0 c

0 0 d 0 0





.
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We send A → x, B → y. Let β = 1/(cdf ), and let

g2 = y2 − βx3, g1 = y − aβx2, g0 = 1.

Considering the standard basis for I in the x direction (see

equation (4.2) in the proof of Lemma 4.4 below) we have

AA,B = K[A, B] ∼= R/I, I = (g2, xg1, x
4g0).

and H(K[A, B]) = (1, 2, 1, 1). The product action of the

generic A = mx on the classes 〈1, x, x2, x3; g1〉 in A illustrates

the (4, 1) Jordan form.

The action of B = my on the classes of 〈1, y, βx3; x−ay, y2〉

in A (note that xy−ay2, y3 ∈ I) illustrates that PB = (3, 1, 1)

of diagonal lengths (1, 2, 2), which is not H(A).

Now consider the associated graded algebra A∗ = R/I∗:

here I∗ = (y2, xy, x4). The action of my on 〈1, y, x, x2, x3〉 has

Jordan partition P ′ = (2, 1, 1, 1) of diagonal lengths H(A) =

(1, 2, 1, 1). Also, holding a constant, we have

I∗ =
′

lim
β→0

I,
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so P ′ = (2, 1, 1, 1) is in the closure of the orbit of B.

Here dim GH = 1: a graded ideal of Hilbert function H

must satisfy

∃L ∈ R1 | I = (xL, yL, M 4),

so GH
∼= P1, and I ∈ GH is determined by the choice of the

linear form L, here L = y. The fibre of ZH over a point of GH

is determined here by the choice of a, β, so has dimension two.

4.4 Q(P ) has decreasing parts; stability after P. Oblak and

T. Košir.

We thank T. Košir and B. A. Sethuraman for pointing out

to us the following result from combining [Neub, Salt 1994,

Theorem 1.1]. and [Bar2001]. It also follows from considering

a suitable monomial ideal in K{x, y}, determined by B (see

(4.2) below). A sharper result is given by P. Oblak and T. Košir

below in Theorem 4.8.
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Lem 4.3. [Bar, NS] Let B be an n × n nilpotent Jordan

matrix, and let A be generic in NB. Then

dimK K[A, B] = n.

Proof. V. Baranovsky shows that for A generic in NB, the ring

k[A, B] has a cyclic element; and M. Neubaurer and D. Salt-

man had shown that this implies dimK K[A, B] = n. !

In view of example 4.2 we need the following result.

Lem 4.4. Assume A, B are commuting n × n nilpotent

matrices with B in Jordan form and let K be an alge-

braically closed field of characteristic zero. Assume fur-

ther that dimK K[A, B] = n. Then for a generic λ ∈ K,

the action of A + λB on K[A, B] ∼= R/I has the same

Jordan form as its action on the associated graded algebra

GrMK[A, B] ∼= GrM(R/I), and has partition P (H).

Proof. For an open dense set of λ′ ∈ P1, the ideal has stan-

dard bases in the direction x′ = x + λy. A standard basis
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(fν, . . . , f0) for I in the direction x can be written as follows.

Recall ν = order I : Mν ⊃ I, Mν+1 # I, M = (x, y).

I =(fν = gν, fν−1 = xkν−1gν−1, . . . , f0 = xk0g0), where

gi = yi + hi, hi ∈Mν ∩ k[x]〈yi−1, . . . , y, 1〉 (4.2)

and k0 > k1 > . . . kν−1 [Br 77, I1]. Considering the action of

mx on the cyclic subspaces of R/I generated by 1, g1, . . . gν−1,

we see that the Jordan partition of mx is just Q = (k0, . . . , kν−1).

The standard basis for the associated graded ideal is given

by the initial ideal InI∗, satisfying

InI = (In(fν), . . . , In(f1), f0),

where here Inf denotes the lowest degree graded summend of

f . So the Jordan partition for the action of mx on R/I∗ is

also Q. !

Recall that P (H) is the maximum partition of diagonal

lengths H . Let H = H(K[A, B]). Using the connection be-

tween ZH and HH(n, K) we have
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Thm 4.5. Assume that B is the Jordan matrix of partition

P , and that A ∈ NB satisfies dim K[A, B] = n. Then for

λ ∈ P1 generic, A + λB has Jordan blocks P (H). The

closure of the orbit of B contains a nilpotent matrix of

partition P ′ having diagonal lengths H. These conclusions

apply to the pair (A, B) when A is generic in NB.

Proof. It follows from the assumptions and Lemma 4.4 that

Cλ = A + λB for λ generic satisfies, P (Cλ) = P (H). Since

the algebra A = AA,B = k[A, B] is a deformation of the

associated graded algebra, A∗ the multiplication my on A is

a deformation of the action my on A∗, so the orbit P ′ of the

latter is in the closure of the orbit of P . By Theorem 4.3 A

generic in NB implies that dim K[A, B] = n. !

Thm 4.6. Let B be nilpotent of partition P , and let Q(P )

be the partition giving the Jordan block decomposition for

the generic element A ∈ NB. Then Q(P ) has decreasing
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parts and satisfies

Q(P ) = sup{P (H) | ∃A ∈ N (B), dim K[A, B] = n, H = H(K[A, B])}.

Proof. This follows from Theorem 4.5 and the irreducibility of

NB. !

There is a natural order on the set H(n) of Hilbert functions

of length n of codimension two (4.1) or one (H = (1, 1, . . . , 1)),

defined by

H ≤ H ′ ⇔ ∀u, 0 ≤ u < n,
∑

k≤u

Hk ≤
∑

k≤u

H ′
k.

For example, (1, 1, 1, 1, 1) < (1, 2, 1, 1) < (1, 2, 2).

The openness on Hilbn(R) of the condition

dimK I ∩Mu+1 > s

shows that

ZH ∩ ZH ′ %= ∅ ⇒ H ≤ H ′. (4.3)

Cor 4.7. Let B be Jordan of partition P . Then

Q(P ) = P (Hmin(P )), Hmin(P ) = min{H | ∃A, H(K[A, B] = H}.
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Proof. This follows from (4.3), Theorem 4.5, and the

irreducibility of NB. !

The following result was proven since the Montreal confer-

ence by T. Košir and P. Oblak, who have resolved in a very

nice way the question we asked about stability of Q(P ) (p. 3).

Thm 4.8. [KoOb 07] Let A be generic in NB. Then K[A, B]

is Gorenstein of length n and Q(P ) is stable.

Proof idea. The key step is to extend Baranovsky’s result that

K[A, B] is cyclic to show it is also cocyclic. It is well known

[Mac 1904] that the Hilbert function of a codimension two com-

plete intersection Artinian algebra has first differences at most

one, which implies that P (H) has parts differing by at least

two. By Corollary 1.5 and Theorem 4.6, Q(P ) is stable. !

The following theorem concerns graded ideals. Given a par-

tition Q, a difference-one hook of Q is a hook where the (length

of arm - length of foot)= 1. We define the deviation of a par-
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tition Q of diagonal lengths H , from the partition P (H):

#{ difference-one hooks of P (H)}−#{difference one hooks of Q}.

Thm 4.9. [IY] Fix A = R/I, I graded. For each λ ∈

P1 the partition P (Ec
λ) has diagonal lengths H. For an

open dense set of λ ∈ P1 we have P (Ec
λ) = P (H). The

total deviation of the partitions arising from the action of

x + λy, λ ∈ P1, from the generically occurring partition

P (H), is a function f (H) =
∑

i≥ν(Hi)(i + 1−Hi).

Proof. See [IY, Proposition 4.7, and Remark p. 3910]. !

Remark. Theorem 4.9 together with Theorem 4.5 seem to

impose a subtle restriction on the partitions that may occur

for A ∈ NB when H = H(K[A, B]) is fixed.
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[Yaméogo 1994a] J. Yaméogo: Décomposition cellulaire des variétés
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