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CHAPTER I

Introduction

The study of closure operations on ideals in commutative rings is a powerful tool
for understanding the structure of those rings. One classic example is the inte-
gral closure of an ideal, a notion that has strong roots in algebraic geometry, and
whose study goes back to the early 20th century (see [ZS2]). Another example is
the tight closure of an ideal, defined first for ideals in rings of characteristic p, and
then extended to the case of rings containing a field, by reduction to characteristic
p. Using tight closure theory, Hochster and Huneke proved a generalized version of
the Briangon-Skoda theorem, relating the notion of tight closure to that of integral
closure (see [HH1]). There are various applications of tight closure theory in the re-
cent literature (see [Hu]), and remarkable connections with the study of singularities
of algebraic varieties (see [Sm1] and [Hal).

In 1998, Hochster introduced a new closure operation on a set of ideals I, ... , I, in
a commutative Noetherian ring R of positive characteristic, named the tight integral
closure (or TI closure). T1I closure mixes the ideas of tight and integral closure:
when all the ideals are principal, the T'I closure is the tight closure of the sum of the
ideals, and when there is only one ideal, i.e., when n = 1, it is the integral closure of
that ideal. Using this notion, Hochster proved a Briangon-Skoda type theorem for
sets of ideals in a regular ring (see [Ho2|), which significantly improved the original
result. It however turned out to be very difficult to verify basic properties of T7
closure, even though from the definition one would expect most of the properties of
tight closure to generalize to T'I closure.

This thesis explores two new closure operations on sets of ideals: the blowup
closure and the multiple closure of a set of ideals. Blowup closure has the advantage
that it allows us to reduce its study to the case where all the ideals are principal, which
is the simplest case to work with. The multiple closure of a set of ideals in a ring,
which can be a described as the blowup closure of some larger ideals in a larger ring,
has certain other good properties; for example, it respects inclusions of ideals. In the



thesis, we develop the theory of these two closure operations. Moreover, we show that
in a Noetherian commutative ring of positive characteristic, under mild conditions,
multiple closure agrees with T'I closure for any set of ideals (see Theorem 4.1.3). In
particular, Hochster’s T'I closure can be interpreted as a tight closure in an extension
ring. This makes several basic features of T'I closure transparent, and allows us to
settle questions of Hochster posed in [Ho2].

Another part of the thesis deals with identifying classes of normal ideals in graded
rings. In the theory of resolution of singularities, one wishes to be able to blow up a
singular variety along a closed subscheme and obtain a smooth variety birational to
the original one. One question that comes up is the existence of such resolutions; it
is known for varieties over fields of characteristic zero [H|, and is conjectured in the
prime characteristic case. Another question is describing the closed subschemes that
produce smooth blowups. Translating this problem into the language of algebra, one
is interested in ideals I of a ring R such that ProjR[[t] is a smooth variety, where
R[It] = ®penI™t™ is the Rees ring of R along I. This leads one to focus on the Rees
ring and its properties. In particular one would like to know when the Rees ring is
normal. If R is a normal domain, R[I#] is normal if and only if I is a normal ideal,
where by normal ideal we mean an ideal all of whose positive powers are integrally
closed. Normal ideals have been studied in different cases, and in some special cases
necessary and sufficient conditions have been given for an ideal to be normal; see for
example [G], [O], and [HS].

In general, given a ring, finding an ideal whose blowup is regular has proven
to be a difficult problem. A more attackable but still difficult problem is to find
normal ideals. In this thesis we construct normal ideals for a general graded domain
R = k[zo, ... ,z,|/J which depends only on the weights of the variables z, ... , zy,
and are thus very simple to construct.

The thesis is organized as follows:

In Chapter II we define the notions of tight closure, integral closure and tight in-
tegral closure. We give the basic definitions, state the main facts, and give references
for the proofs. We also define tight closure and 7T'I closure for finitely generated
algebras over fields of characteristic zero, and give a brief overview of the method of
reduction to characteristic p. We end the chapter by stating the questions of Hochster
stated in [Ho2| about properties of T'I closure. These questions arise naturally from
the existence of similar properties for tight closure and for integral closure.

Chapter III introduces the blowup closure of a set of ideals. The idea is to extend
the ideals to certain localizations of the Rees ring along their product. In this ring
all the ideals are locally principal and therefore easier to handle. In Section 3.1 we
define the blowup closure of a set of ideals in its original setting; this requires testing



the tight closure of the sum of the ideals against all localizations of the Rees ring
along their product. We then show that it suffices to carry the test for a finite cover
of the blowup scheme, i.e., for finitely many localizations of the Rees ring. This
observation makes blowup closure computable.

In Section 3.3, we show that the blowup closure of a set of ideals contains the T'T
closure of those ideals. Using properties of Rees rings, with mild conditions on the
ring, we verify basic properties that one would expect from such an operation: that
it is persistent under ring maps, and contracts from module finite ring extensions.
In particular, blowup closure can be tested modulo minimal primes, which reduces
the study to the case of domains.

In some cases we demonstrate that 7'/ closure and blowup closure agree. This
is not true in general: see Example 3.3.5. Section 3.4 is devoted to proving that
for monomial ideals in a polynomial ring generated by distinct sets of variables, the
blowup closure is equal to the T'I closure, which is the sum of the integral closures
of the ideals.

Although blowup closure seems to be similar in behavior to 7’1 closure, we show,
through an example, that it does not respect inclusions of ideals: if I; C I, and
Ji C J, then the inclusion (I1,J;)” C (I, Jo)” does not necessarily hold. As
a remedy to this problem, in Chapter IV we introduce the notion of the multiple
closure of a set of ideals. The definition is similar to that of blowup closure, except
that it checks tight closure against only one specific open affine set of some blowup
scheme, rather than all affine sets in an open affine cover. It turns out that the
multiple closure of some ideals in a ring is actually the contraction of the blowup
closure of some larger ideals in an extension ring. Multiple closure therefore inherits
all the properties of blowup closure.

The main result of Chapter IV is in Section 4.1. We prove that under mild
conditions on the ring, the 71 closure of a set of ideals is equal to the multiple
closure of those ideals. This holds for example for finitely generated algebras over
perfect fields, or for complete local rings with perfect residue field.

The strength of this result is in that it translates the T'I closure of a set of ideals
into the tight closure of one ideal in an extension ring of the original one. In Section
4.2, we apply this fact to address the questions on 7' closure that were stated in
Section 2.5. We settle the question of persistence of 7'/ closure under ring maps, and
we show that T'I closure commutes with localization if and only if tight closure does
(this property is not known for tight closure, but holds for integral closure).

We develop a theory of test elements for 7' closure in Section 4.3. Test elements
are the key ingredients for tight closure arguments, and the existence of test elements
(see [HH2] or [HH3]) is one of the most important results in tight closure theory.



The existence of a test element in a ring makes it possible to determine that a given
element of the ring is not in the tight closure of a given ideal: if the product of that
element and the test element is not in the ideal, then that element is not in the tight
closure of that ideal. However, the notion of such a uniform multiplier does not exist
for integral closure (see Example 2.5.4), and so we alter the traditional definition of
test elements in tight closure theory to make sense of test elements for 7' closure.
T'I closure test elements, unlike those in tight closure, depend on the ideals that one
works with.

In [HH2|, Hochster and Huneke calculate specific tight closure test elements for
affine algebras over fields of positive characteristic via a Jacobian theorem of Lipman
and Sathaye. We use this result to describe specific test elements for the T closure
of a set of ideals. The main idea here is that if R is an affine algebra, so are the
localization of its Rees rings, and so we can apply Hochster and Huneke’s theorem
to find tight closure test elements for the localized Rees ring, which yield T clo-
sure test elements for the ideals in the original ring. It is worth pointing out that
this result produces an easy method for calculating test elements, which involves
a straightforward calculation when the defining set of equations for the algebra is
known.

We treat the theory of T'I closure for affine algebras over fields of characteristic
zero in Section 4.5. We show that in fact, multiple closure and TI closure agree
in this situation as well. Here again, we use properties of tight closure in equal
characteristic zero to recover properties of T'I closure in equal characteristic zero.
We then define universal test elements for 7' closure: these are the characteristic
zero analogues of test elements in positive characteristic. With similar calculations
to the positive characteristic case, we directly calculate universal test elements for a
set of ideals in a finitely generated algebra over a field of characteristic p.

In Chapter V we introduce methods to calculate specific normal ideals for graded
rings. The main theorem in Section 5.2 states that for a normal graded domain of the
form k[zg,...,zn,]/J where k is a domain and xy, ... ,z,, are variables of positive
weights Ay, ..., A,,, the ideal generated by all elements of degree larger than mA — 1
is a normal ideal. In Sections 5.3 and 5.4 we explore several examples concerning
the effectiveness and the sharpness of the bound mA. Section 5.5 introduces another
class of normal ideals using a lemma of [EGA]. We compare this class of ideals with
those found in 5.2, and consider situations to make optimal use of each class.



CHAPTER II

Background Material

In all the discussions, we assume that all rings are commutative with identity.
When we refer to a ring of characteristic p, we mean p is a positive prime integer.

Notation. If R is a ring, then z € R° means that x is an element of R that is
not in any minimal prime of R. When R has prime characteristic p, ¢ is a power of
p, and I is an ideal of R, I denotes the ideal generated by the gth powers of the
elements of 1. In particular, if I is generated by zi,... ,x,, then 1'% is generated
by z,9,... ,z,9. For a graded ring S and f a homogeneous element of S, by S(;) we
mean the zeroth graded piece of the localized ring Sy, i.e., Siz) = (Sy)o-

2.1 Integral Closure

Definition 2.1.1. For rings S C T the integral closure of S in T is the ring consist-
ing of all z € T that satisfy an equation of the form 2" +a, 2" ' +...+a,_17+a, = 0,
where a; € S fori=1,...,n.

Definition 2.1.2. The normalization R’ of a domain R is the integral closure of R
in the field of fractions of R. If ' = R, R is said to be normal.

In the case when R is not a domain, we follow the definition in Section 9 of [M]
for the normalization of R.

Definition 2.1.3. Let R be a Noetherian ring, and let py,...,p, be the minimal
primes of R. Then we define the normalization of R, denoted by R', to be

(R/p1) x ... x (R/pm),

where for i = 1,... ,m, (R/p;)" is the normalization of the domain R/p; in the field
of fractions of R/p;.

The following fact is well known; we record a proof since we were unable to find
one in the literature.



Proposition 2.1.4. Let R be a reduced Noetherian ring, and let p1,... ,pm be the
minimal primes of R. Then:
(a) The minimal primes of R' are pi*,... , py*, where for 1 <i<m,

pif = (R/p1) x ... x (R/pi_1) x (0) x (R/pis1)' % ... x (R/pm)";

(b) R'/pi ~ (R/p;)', for all .

Proof. (a) The main point is that if A;,..., A, are rings, then the prime ideals of
Ay X ... x A, are of the form

pﬂzAlx...Ai_l XpXAH_lXAn,

where p € SpecA;, for 1 <i <n.
The ideal p* is a prime ideal, since (A; x ... x A,)/p* ~ A;/p is a domain.
Moreover, these are the only primes of A; x ... A,: Let ¢ € Spec(A; x ... x A,).
Observe that if (ai,...,a,) € ¢, then

(a1,0,...,0)=(1,0,...,0)(a,--- ,an) € q.

Similarly (0,...,0,a40,...,0) € ¢, 1 < i < n. The converse of this statement is
easy to see, and so we have

(a1,...,a,) €q iff (0,...,0,0;0,...,0)€q, 1<i<n. (2.1)

Since ¢ is a proper ideal of A; x ... x A, it follows from 2.1 that there is an
element in one of the A;, say there is an a € Aj, such that (a,0,...,0) ¢ gq.

Claim: For any i = 2,... ,n,if b € A;, then (0,...,0,b0,0,...,0) € ¢ (where b is
in the ith spot of the n-tuple (0,...,0,5,0,...,0)).

Proof of Claim: Suppose for example that b € Ay, but (0,5,0,...,0) ¢ ¢g. Pick a
nonzero (ai, ... ,a,) € q (¢ is obviously not the zero ideal, since 4; X ... X A, is not
a domain). Then

(a1,y...,a,)(a,b,0,...,0) € q.

But
(a1,...,a,)(a,b,0,...,0) = (aay,bas,0,...,0) = (a,as,0,...,0)(as,b,0,...,0),

and so (a, as,0,...,0) € gor (a1,b,0,...,0) € ¢q. If (a1,b,0,...,0) € g, by 2.1 we are
done. Otherwise (a,as,0,...,0) € ¢, and it follows from 2.1 that (a,0,...,0) € ¢,
which is a contradiction. This settles the claim.

From what we have shown so far, we can conclude that ¢ = p x Ay x ... X A,.
We now need to show that p is a prime ideal of A;. But this is clear, since A;/p ~
(A; x...x A,)/q is a domain. The assertion in part (a) now follows.



(b) For each i =1,... ,n, take the projection map
Yi:R'=R/p, x...x R/p, — R/p;,

where ¥;(a1,...,a,) = a;. This is a surjective ring map, and the kernel of 1); is
clearly p;*. Hence the isomorphism in part (b) follows. O

Definition 2.1.5. For a ring S and an ideal J of S, the integral closure of J in S,
denoted by J, is defined as

all z € S that satisfy an equation of the form 2" + a12" ' + ... + a1z +a, =0
where a; € J', i = 1,...,n; or equivalently,

all z € S for which there exists a ¢ € S that does not belong to any minimal
prime of S, such that cz™ € J™ for all positive integers n ([Ho2] 1.2).

The integral closure of an ideal in a ring is closely related to the normalization of
the Rees ring of that ideal; see Section 2.2 for more details.

We outline some basic properties of integral closure. Property 3 below shows that
it is enough to study the integral closure of ideals in domains.

Theorem 2.1.6 (basic properties of integral closure). Let R be a ring. Sup-
pose that I is an ideal of R and z € R.

(1) T is an ideal of R, and 6 =1

(2) If h : R — S is a ring homomorphism, then

IS C (IS).

If J is an integrally closed ideal of S, then the contraction of J is an integrally closed
ideal of R.

(8) x is integral over I iff the image of x in R/p is integral over (I + p)/p for
every minimal prime p of R.

(4) Every prime ideal of R, and more generally, every radical ideal of R is inte-
grally closed.

(5) If S is an integral extension of R, then ISN R =1.

(6) If R is a domain, then x € T iff and only if for every valuation domain V
containing R, x € IV

Proof. Parts 1, 2 and 4 follow easily from Definition 2.1.5. Part 3 follows from part
2 and Lemma 1.1 of [L2]. Part 5 is a special case of the lemma on page 795 of [L2].
For part 6, see page 353 of [ZS2]. O

Below we state a proof of a well known feature of integral closure that we use
often in the later chapters.



Proposition 2.1.7. Let R be a domain, and let I = (g1,...,9s) be an ideal in R.
For every i, let S; be the normalization of R[g1/gi,...,9s/gi]. Then x € T if and
only if v € IS; foralli=1,...s.

Proof. Suppose that © € I. Then from part 2 of Theorem 2.1.6 it follows that
z € IS; = IS; for all 4, since IS, = (9:)S; is a principal ideal, and S; is a normal
ring, and so I.S; is integrally closed.

Now suppose that x € IS; for all .. Let V' be a valuation domain containing R.
Since [ is a finitely generated ideal, the image of I in V' will be generated by one of
the g;. It follows that for some 4, S; C V. Then x € IS; implies that x € IV, and
part 6 of Theorem 2.1.6 implies that z € I. O

Corollary 2.1.8. Let R be a Noetherian domain, and let X be a normal scheme,
with a proper birational map ™ : X — SpecR. Suppose that I is an ideal of R such
that IOx is an invertible sheaf of ideals on X. Then IOx "R =1.

Proof. See Proposition 6.2 of [L1] and the remark following it for the proof. O

2.2 Integral Closure of Graded Rings and Rees Rings

Below we record some well known facts regarding the normalization of graded rings
and Rees rings. In some cases that we could not find the proof in the literature, we
outline a proof. For more facts about Rees rings we refer the reader to [V] or [HIO].

Definition 2.2.1. If R is a ring and [ is an ideal of R, and ¢ is an indeterminate
over R, then the Rees ring R[It] of I is the subring of R[t] of the form

RIt)]=Rolte I’ ®....

Theorem 2.2.2 (integral closure of graded rings). Let A = @z A; be a graded
ring, and B a graded A-algebra. Then the set A’ of elements of B integral over A is
a graded subalgebra of B.

Proof. This is Proposition 20 in Chapter 5 of [B]. O]

A useful corollary that we shall use later immediately follows (this is discussed in
Chapter 2 of [L1] and Proposition 4.13 of [E]).

Corollary 2.2.3. Let A = ®;czA; be a graded ring, and B a graded A-algebra. Let
f be a nonzero element of A, and let Ayy and By denote the zeroth graded pieces
of the localized rings Ay and By, respectively. Then the integral closure of Ay in By

is A%, and integral closure of Ay in By is A’(f). In other words,

(Af)l = Alf and (A(f))l = A,(f)-



An immediate application of Theorem 2.2.2 is a well known description for the
integral closure of Rees rings.

Theorem 2.2.4 (integral closure of Rees rings). Let R be a ring, and I an be
tdeal of R, and t be an indeterminate over R. Then the integral closure of the Rees
ring R[It] in the ring R]t] is the graded ring

RoTteI?’o...
where J denotes the integral closure of the ideal J in R.

Proof. We know from Theorem 2.2.2 that the integral closure of R[[t] in R[t] is a
graded subring of R[t]. For a z € R, suppose zt" € R[t] is integral over R[It]. Then
there are ay,...,a, € R[It] and a positive integer m such that

(™)™ + ay (™)™ + ...+ a, = 0.

We can rewrite this equation as a sum of homogeneous terms in R[t], each of
which is equal to zero. In particular, if we take the homogeneous term of degree mn,

we have
(2t™)™ + by (™)™ P+ .+ by =0

where for i = 1,...,m, each b; is a degree ni element of R[[{]. In other words,
b; = ¢;t™, where ¢; € I (¢; could be zero). We rewrite the equation as
2 4 e 2™ L 4 e t™ = 0.
Dividing this equation by t"", we obtain the equation
e 4 4 em =0,

with ¢; € I™, which implies that z € I™.
The inverse of this argument shows that any homogeneous element of R @ It @
I2t? @ ... satisfies an integral equation over R|[It], and this finishes the proof. O

Corollary 2.2.5. Let R be a normal domain, and I an be ideal of R, and t be an

indeterminate over R. Then the normalization of R[It] in its field of fractions is
Reltol’to...,
where J denotes the integral closure of the ideal J in R.

Proof. The field of fractions of R[It] is the same as the field of fractions of R[t],
and since R[It] is a subring of R[t], the normalization of R[It] is contained in the
normalization of R[t]. But R][t] is normal, and hence integrally closed in its field of
fractions. The normalization of R[It] will therefore be the integral closure of R[[t]
in R[t], which by Theorem 2.2.4 is equal to RO Tt ® I?* & . ... O



2.3 Tight Closure

Tight closure is an operation on ideals in Noetherian rings of positive prime char-
acteristic p that contain a field. The main idea for characteristic p arguments is
that when R is a ring of prime characteristic p, the Frobenius map (the map from
R to R that takes an element r to its pth power 7?) will be a ring homomorphism.
The theory is extended to rings of characteristic zero via the method of reduction
to characteristic p. For details and references on tight closure, and for proofs of the
facts posed below, see [HH1] or [Hu]. Another good source for an introduction to
the topic and some applications is [Sm3].

Definition 2.3.1. Let R be a Noetherian ring of characteristic p > 0. Let I be an
ideal of R. Then the tight closure of I , denoted by I*, is the collection of all z € R
for which there exists ¢ € R° such that cz? € I'9 for all large ¢ = p°. We say that an
ideal I is tightly closed if I = I*.

It is easy to check that the tight closure of an ideal is an ideal. Below we list some
properties of tight closure that we use in the later sections.

Theorem 2.3.2 (basic properties of tight closure). Let R be a Noetherian ring
of prime characteristic p, and let I and J be ideals of R.

(1) (I =1I*, and I C I* C 1.

(2) If I C J, then I* C J*.

(8) If I and J are tightly closed, then so is TN J.

(4) An element x € R is in I* iff the image of z in R/p is in the tight closure of
(I +p)/p for every minimal prime p of R.

(5) If R is a reqular ring, then for all ideals I of R, I* =1.

Proof. See [HH1] Proposition 4.1 and Theorem 4.4, and [Hu] Theorem 1.3 for proofs.
O

Property 4 above reduces the study of tight closure to the case of domains. In
general the integral closure of an ideal is much larger than its tight closure.

Example 2.3.3. Let R = k[z,y| be a polynomial ring over a field of characteristic
p. Let I = (22,4?). Then I = (22, 2y, y?), while I* = I = (22, y?) since R is a regular

ring.

Theorem 2.3.4 (tight closure from contractions). Let R C S be a module-

finite extension of Noetherian domains of positive characteristic p. Let I be an ideal
of R. Then (IS)"NRC I*.

Proof. See [Hu|, Theorem 1.7 for a proof. O



In particular, if R C S is an integral extension of a Noetherian domain of positive
prime characteristic p, then every element in (1.S)*N R will be in (IT)*N R for some
finite extension T of R, and so it follows that (IS)" N R C I*.

A key element in tight closure theory is the existence of test elements.

Definition 2.3.5. Let R be a Noetherian ring of characteristic p. An element ¢ € R°
is called a test element for R, if for every ideal I of R and every = € I*, cx? € Il9 for
all ¢ = p® e > 0. The ideal generated by the test elements for R is called the test
ideal of R, and is denoted by 7(R).

Under certain mild conditions on the ring, Hochster and Huneke proved that test
elements exist. Before stating this result, we introduce some terminology.

Note 2.3.6. If R is a ring of characteristic p, R is essentially of finite type over a
ring S if it is a localization of a finitely generated algebra over S. R is F-finite if the
Frobenius map is a finite map. Below, as well as in the next chapters, we frequently
assume that our rings are F-finite or essentially of finite type over an excellent local
ring. It is worth pointing out that these are not very restrictive conditions on a
ring. For example, any reduced finitely generated algebra over a perfect field or any
complete local ring with perfect residue field will satisfy these properties. Both these
properties are preserved after localizing at a multiplicative set in R, and after taking
finitely generated algebra extensions.

Theorem 2.3.7 (existence of test elements). Let R be a Noetherian reduced ring
of positive characteristic p, and suppose that R is essentially of finite type over an
excellent local ring, or that R is F-finite. Let ¢ € R° be such that R. is reqular.
Then ¢ has a power that is a test element for R, and remains so after localizing or
completing R.

Proof. See [HH5] Theorem 3.4, or [Hu] Theorem 2.1 for the proof. O
A very useful property of tight closure follows from this theorem.

Theorem 2.3.8 (persistence of tight closure). Let R — S be homomorphism
of Noetherian rings of positive characteristic p. Suppose that R is essentially of finite
type over an excellent local ring, or that Ryeq (i.e. R modulo the nilradical of R) is
F-finite. Then

s C (1S)".

Proof. See [HH3| Theorem 6.24, or [Hu] Theorem 2.3 for the proof. O

Remark 2.3.9. Persistence improves several of the results stated earlier: If tight
closure persists for the map f : R — S of Noetherian rings, then the contraction of



a tightly closed ideal of S will be a tightly closed ideal of R. To see this, let J C S
be tightly closed in S, and take u € (f~'(J))". Then f(u) € (f~'(J)S)" C J*=J
(see Theorem 2.3.2). Hence f(u) € J, and so u € f~1(J).

Another useful observation is that if f : R — S is any module finite extension
of Noetherian domains of characteristic p, then tight closure persists under f. In
this case, if I is an ideal of R, then (IS)" N R = I* : Theorem 2.3.4 implies that
(IS)" N R C I*, and persistence ensures that I* C (IS5)* N R.

A significant application of tight closure theory has been a simple proof to (in
fact a generalization of) the Briangon-Skoda theorem.

Theorem 2.3.10 (tight closure Briancon-Skoda theorem). Let R be a ring of

characteristic p. Let I be any ideal generated by n elements. Then for all w > 0
Intw C (1",
Proof. This is [HH1] Theorem 5.4. O

2.3.1 Tight Closure in Equal Characteristic Zero

The method of reduction to characteristic p allows us to extend tight closure
theory to rings of equal characteristic zero, that is, rings of characteristic zero con-
taining a field. Consequently, tight closure results in characteristic p find analogous
statements in characteristic zero. In this section, we briefly outline the method of
reduction to characteristic p and give the definition of tight closure in characteristic
zero for affine algebras over a field. For a brief but more detailed treatment of this
topic see [Hol] or [HH1]|. The complete and general source on tight closure theory
in equal characteristic zero is [HH2].

The definition of tight closure in equal characteristic zero is based on the existence
of descent data, which provide us with a finitely generated subalgebra Rp of the ring
over a finitely generated algebra D over the integers. We can then look at fibers of
Rp over maximal ideals of D, which are rings of positive characteristic over finite
(and therefore perfect) fields. We define tight closure for R via the (usual positive
characteristic) definition of tight closure for these fibers.

Definition 2.3.11. Let R be a finitely generated algebra over a field K of charac-
teristic zero, let I be an ideal of R and let x € R. By descent data for R, I, and
x we mean a triple (D, Rp, Ip), where D is a finitely generated Z-subalgebra of K,
Rp is a finitely generated D-subalgebra of R, and Ip is an ideal of Rp such that:
(a) Ip and Rp/Ip are D-free.
(b) The canonical map K ® p Rp — R induced by the inclusions of K and Rp in
R is a K-algebra isomorphism.



(c) I = IpR.
(d) x € RD.

Descent data always exist: Let

R:K[xl,... ,.Z‘n]/(gl;--- :gs)

where K is a field of characteristic zero and g1, . .. , g5 are polynomialsin K[z, ... ,z,].
Let hq,...,h; be elements of K|zy,...,z,] whose images in R generate I, and let
u be an element in K[xq,...,x,] whose image in R is z. Then take D to be the
algebra over Z generated by the coefficients of g1,...,9gs, h1,. .., hs, u, and let

Rp =Dizy,...,z,)/(g15--- ,Gs) -
Let Ip be the ideal generated be the images of A4, ... , h; under the map
D[.Il, e ,.In] — Rp

and let zp be the image of x under this map. To ensure that condition (a) in Defi-
nition 2.3.11 is satisfied, one can replace D by its localization at a suitable nonzero
element of D (This follows from the lemma of generic freeness due to Hochster and
Roberts: Lemma 8.1 of [HR]). Conditions (b)-(d) easily follow.

Definition 2.3.12. Let R be a finitely generated algebra over a field K of charac-
teristic zero and let I be an ideal of R. We say that an element x of R is in the
tight closure of I, denoted by I*, if there exist descent data (D, Rp, Ip) such that for
every maximal ideal m of D, if k = D/m, then zy € I;" in Ry, where the subscript
k denotes images after applying k®p. If I = I'*, then we say that I is tightly closed.

In fact, by replacing D by a localization at a single element, one can see that it
suffices to check that for almost all m € MaxSpecD, i.e. for all m in a Zariski dense
open subset of MaxSpecD, if k = D/m, then z;, € I};*.

The following theorem follows from [HH2| 2.5.2 and 2.5.3:

Theorem 2.3.13 (independence of choice of descent and uniform multipliers).
Let K be a field of characteristic zero, let R be a finitely generated K-algebra, let I
be an ideal of R and let w € R. Let (D, Rp,Ip) be descent data for R, I, and u.

(a) If u € I*, then for every mazimal ideal m of D, if k = D/m, then zy € I, in
Ry.

(b) There is an element cp of RS, such that u € I* iff for almost all mazimal
ideals m of D and k = D/m, cyui? € Il for all positive powers q of p.

Part (b) involves the existence of universal test elements; these are the character-
istic zero analogues of test elements.



Definition 2.3.14. Let D D Z be a domain finitely generated over Z, and let Rp
be a finitely generated D-algebra. We say that cp € Rp is a universal test element
for D — Rp if after replacing D by a suitable localization at a nonzero element of
D the following conditions are satisfied:

(a) cp € RY,.

(b) For every homomorphism D — A, where A is a regular domain of positive
characteristic, ¢y is a completely stable test element for Rj; or, equivalently, for
every homomorphism D — A, where A is a regular ring of positive characteristic, cy
is a completely stable test element for R, (that is, ¢y remains a test element after
any localization Ry, and after completing a local ring of R, at its maximal ideal).

Universal test elements are defined in this general way partially because the Ja-
cobian theorem of Lipman and Sathaye (see [HH2]) produces elements with such a
strong property. In practice, when R is reduced and equidimensional, I C R, u € I*
and cp € Rp is a universal test element, then for almost all m € MaxSpecD, if
k = D/m, we have cyui? € 1,9 for all positive powers ¢ of p.

We will state a theorem due to Hochster and Huneke which enables us to explicitly
calculate universal test elements in Section 4.5 (Theorem 4.5.5).

2.4 Tight Integral Closure

Tight integral closure (or T'I closure) is an operation on a set of ideals in a
Noetherian ring that generalizes the ideas of tight and integral closure. This notion
was introduced by Hochster ([Ho2]) in 1998. Below, we give a brief introduction to
TI closure, outlining its properties and the cases where it is computable. We also
state the questions on 1’1 closure, some of which will be answered later in this thesis.

Definition 2.4.1. Let R be a Noetherian commutative ring of prime characteristic
p, and let Iy,..., I, be ideals in R. We define z € R to be in (I1,...,I,)*, called
the tight integral closure (or TI closure) of I, ..., I,, if and only if there exists an
element ¢ € R such that cx? € I + ...+ 12, for all large powers ¢ of p.

Note that if n = 1, (I)* = I, and if I,..., I, are all principal ideals, then
(I,... , L)y = (L +...+ I,)".

Notation. If Z = {I,... ,I,} is a set of ideals, Z* denotes (Iy,...,I,)*. For
a positive integer k, ¥ denotes the set consisting of all products of k elements of
7, and ZI¥] will denote the ideal I,* 4 ... + I,*. For example, if Z = {I;, I}, then
T2 = {I,%, I, ,?} and T = 1,2 + I,2.

Theorem 2.4.2 (basic properties of 7] closure: [Ho2] 1.4). Suppose that R is
a Noetherian ring of prime characteristic p, and let T = {I,... ,I,} and J =
{J1,...,Jn} denote finite sets of ideals of R.



(a) T* is a tightly closed ideal of R that contains I, for everyt, and is contained
m ]1 + ... +In, i.e.,

(L+..+L) CT*ChL+...+1,

Moreover, there is a single element ¢ € R° such that cu? € T for all uw € T* and
q>>0.

(b) If I, C J; for 1 <t <n then IT* C J*.

(c) If I, C J; C I for 1 <t < n then I* = J*. In particular,

(Th,.... L) =I,...,I,)"

(d) TT closure may be tested modulo minimal primes: Let Py, ... , P, be minimal
primes of R. Then x € T* (in R) if and only if for every i, 1 <i < s, the image of
z in R/P; is in (I, (R/P),... ,I,(R/P,))* in R/P;.

(e) If J is a nilpotent ideal of R, then x € T* if and only if the image of z in
R/J isin (Iy(R/J), ..., I,(R/J))*. If J is the nilradical of R, then T* is the inverse
image in R of (IL(R/J), ..., I,(R/J))*. In particular, T* contains all nilpotents of
R.

(f) If one of the ideals I; in the set T is contained in the integral closure of another,
I; may be omitted without changing the TI closure of the set. This principle may
be applied repeatedly. Thus, for example, if every I, for t > k is contained in the
integral closure of one of the ideals I, ... Iy, then T* = (I, ... , I}x)*.

(9) If T is the union of several finite sets of ideals I, ... ,Z,, then

A g (Ilia R 7IT£)£'

As is transparent above, in some special cases one can calculate T'I closure using
tight or integral closure. Moreover,

Theorem 2.4.3 ([Ho2| 1.9). Let R = D|xy,... ,z,] be a polynomial ring over a
Noetherian ring D of positive prime characteristic p, and let T = {IL1,... ,I,} be a
finite set of ideals each of which is generated by monomials in the variables x;. Then

Theorem 2.4.4 ([Ho2| 3.1). Let k be a field of characteristic p and let Ry, ... , Ry,
denote a finite family of Noetherian k-algebras. We assume that we are in one of the
two cases:

(1) Every Ry is of finite type over k.

(2) Every (Rs,ms) is a complete local ring, and for every s, k ~ Rs/m.



Let R denote the tensor product of the Rs over k in case (1), or the complete
tensor product of the Ry over k in case (2). Let I, be an ideal of Ry, 1 < s < n. Let
Z={LR,...,I[,R}. Then

I*=LR+...+ LR

Theorem 2.4.4 in particular calculates the T'I closure of a set of ideals generated
by disjoint sets of variables in a polynomial ring. The following theorem generalizes
the Briancon-Skoda theorem.

Theorem 2.4.5 (7] closure Briangon-Skoda theorem: [Ho2] 2.3). Let R be
a Noetherian ring of characteristic p > 0, and let T = {I,...,I,} be a set of n
tdeals, let k > 1 be an integer, and let [ =1, + ...+ 1. Then

Jntk-1 C Iki‘
In particular,
InC 1.
An application of Theorems 2.4.4 and 2.4.5 is

Theorem 2.4.6 ([Ho2] 0.1). Let R be a polynomial ring k[x, ... ,Tn| where k is
a field of arbitrary characteristic and the x; are variables. Suppose that the variables
are partitioned into n sets, n > 1 and that I; is an ideal of R whose generators involve
only variables from the jth set, 1 <j <mn. Then (I + ...+ L,)" C L +...+I,.

Example 2.4.7. Let R be the polynomial ring k[z,y, u,v] over a field k of charac-
teristic p, and let I = (u?,v?) and J = (2%, y?) be ideals of R. Then it follows from
the T'I closure version of the Briancon-Skoda theorem, that

(u,v,2,9)" = (u2,0v2,22,y2)2 C (u2,0v2) + (22,42) = (v, v*, uv, 2%, ¥, TY).

This is an improvement of the tight closure Briancon-Skoda theorem, which would
yield

(ui U’ '/I’l’ y)8 = (/U/2, /UQ’ m2’ y2)4 g (/U/2, /UQ’ "L.Q’ y2)* = (u2’ /U2’ '/1:25 y2)'
2.4.1 Tight Integral Closure in Equal Characteristic Zero

TT closure can be defined for affine algebras over fields of characteristic zero by

the method of reduction to characteristic p, described in Section 2.3.

Definition 2.4.8. Let R be a finitely generated algebra over a field K of character-
istic zero, and let Z = {I3,...,I,} be a set of ideals of R. We say that an element
x of R is in the tight integral closure of I, denoted by 7%, if there exist descent data
(D,Rp, I p,...,I,p), such that for every maximal ideal m of D, if k = D/m, then
zy, € I*, where 7, denotes the set of ideals {I;x,... , Iy}, With L) = k ®; I p.



In [Ho2|, characteristic zero analogues of several of the theorems mentioned in
this section are stated.

2.5 Questions

As can be seen above, T'I closure is able to generalize several statements, and to
tie up tight closure and integral closure into one definition. However, there are many
useful properties that both tight and integral closure satisfy, but have been turned
out to be difficult to verify for T'I closure using Definition 2.4.1. In [Ho2|, Hochster
stated the following questions:

Question 2.5.1. Does T'I closure persist? That is, if h : R — S is a homomor-
phism of Noetherian rings of characteristic p, and I, ... , I, are ideals of R, then is
it true that (I,...,I,)" S C (LS,...,[,S)" 7

This property holds for both tight closure (with mild conditions on the ring, see
Theorem 2.3.8) and for integral closure (see Theorem 2.1.6). It is easy to show that
it also holds for for T'I closure if h(R°) C S° this happens for example when A is
a flat map, or if h is any injective map of domains. In general, the lack of a test
element theory for 7'I closure makes the problem obscure in its original setting. This
question will be answered in Section 4.2.

Question 2.5.2. If R is a Noetherian ring of characteristic p, Ii,... , I, are ideals
of R and ¢ € R° and x € R are such that

cx® € P + ...+ 1,7,

for infinitely many e (rather than all large e), then can one conclude that z €
(Ii,... , I,)*?

This is again a property that holds for both tight and integral closure, and it is
reasonable to expect it for 7’1 closure. In Section 4.2 we give an affirmative answer
to this question.

Question 2.5.3. Can one develop a theory of test elements for T'I closure (see
Definition 2.3.5)7

Such a theory exists for tight closure (see Section 2.3), but it is not possible to
define such a notion for integral closure that does not depend on the ideal:

Example 2.5.4. Let R be the polynomial ring k[z,y|, where k is a field. If ¢ €
R — {0} were an integral closure test element for R, then one would have cz™ € I™
for all ideals I of R, all z € I and all positive integers m.



Now take the family of ideals {I,}.cn, Where for each n, I, = (z?",4?"). Then
z"y" € I, for all n, since (z"y")? = 2"y? € I,%. As cis a test element, this implies
that cz™y™ € (2", y*") for all n. Since this holds in the polynomial ring k[z, y], one
can reduce to the case where ¢ is a monomial in R = k|z,y|, which is not possible,
since the degree of ¢ will have to grow larger when n gets large.

Still, one could hope to find elements ¢ that work for Definition 2.4.1, but depend
on the ideals I4,... , I,,. Such specific elements of R are introduced in Section 4.3.

Question 2.5.5. Does T'I closure commute with localization?

It is known that integral closure commutes with localization, and the same is
conjectured for tight closure. In Section 4.2 we show that the question of 7'I closure
commuting with localization is equivalent to the question of tight closure commuting
with localization.

Question 2.5.6. Let R be an affine algebra over a field K of characteristic zero,
and Z be a set of ideals in R and z € Z*. Let (D, Rp,Zp) be descent data. Then
can one find a ¢ € RY such that for all m € MaxSpecD and k = D/m, cpx? € 7,14
for all positive powers g of p?

The last question will be addressed in Section 4.5.



CHAPTER III

Blowup Closure

In this chapter we explore a new notion: the blowup closure of a set of ideals.
Here, we are motivated by the fact that the extension of an ideal I to its blowup
scheme ProjR|[It] is locally principal. For a set of ideals, we consider the blowup
scheme of their product, and each one of the original ideals will be locally principal
there. This is the simplest situation to handle several ideals at the same time. We
investigate properties of this operation, and compare it with tight, integral, and 7'/
closure. Blowup closure is not in general equal to T closure, but in some certain
cases in which T'I closure is explicitly computable, we show that blowup closure can
be calculated as well. In particular, similar to T'I closure, blowup closure generalizes
tight and integral closure: if all the ideals are principal, their blowup closure is equal
to the tight closure of their sum, and the blowup closure of one ideal is equal to the
integral closure of that ideal.

Although the definition of blowup closure makes sense for any commutative ring
of positive characteristic, we immediately restrict ourselves to rings R such that R
is either essentially of finite type over an excellent local ring, or R,.q is F-finite. The
reason is that tight closure persists for maps from such rings (Theorem 2.3.8), and this
property simplifies most blowup closure arguments. These conditions are not very
restrictive, since the class of such rings includes most rings that one would normally
encounter in commutative algebra and in algebraic geometry (see Note 2.3.6).

Notation. Here, if S is a ring, by M(S) we mean the set of all minimal primes
of S. By S’ we mean the normalization of S (see Definition 2.1.3). If S is graded
and f is a homogeneous element of S, then by S(;) we mean the zeroth graded piece
of the localized graded ring Sy, i.e. Siy) = (Sf)o-

3.1 Definition and Basic Facts

Definition 3.1.1. Let R be a Noetherian commutative ring of prime characteristic
p, and let I,... I, be ideals in R. We define z € R to be in (I1,...,I,)", called
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the blowup closure of I, ... , I,, if and only if for every affine open set of the blowup
of the product ideal I = I, ...1I,, if S is the coordinate ring of that affine set, then
z € (JS)*, where J =1, + ...+ I,.

The following discussion shows how for certain rings, one can reduce the process
of checking if an element z is in ([y,... , ;)" to checking if it is in (JS;)*, 1 < i < m,
for any fixed open affine cover SpecSy, ... ,SpecS,, of the blowup of I.

Lemma 3.1.2. Let R be a ring of positive characteristic p, and let J be an ideal of
R. Then for x € R, x € J* if and only if there are g1, ..., 9, € R that generate the

*

unit ideal in R, and for each j, 1 < j <s, z € (Jy)".

Proof. If x € J*, it is immediate that z € (JRy)" for all f € R, therefore one
direction is clear. Suppose we are given a sequence of elements g;,...,gs € R such
that (g1,...,9s) = R, and for each j, 1 < j <s, z € (Jy,)".

For each j, let ¢; be such that c;z?" € Jgj[pe} for all large enough e. One can
replace each c; by its product with a large enough power of g;, so that ¢; € R. Let
c be the product of all the ¢;’s for j =1,...,s. Then ¢ € R and ca?" € Jy; 7] for all
j=1,...,s, and all large enough e.

Fix p®. Then for each j, there is some power N; of g; such that g;vjcxpe e Jrl,
Let ¢ be a power of p that is larger than all the N; for j = 1,...,s. Then for
all j, glea? € JIPl. On the other hand, since (gi,...,gs) is the unit ideal, so is
(91,...,9%), and so it follows that ca?® € JP’l. Therefore z € J*.

O

Now, let X be a scheme, and let 7 be a sheaf of ideals on X. Suppose that there
is an open affine cover Uy, ... ,U, of X, such that for each i, U; = SpecB;, where B;
is essentially of finite type over an excellent local ring, or (B;),eq is F-finite. Suppose
€ JU)" in Ox(U;), for i =1,... ,n. Let U be any open affine set of X. We will
show that z € J(U)".

One can write Y as U NU) U ... U (UNU,). If U = SpecA, then one can refine
this cover of U into

SpecAy, U...USpecAy,,

where the elements f,..., f, of A generate the unit ideal of A. So for every j,
we have an inclusion SpecAy, C U;, for some 4, 1 < i < n. This corresponds to a
homomorphism of rings B; — Ay,. Since € J(SpecB;)”, from the persistence of
tight closure it follows that x € J(SpecAfj)*. Since the f, ..., f, generate the unit
ideal, Lemma 3.1.2 implies that z € J(U)".

We have thus proved that:



Theorem 3.1.3. Let R be a Noetherian commutative ring of prime characteristic p,
such that R is either essentially of finite type over an excellent local ring, or R,.q is
F-finite. Let I, ... I, be ideals in R. If x is an element of R, then x € (I1,... ,I,)”
if and only if for every element f of a fized set of generators for the product ideal
I1=1...1,,

z € (JR[It)sr)",

where J = I + ...+ I, and R[It](sy) is the zeroth graded piece of the localized Rees
ring R[It] .

Note 3.1.4. Let R be aring as above, and [, ..., [, beidealsof Rwith [ =1, ... 1,
and J =1, +...+ I,. Let G be a fixed set of generators for the ideal I such that
every f in G is of the form f = f; ... f,, where each f; is a member of a fixed set of
generators f{,..., fi for I;. For future reference we show what

(JR[It)p)"
looks like in practice.

(JR[It](ft))* =(L+...+1, R[Il .. -Int](fl...fnt))*
+

)
L)R[F2.. )
[
[
[

LI I_n)*
= fla afn)RJ;_llaaffs_ll f_;aaffs:])
= fla 7fn)RI_17§‘_27afn)

3.2 Blowup Closure Can Be Tested Modulo Minimal Primes

Theorem 3.2.1. Let R be a Noetherian ring of positive characteristic such that
R s either essentially of finite type over an excellent local ring, or Rypeq ts F-
finite, and let I,... I, be ideals in R. Then x € (I,...,I,)" if and only if
T € (LR/p,... ,I,R/p)”, for all minimal primes p of R, where T is the image
of x in R/p.

We first specify the structure of the minimal primes of Rees rings, partially fol-

lowing an argument in [M].

Proposition 3.2.2 (minimal primes of Rees rings). Let R be a Noetherian ring,
and let pi, ... ,pm be the minimal primes of R. If I is any ideal of R, then:
(a) The minimal primes of R[It] are p1,... ,pm, where for 1 <i <m,

pi = PRI N R = pi @ ([N p)t & (P Np)E ... 5

(b) For all primes p of R, R[It|/p ~ (R/p)[I(R/p)t].



Proof. (a) Notice that if p € SpecR, then p is in SpecR[[t]. This is because pR]t]
is a prime ideal of R[t], and pR[It] is just a contraction of pR[t] under the inclusion
R[It] C R[t]. The same argument works for primary ideals.

If (0) = ¢ N...Ngs is a primary decomposition of (0) in the ring R, then
(0) = ¢1 N ... N ¢s will be a primary decomposition of (0) in R[It]. So if p1,...,pm
are minimal primes of R, then py, ..., p,, will be the minimal primes of R[It].

(b) For p € SpecR, construct the map

¢ : R[It] — R/p[I(R/p)t]

with ¢(xt™) = Tt", where 7 is the image of z in R/p.

This is a surjective homomorphism of graded rings. To find the kernel, we observe
that ¢(zt™) = 0 if and only if Zt" = 0. So xt" is in the kernel of ¢ if and only if
x € I" N p. So the kernel of ¢ is equal to p, and hence we have an isomorphism
RIIY)/p~ (R/p)I(R/p)i]. O

Corollary 3.2.3. Let R be a Noetherian ring, and let I be an ideal of R. Suppose
ft™ is a homogeneous element of R[It] for some positive integer n.

(a) There is a one to one correspondence between the minimal primes of R[It]
that do not contain ft", and the minimal primes of R[It] sm).

(b) Suppose f € I and p is a minimal prime of R not containing f. Let p be
the minimal prime of R[It] corresponding to p, and let p' be the minimal prime of

R[It] sy corresponding to p. Then

RlIt)s __ (R[{t}

: ! )(m ~ (R/DI(IR/p)]) p -

Proof. The statement of part (a) is equivalent to saying that there is a one to one
correspondence between M (R[It]sn) and M(R[It](sn)).

When n = 1, we have R[It]; ~ R[It](sy[u, u™"]. To see this, notice that R[It] sy =~
Rlg1/f,... ,9s/f], where g1,...,gs is a fixed set of generators for I. We can then
define the map

Rlgi/f,--- 95/ fllu,u™] — R[It]p

by sending u™ to (ft)™ for all nonzero integers m. It is easy to check that this map
is an isomorphism, and it follows that all members of M(R[It];;) are extensions of
those in M(R[It](ys)).

If n > 1, then R[It] ) ~ R[%], where by % we mean all elements of the form %,
where z € I". This is isomorphic to (R[I#]™)y, where R[It]™ = R[I"{] is the nth
Veronese subring of R[It]. By the previous paragraph, we know that that there is
a one to one correspondence between M ((R[It|™),) and M((R[It]®™)). On the



other hand, the homogeneous primes of R[It]™ are contractions of the homogeneous
primes of R[It] (see [E]). Since all the minimal primes of R[It] are homogeneous by
Proposition 3.2.2, it follows again that M(R[It]sn) and M(R[It] ) correspond.
This settles part (a).

To prove part (b), from part (a) we notice that since R[It]s ~ R[It]s[u,u™"],
we have

Ry, oy B <R[It]> . (@) "
It D)

~ PR[Itly \ P p

where the second isomorphism is because localization is flat, and the third follows
again from part (a) of this theorem along with part (b) of Proposition 3.2.2. Therefore

Rt (R[It]> ’
(/1)

4 P

and combining this with Proposition 3.2.2 part (b), we obtain the desired result. [J

Proof of Theorem 3.2.1. Let I =1,...1,, J =11 +...+ I,, and G be a fixed set of
generators for .
Take z € (I1,...,1,)". Then for any f € G,

z € (JR[It)sr)". (3.1)

Since tight closure can be tested modulo minimal primes (see Section 2.3), we see
that Equation 3.1 is equivalent to

R|It *
e <J [p/](ﬂ)) ’
for every minimal prime p' of R[It]s, which by part (a) of Corollary 3.2.3 and

Proposition 3.2.2 corresponds to a minimal prime p of R that does not contain f.
From Corollary 3.2.3 part (b) we see that

__ (Rt ( R[11) ) :
J—2 ) ~ | T — ~ (JR/plI(R/p)t|irp) -
e (A = (4 )(m (JR/plI(R/p)t) 1)

p p

This holds for all minimal primes p of R that do not contain f. Hence we equiv-
alently have
S (IIR/pa s aInR/p)N

for all minimal primes p of R. O



3.3 Basic Properties of Blowup Closure

The following fact, which follows from the contraction property of tight closure,
makes the computation of blowup closure simpler in several cases.

Proposition 3.3.1. Let R be a Noetherian commutative ring of prime characteristic
p, such that R s either essentially of finite type over an excellent local ring, or Ryeq
is F-finite. Let I,... I, beidealsin R, I =1,...1,, J=11+...+1,, f € I and
x € R. Then

z € (JR[It) )" iff =€ (JRIt) ),

where R[It]' is the normalization of R[It].

Proof. Let p1, ... ,pm be the set of minimal primes of R[It] that do not contain ft.

These correspond to minimal primes pi,...,pl, of R[It](ft) (Corollary 3.2.3) and

minimal primes p:f, ..., pn' of R[It]'(ft) (Proposition 2.1.4 and Corollary 2.2.3).
Suppose z € (JR[It]'(ft))*. Then by Theorem 2.3.2 we see that for i =1,... ,m,

! %
Te|J 7}
piﬂ ’

where 7 is the image of  in the ring R/p;. But Proposition 2.1.4 implies that

R[It] 1, N (R[Itkft))'
pit v ’

so T (or rather the image of T under this isomorphism) belongs to

()

Therefore, by the contraction property of tight closure (see the discussion after The-
orem 2.3.4), for all 4,

Applying Theorem 2.3.2 again, we see that = € (JR[It]y)"
The reverse inclusion follows because of the inclusion of R[It] s in R[I t]'( 1> and
the persistence of tight closure (Theorem 2.3.8). O

Theorem 3.3.2. Let R be a Noetherian ring of prime characteristic p,such that R
is either essentially of finite type over an excellent local ring, or R,eq is F-finite, and
let I, ..., I, be ideals of R. Then:



(a) The ideal (I, ... ,I,)" is tightly closed, and
(Ii,..., L) C(I,...,I,)".

(b) If all 11, . .. , I, are principal, then (Iy,... , I,)~ = (IL + ...+ I,,)".
(c) If n =1, then (I,)~ = T,.
(d) (I,....1,)" = (I,...,1,)".

Proof. Throughout the proof, we let G be a fixed set of generators for the ideal
I =1,...1,, such that every f in G is of the form f = f,... f,, where each f; is an
element of a fixed set of generators for I;. We let J =11 + ...+ I,.

(a) We can assume that R is a domain (Theorem 3.2.1 and Theorem 2.4.2 part
d).

For every member f in G, tight closure persists under the map R — R[It](s) ,
and so (JR[It]s1))"NR is tightly closed in R (see Remark 2.3.9). On the other hand,
the intersection of tightly closed ideals is tightly closed (Theorem 2.3.2), and since
(I1,...,I,)" is the intersection of finitely many ideals of the form (JR[It]))" N R,
it follows that (I1,...,I,)" is tightly closed in R.

Now let z € (I1,...,I,)". Then cz? € I + ...+ I, for all large ¢ = p® and some
nonzero ¢ € R. If f € G, and f = f;... f, where f; is a generator of I; as above,
then this equation can be extended to

cz? € ]fR[]t](ft) + ...+ ]gR[It](ft)
= (f1) R[It](fey + ... + (fo) R[It] 51y (see Note 3.1.4)
= (fla s ’fﬂ)[q]R[It](ft)
= J[q]R[[t](ft)
= (JR[It] (1))@

for all large powers ¢ of p. It follows that z € (JR[It]s)". Since this holds for all
f € G, by 3.1.3 we conclude that z € (I,...,1,)".

(b) We can again assume that R is a domain. If I;,... , I, are principal, then so
is their product /. So for each f € G, R[It](f is the same as R. We therefore have

(Il,... ,In)N:(Il++In)*

(c) Assume that R is a domain. In this case, I = J = I;. We use the “normalized”
definition of blowup closure, following Proposition 3.3.1, and we obtain

(D~ = (IR[It];y "R =1,
feg

since the extension of I to the normal ring R[] t]'( so is principal , and therefore tightly
closed (see Proposition 2.1.7 and [HH1| Corollary 5.8).



(d) We use the “normalized” definition of blowup closure, following Proposi-
tion 3.3.1.

Let /=T +...+1I,and I' =1,...T,. Then R[It]' = R[I't]’, since (I')* = I7,
and so ProjR[I't]" like ProjR[It]' is covered by affines of the form SpecR[] t]'(ft) for
f € G. On the other hand, suppose f = f1...f, € G where f; € I,,i=1,... ,n

Then

(J'RUIt)yy)" = (J'RI't) )" = ((fr,- - f)RIM )" = (R p),
as pointed in Note 3.1.4. It follows that (I1,...,1,)" = (I1,...,1,)". O

Theorem 3.3.3 (blowup closure from contractions). Suppose that R and S are
Noetherian domains of prime characteristic p, such that R is either essentially of fi-
nite type over an excellent local ring, or Ryeq ts F-finite. Let Iy, ... 1, be ideals of
R. Suppose S is a module finite extension of R. Then

(IS,...,.I,S)"NRC (I,... ,I,)"

Proof. Let I and J be the product and the sum of I, ..., I,, respectively, and let G
be a fixed set of generators for [ in R.

Suppose S is generated as an R-module by elements uy, ... , uy. Then uy, ...  up
also generate S[(/S)t] as a module over R[It]. To see this, take a homogeneous
element zt" € S[(IS)t]. Then z € I"S, and so if I" = (vq,...,v,) in R, we can

write z = a1v; + ...+ azv, for ay,... ,a, € S. On the other hand for z =1,... 7,
a; = Gj1U1 + ... + AUy, Where a;; € R for j = 1,... ,m. Rewriting the equation
describing z above, we have z = bju; + ... + by Uy, where b; € I" for j =1,... ,m.

It follows that zt" = (bit")us + ... + (byt™)tm. So S[(1S)t] is module finite over
R[It]. A similar argument shows that S[(IS)t](s is module finite over R[It](y).
Now let z € (I,S,...,1,S)” N R. Then by definition, z belongs to

(JS[(IS)t] ft)) NR
= (JS[IS)t](9) N R[It N R
- (JR[It](ft))* NR by Theorem 2.3.4.

This holds for all f € G, which implies that z € (I1,...,I,)". a
Theorem 3.3.4 (persistence of blowup closure). Let ¢ : R — S be a homo-
morphism of Noetherian rings of prime characteristic p, and let I, ... , I, be ideals

of R. Suppose that either R is essentially of finite type over an excellent local ring,
or that R,.q ts F-finite. Then:

(I,...,I,)~S C (I,S, ... , I,S)".



Proof. Let I =1,...1, and J = I, + ...+ I,. Fix a finite set of generators for I,
and let f = fi...f,, fi € I;, be in that set. If R is essentially of finite type over
an excellent local ring or R,.q is F-finite, then R[It] sy will have the same property
since it is an algebra of finite type over R.

On the other hand, if ¢(f) is nonzero, then ¢ induces a map

R[It](sry = SIS thas(ryp >

under which tight closure persists (see Theorem 2.3.8). It follows that when ¢(f) # 0,
(RN (JR[It())") S C (JRI(5)"SIIS)otrn S (JSIIS) o) -
If g1,..., 9, is a set of generators for I in R, then IS is generated by the ¢(g;),
1 = 1,...,r, that are nonzero. From the discussion above and Theorem 3.1.3, it
follows that
(..., 1,)"S C (LS,...,I,S)".

O

Blowup closure satisfies most properties that 7' closure does. However, in many
cases these two operations do not produce the same ideal. Here is an example of
ideals in a polynomial ring for which these two operations are not the same:

Example 3.3.5. Let R = k[x,y] be a polynomial ring over a field & of characteristic
p. Consider the ideals I = (y*) and J = (z*,2%y). Notice that I and J are both
integrally closed ideals. We know from Theorem 2.4.3 that

ay? ¢ (I, ) =T+ J = (2°,y°, 2%).

We show that, however, zy? € (I,J)”. To show this, we check the ideal I + J
against two localized Rees rings. With notation as in Note 3.1.4, if we take f; = °
and fo = 2%y, we have

zy® € (yv°, 2%y)k[z, y, g],

since zy? = y*(z/y).
If we take f; = y® and f, = 2%, we have
Yy
zy’ € (v, 2" ke, y, 1,
since zy* = 23(y/x)%
Therefore zy* € (I,J)~, but zy? ¢ (I, J)*

Moreover, blowup closure fails to respect inclusions: If .J;, ..., J, is a set of ideals
such that I; C J;, for i = 1,... ,n, then the inclusion (I1,...,1;,)” C (J1,... ,Jn)"
does not necessarily hold. Here is an example:



Example 3.3.6. Let R = k[z,y, u,v]. Let I} = (2, 2%y), I, = (v?), J1 = (23, 2%y, u)
and J, = (y®,v). Then xy? € (I, ,)” as was shown in the previous example. But
zy? ¢ (J1,J2)~, because looking at the affine patch corresponding to the generators
u and v of J; and J,, respectively, we can see that

3
myQ ¢ (U'a ’U)k[l', Y, Uy Vy —,
U

2y
' v

As a remedy to this problem, the notion of multiple closure is introduced in
Section 4.1. Before introducing multiple closure, we discuss a case where blowup

closure can be directly calculated.

3.4 The Case of Monomial Ideals in a Polynomial Ring

Theorem 3.4.1. Let R = klz},...,z,, ,...,2%, ... 2% ] be a polynomial ring in
distinct variables x; , 1 < i< nandl < j < my; over an algebraically closed
field k of prime characteristic p. Let I, ... , I, be monomial ideals in R, where the
generators of I; are monomials in the variables x%,... 2t  for 1 < i < n. Then

(Ii,.... L) =L+...+1,

To prove this theorem, we will show that (I;,...,I,)” is a monomial ideal. Then,
for a given monomial M € (I;,...,I,)”, we will show that for some 1 < a < n,

M e RNIRIIY =1y,

and it will follow that (I1,..., L)~ =L +...+1,

We begin by fixing the notation. For each i, let I; = (f{,...,f.), where f
is a monomial in the polynomial ring S; = k[z%,... 2} ]. Let J =L + ...+ 1, =
Sl fmy)and I =1 L= (f) . ff 1 <4 <s;,1 < j<n).

Our first goal is to show that

ISlJSsJ
1<j<n
By 3.1.4, for a fixed index set iy,... ,%,, we are interested in the tight closure of
the ideal (f,..., f) in the ring:
1 1 n n
1 1 fi i n
Koy, oo e e T o e e ] (3.2)

1 1 in in
Equivalently, by Theorem 3.3.1, we can study the tight closure of this ideal in

the normalization of the ring described in 3.2. We claim that the tight closure of

(f,---, f) in the normalization of the ring in 3.2 is equal to (f},..., f) itself.



To see this, let f = f}...fP. Since R[It] is a monomial subring of R[t], R[It]
is also a monomial ring, and it is weakly F-regular (i.e., all ideals are tightly closed;
see [Sm2]). Also, tight closure commutes with localization for R[I?] ([Sm2]). Since
normalization also commutes with localization ([E] Proposition 4.13) it follows that

(JR[It]},)" = JR[It]},.
On the other hand,
(TRIy) € (RI,)), = ((RI), = TR,

and so (JR[It]'(ﬁ))* = JR[It]'(ft).

We have therefore shown that if I1,... , I, are monomial ideals in a polynomial
ring R, then
1§ij§sj
1<j<n

Notice that this argument does not require the distinction of the sets of variables
generating I, ..., I,.

Proposition 3.4.2. Let I1,... , I, be monomial ideals (not necessarily generated by
distinct variables) in a polynomial ring R = klu1, - . . , U] where k is an infinite field.
Then (I1,...,I,)" is also a monomial ideal in R.

Proof. We use the fact that an ideal I in a polynomial ring R = k[us, ... ,u,| over
an infinite field £ is generated by monomials, if and only if / is invariant under the
action of the torus (k*)™, where £* denotes k — {0}, and the torus action on R is
defined as follows. If A = (A,..., Ap) € (%)™, and z is a monomial u;“ ...y, of
R, then

Az = (Au)? . (Apum)™ = M A

and if z is a sum of monomials M; + ...+ M,, then Az = AM; + ... + AM,.

The action of the torus on monomials with negative powers is defined in a similar
way. In the ring R[u; ™', ... ,u,, '], where R is as above, if A = (A\1,..., \y) € (K*)™
and v = u;“ ... u,“", where the ¢; are integers, then

Ay = ()\1’11,1)61 - ()\mum)c’" = )\101 - )\mc’"u,

and if u = M; + ...+ M,, where M; are monomials in the u; with integer powers,
then Au = AM; + ...+ AM,.



We show that (Iy,...,1I,)" is invariant under the action of the torus (k*)™. Sup-
pose each I; is generated by f?,..., f;l By the discussion preceding the theorem we
only need to prove that for any given index set 71,... ,%,, if

and A € (k*)™, then
Az € (f,... ,fiZ)R[It]’(fill___W).

Take A = (A1,...,Ay) and z as above. Then z can be written as
r=AfL +.. .+ A [T,

with Ar,..., Ay € Rt gy
So

Az = MASL) A AALT)
= (M)A + -+ (A (ML)
Since each ffj is a monomial in the wu;, A ffj will be just some scalar times fZJ] , and
will therefore still belong to (f7.,..., f).
As for the A;, we claim that AA; still remains in R[It]i;1 n, for j=1,...,n.
i1 in
To see this, fix some j. One can write A; as
B.
A—Pi
T e

i1 cdin

where B; € R[It]'. We can then write B; as
Bj == Mltr +...+ Msjtr,

where M, ..., M,, are monomials of R that belong to I” (see Corollary 2.2.5). So
if we set f = 111 ., then A; = M, f™" +...+ M, f™", and so

)\Aj = alle_T + ...+ O!stsjf_r,

where i, ... ,qas; € k are scalars. It follows that

N CklMl + ...+ Ckstsj

!
Therefore Az € (f.,... ,fi:)R[It]'(ft), and so we are done.
U
Lemma 3.4.3. Let R = kluq,- .., Un, 1\]\/][_11’ ,%], where uy, ... , Uy, are distinct
variables, and M,... ,M,, N1,...,N, are nonzero monomials in the polynomial
ring k[u1, ... ,un| over a field k. Suppose M, ¢, ... ,gs are nonzero monomials in

kluy, ... ,Uy] such that M € (g1,...,95)R. Then for somei, 1 <i<s, M € (g;)R.



Proof. Since M € (g1,...,95)R, there are A;,... , A, in R such that M = A,g; +
...+ Asgs. After taking the common denominator A of the right hand side of the
equation, and multiplying both sides of the equation by A, we end up with an
equation of the form AM = p;g; + ... + psgs, where py, ..., ps are polynomials in
k[uy, ..., un], and for each i, A; = &. Now notice that AM is a monomial, and so
when you add the polynomials p1g1, ... ,psgs all terms that are not equal to a scalar
multiple of AM cancel out with each other. So we can without loss of generality for
each 7, replace p; with ;Q;, where o; € k is nonzero if the monomial AM appears
as a term of p;g;, and @; is a monomial in k[us, ... , U] for which Q;9; = AM. So
AM = a1Q91 + ... + asQsgs, and a1 + ...+ a, = 1. Now it is clear that least one
of the «; must be nonzero; say «a; is nonzero. Then ;@) is a term of p;, and since
A =8 €R, % € R, and therefore M = %gl € (q1)R.

O

A Noetherian ring R satisfies Serre’s condition (R,) if R, is a regular local ring
for p € SpecR with dim R, < n. We say that R satisfies Serre’s condition (S,) if
depthR, > min(n,dim R,) for all p € SpecR. For more on these conditions, see the
first three chapters of [BH].

The following fact has also been partially discussed in [V]. Below, we give a
different proof.

Proposition 3.4.4. Let R and S be two domains, which are finitely generated k-
algebras, where k is an algebraically closed field. Then:

(a) For a positive integer n, if R and S satisfy (Sn), then so does R ®y S.

(b) For a positive integer n, if R and S satisfy (R,), then so does R ®, S.

Proof. One can express R and S as

klut, ..., tUpy klvi, ..., v,
R:—[ul’ U and S:—[Ul U],
(g15---95) (hi,--.  he)
where uq,... ,u,, and vy,...,v, are distinct variables. Then
R®. S = klug, ... Um,v1,. .., 00]

(gla"' 7gs:h17"' 7ht) ’

see [ZS1] for the tensor product of two rings.
(a) Suppose R and S are (S,). The map ¢ : R — R ®; S is a flat homomorphism
of rings.

By Proposition 2.1.16 in [BH], to show that R ®; S is (S,), it is sufficient to
show that for all prime ideals p of R, k(p) ®r (R ® S) =~ k(p) ® S is (S,), where
k(p) = R,/pR, is a residue class field of R. By applying the same argument again



to the flat homomorphism ¢ : S — k(p) ®; S, it is sufficient to show that k(q) ®s
(k(p) ®rS) ~ k(p) ® k(q) is (S,), where p and ¢ are primes of R and S, respectively.

So fix p and ¢, and pick f € R/psuch that (R/p) is Cohen-Macaulay. Now (R/p);
is a finitely generated algebra over k, so by Theorem 2.1.10 of [BH], since (R/p);y is
Cohen Macaulay, so is k(q) ® (R/p)s. Hence k(p) ®y k(q) is Cohen Macaulay, since
it is a localization of k(q) ®x (R/p);-

(b) Suppose R and S satisfy (R,), that means the defining ideals J; and J» of the
singular loci R and S, respectively, have heights larger than n. The defining ideal
J of the singular locus of R ®; S, is the ideal generated by the d X d minors of the

Jacobian matrix

(M...JA 0 ... 0\

ou1 OUm
Jgs 593
3= 0 .0
dhy shy |
0 ... 0 & . gu
Shy Shy )
\ 0 ... 0 . o

where d is the height of the ideal (g1,...,9s,h1,...,ht) in the polynomial ring
klug, ..., Upn,v1,...,0,] (see Corollary 16.20 of [E]). On the other hand, d = d; +
dy, where d; is the height of (¢1,...,¢s) in k[uq,...,uy], and dy is the height of
(h1,...,ht) in k[vy, ... ,v.] (see Chapter II of [Har]).

Now, it is an easy exercise to see that the only time that the determinant of a

(0 5)

is nonzero is when A and B are both square matrices. So J is generated by deter-

square matrix of the form

minants of the form

det ( ’3 g ) _ (det A)(det B),

where A and B are square matrices. In particular, it contains products of d; x d;
minors of the Jacobian of R with dy X ds minors of the Jacobian of S. Therefore
J 2O J1J2, and hence ht J > min(ht J;,ht J2) > n, since R and S are (R,).
Therefore R ®;, .S is smooth in codimension n.

O



Corollary 3.4.5. Let R and S be two normal domains, which are finitely generated
k-algebras, where k is an algebraically closed field. Then R ®; S is also a normal

domain.

Proof. Serre’s normality criterion says that a ring being normal is equivalent to it
satisfying (S;) and (R;), and so by Proposition 3.4.4 R ®; S is normal. If K and
K' are the quotient fields of R and S respectively, Theorem II1.15.40 of [ZS1] proves
that K ®; K’ is a domain when £ is algebraically closed, and since R®y, S is a subring
of K ®; K', it follows that R ®; S is a domain. O

Below, we adopt the following notation. If R ®; S is the tensor product of two
finitely generated k-algebras R and S over the field k£, and if z € R and y € S, by
T ® y we mean the product of z ®, 1 and 1 ®; y, where x ®; 1 and 1 ®; y are the
images of x and y in R ®; S under the inclusions R — R®; S and S — R®; S,
respectively (see [ZS1]).

Lemma 3.4.6. Let R = k[z1,...,2), ,...,27,... 2% ], I and J be as in Theo-
rem 3.4.1. Let M be a monomial of R that belongs to (I1,...,1,)”. Fiz an index
set i1,... ,n, such that 1 < i, < s,, for 1 < v < n. Suppose that for some fized (3,
1<pB<n, Me (fé)R[It]'(fill___f&t). Then for any index set Ji, ..., jn, 1 < jy < Sy,

1 <wv < n, such that js =g (so that fji = fii)’ we have M € (fji)R[It]'(f; L
J1 In

Proof. We know that M € (Iy,...,I,)", so for all index sets ji,... ,J, one has

M e (JR[It]I(f}l...f}%nt)> = (fjll’ e ,fj':L)R[It]'(f];lmf}lnt),

as we proved earlier in this section.
Since the fjll, .-, [}, are monomials in distinct sets of variables, Corollary 3.4.5
implies that

Ry oy = Sl © - @4 Sallalye o, (34)
where for each v, 1 <v <n, S, = k[z},... 2}, ].

So, for the index set i1, ... ,i,, following the structure in 3.4, we can write M =
M, ® ... ® M,, where each M, is a monomial in S, for 1 < v < n, and Mg €
(fii)sﬂ[lﬂt]l(ffgt)'

Let j1,...,jn, 1 < jy < 5, be any set of indices such that jz = i3, that is, fjﬂﬂ = fzi.
Then since My € (f})Sp(Ist]; 200 e still have M € (f},)R[It]; o O

Proof of Theorem 3.4.1. We want to show that (I1,...,I,)” = I, +...+1I,. Clearly
L+...+1,C(I,...,I,)”. We need to show that the other inclusion holds. From



Proposition 3.4.2 we know that since I1,. .. , I, are monomial ideals, (I1,... ,I,)" is

a monomial ideal.

So we pick a monomial M of R = k[z1,... ,x}, ,..., 2%, ..., a} ] such that M €
(I1,...,I,)~. Our goal is to show that for some o, 1 < o < n, M € I,R[It]'.

Fix an index set 41,... ,1,, and let f = le ... f{t. Then from Equation 3.3 we see
that

Me (JR[It]'(ft)) = (fLoeeo SEORITE .
From [EGA] Lemma 2.1.6, it follows that ProjR[It]' = ProjR[I"t] for some h > 1,

and we obtain
R[IM] 1y =~ R[] (pny).

Since I is a monomial ideal, I* is a monomial ideal (see [E] Chapter 4), and we can

write TP = (Hy,...,H,), where Hy, ..., H, are monomials. So we have
M e ( le, , Z’:L)k[x}, ,xinl,... Yy T Haty oo Hyt] gy,

which is isomorphic to

n n  Hi

H
KTy, Ty s T 7xmn’ﬁ’“' ’f_':]’

and hence from Lemma 3.4.3 it follows that for some 3,1 < 8 < n, M € (fé)R[I_ht](fht)
which implies that M € (f)R[It]{-

We would like to prove that this choice is consistent for all the affine sets, that
is, there is some § such that M € ( fii VR[I t]l(fill"'fir'bnt) for all choices of index sets
Wly-ne yln.

Suppose that for each @ = 1,...,n — 1, there is some index v,, 1 < 7, < 54, and
some index set 4y, ... i, With i, = 7,, for which M ¢ ( fg)R[Jt]’(ﬁl___f%t). Then by
Lemma 3.4.6, for all j, 1 < j < s,, if one picks the index set v1,... ,Vn_1,7,

M ¢ (f5) Rty s, proy

for 1 < a < n — 1. Therefore for all possible j,

Applying Lemma 3.4.6 again, one gets that M & (f}) R[], fign 1) for all index
sets i1, ..., iy.

We have now proved that M € (I, + ...+ I,)R[It]', implies that for some 3,
1 < B <n, M € I4R[It]'. Therefore

M e RNIR[IY =1;

by Corollary 2.1.8. U



CHAPTER IV

Multiple Closure

In this chapter we introduce the notion of multiple closure of a set of ideals in a ring
of positive characteristic. The idea is to induce the property of respecting inclusions
of ideals on blowup closure, without losing persistence. Under mild conditions on
the ring, we show that the T'I closure of a set of ideals is the same as their multiple
closure (which is in fact the contraction of the blowup closure of certain extensions
of those ideals in an extension of the original ring). We apply this result to answer
the questions mentioned in Section 2.5 about T'I closure. We develop a test element
theory for T'I closure based on tight closure test elements, and introduce specific
T1I closure test elements for ideals in affine algebras over perfect fields of positive
characteristic. The last section treats 7'/ closure in equal characteristic zero. We
show that in this situation multiple closure and 7'/ closure agree, and we prove the
existence of universal test elements for T closure in finitely generated algebras over

a field.

4.1 Definition and Basic Facts

Definition 4.1.1. Let R be a Noetherian ring of positive characteristic p, and let
I,... I, beideals in R. We define x in R to be in the multiple closure of I, ... , I,
denoted by (Iy,...,I,)”, if and only if the image of z is in:

1 I, \"
((wl,... , Wy Rwy, ... Wy —, .. ,—n]> ,
w1 Wp,
where wy, ... ,w, are indeterminates.
Recall that the ring
1 1
S =R[wy,... Wpy—,...,—]
w1 Wy,
above is obtained as follows: We take a ring extension R[wi,...,w,] of R, and
we consider the Rees ring R[wy, ..., w,][I't] ring of the product I" of the ideals

35



Li+(wy),. .., In+(wy,). We then localize this Rees ring at the element w; . .. w,t, and
take the zeroth graded piece of the localized ring to obtain S. The ideal (wy,... ,w;,)
in S is just the sum of the ideals I, + (wy),..., I, + (w,) extended to S. So the
multiple closure of Iy, ... , I,, in the ring R is one of the affine patches to be considered
to compute the blowup closure of I + (wy), ..., I, + (w,) in the ring Rlwy, ..., w,]
(see Theorem 3.1.3). It turns out that the multiple closure of I, ... , I, is in fact the
blowup closure of I) + (wy),..., I, + (w,) in R[wy,... ,w,], contracted back to R
(Corollary 4.2.2). Multiple closure therefore enjoys all the basic properties of blowup
closure.

We verify that multiple closure can be tested modulo minimal primes, and hence
one can reduce most arguments to the case of domains.

Proposition 4.1.2 (multiple closure can be tested modulo minimal primes).
Let R be a Noetherian ring of positive characteristic p, and let Iy, ... , I, be ideals in
R. An element x of R is in (I1,... ,In): if and only if for all minimal primes p of
R, the image T of z in R/p is in (LR/p, ... ,IHR/p)L.

Proof. The proof follows from the description of minimal primes of localized Rees
rings, as in Corollary 3.2.3.

Let I = (I1+ (w1)) ... (I + (w,)). Then by Proposition 3.2.2 and Corollary 3.2.3,
a minimal prime p' of
5L Iy
o o,

S = Rlwy, ..., wpy, | > Rlwy, ..., W, It](w,..vnt)

corresponds to a minimal prime p' of R[wy, ... ,w,] that does not contain w; ... w,,
which in turn corresponds to a minimal prime p of R. By the same results, we have
the following isomorphisms

S/ =~ ((Rlwn, ..., wa) /oI (Rlws, . wal /o)) s

which is isomorphic to

(R/p)[wr, -, wa] [H(R/P)[wis - wal)¥]) oy . wmty
which is isomorphic to

(R/p) |w1,...  wy, Il(R/p),... ,M )

w1y W

Now take = € (I4, ... ,In):’. By Definition 4.1.1, this is equivalent to

z € ((wy,--.,w,)S) NR.



From the isomorphisms above, equivalently for all p € M(R)
T E ((wla s ,’w")S/pT)* n R/p7

or, equivalently

L(R L(R/p).\"
pe (e )@/, LB, BED gy
w1 Wp,
By Definition 4.1.1 this is equivalent to T € (I, R/p, . .. , I.R/p)~. [

Theorem 4.1.3. Let R be a Noetherian ring of prime characteristic p such that
either R s essentially of finite type over an excellent local ring, or R,..q is F-finite.
Let I, ..., 1, be ideals of R. Then

*

(Il,... ,In)N: (Il,... ,In)i.

Proof. We can assume by propositions 4.1.2 and 2.4.2 that R is a domain. Let S =

Rlwy, ... wy, 5)—11, ..., 2] where wy, ... ,w, are indeterminates. Pick z € (I,..., I,)"

Wn,

Then there is a nonzero ¢ in R such that cz? € [7+ ... 4+ I,? for all large ¢ = p°.
Since we have the inclusion R C S, it follows that for all large ¢

C,Zq € (Ilq +...t Iﬂq)S g (wlqa e awnq)S = (wh e ,wn)[q]S .

Hence

A ((wl, ce ,U}n)S)* NR= (Il, ce ,In)N.
To show the other inclusion, we choose an element c in R such that R, is regular.
Then
1 1
Scw1...wn = Rc[wl, e s Why — e ey —]
w1 Wp,
is regular, and therefore d = cw; ...w, has a power ¢ that is a test element for the
ring S (Theorem 2.3.7). By multiplying ¢’ with appropriate powers of elements in
I In

wrs -+ 1 s We may assume that ¢ € R.
n

Now take z € (I1,...,I,)". Then
dz? e (w,...,w, 9S8

for all ¢ = p°.
So for a given ¢, we can find Cy,...,C), in S, such that

d2? =Ciunt+...+ Cow,t.



By taking common denominators, we can find a positive integer N, which we can
take to be larger than ¢, such that C; = (WIA#)N for every : = 1,... ,n, where A; is
a polynomial in R[wy,... ,w,|. So we get

2wy ... w,)N = Ayw? + ...+ Ay,

Since R[wy, ... ,wy,] is a free module over R generated by the monomialsin wy, ... , wy,
and 27 € R, we can without loss of generality take each A; to be is a monomial of
the form Byw, ™ ... w; Nw;N"w; . N ... w,N, where B; € R, foralli =1,...,n. So
we can write ¢'z7 as

A Ap
L wi+... +

B B,
wnqz—lwlq-{—...—i— Wy

(wy - .. wy)N (wy ... wy)N w14 wp?

which implies that B; € I, for alli =1,... ,n. So
d2e L'+ ...+ 1)1
This holds for all ¢, hence z € (I, ... ,I,)" O

This equality translates the T'I closure of a set of ideals in R into the tight closure
of an ideal in an extension ring of R. In particular, most properties of tight closure
can now be extended to 7T'I closure.

4.2 Basic Properties of 7'/ Closure Via Multiple Closure

Theorem 4.2.1 (persistence of 7] closure). Let R be a Noetherian ring of prime
characteristic p that is either essentially of finite type over an excellent local ring or
R,eq is F'-finite. Let I, ... I, be ideals of R. Suppose R — S is a homomorphism
of rings. Then T closure persists under this map:

(I, ..., I)= S C (ILS,... , I,S): .

Proof. The properties mentioned above for R are preserved when we pass to the ring
RY = Rlwy, ..., wy, 1{}—11, cee i}—"], since this is just a finitely generated algebra over R.
Moreover, we have the obvious induced map

IS 1,S

Rl — 8" = S[wy, ... ,w,, —, ..., =]
w1 Wy,

under which tight closure persists. Therefore, by Theorem 2.3.8,
(w1, ... ,w,)*ST C (w1, ... ,wn)ST)*

which implies that (I,...,,)* S C (I1S,...,L,S)*. O



An interesting corollary is that multiple closure (or T'I closure) is indeed a blowup

closure in a larger ring.

Corollary 4.2.2. Let R be a Noetherian ring of prime characteristic p such that
either R s essentially of finite type over an excellent local ring, or R,.q is F-finite.
Let I,... I, beideals of R. If S = Rwy,... ,wy,], and fori=1,... n, Il = [;+(w;)
s an tdeal of S, then

*

(I,... L) = (I,..., L)~ = ((I,... ,I))S)" N R,

T n

Proof. From Theorem 4.2.1, Theorem 2.4.2 part (b), and Theorem 3.3.2 part (a) we
have
(I, ..., I,)*S C (LLS,..., [,S)*C (I},..., )" (I;,... ,I)",

and so
(I, ... ,In)ig (I{,... I')NﬂR.

’Tn

On the other hand, let I’ and J' denote the product and sum of I],..., I}, re-
spectively, and let G’ be a fixed set of generators for I’ such that wy ... w, € G'. By
Theorem 3.1.3,

(L, 5" =) (J'SU't)ym) NS
feg’
From the previous paragraph, for every f € G', (I1,...,I,)* C (J’S[I’t](ft))* N R.
On the other hand, by definition of multiple closure, we know that if f = w;...w,,
then (I, ..., I,)" = (J'S[I"t]}s))" N R. So we have

(I, ..., L) = ((I,... ,I')S)” N R.

O

One can see that tight closure commuting with localization and T'I closure com-

muting with localization are equivalent properties.

Theorem 4.2.3. Let R denote the class of all Noetherian rings R, such that R 1is
either essentially of finite type over an excellent local ring or R,.eq is F-Finite. Then
TI closure commutes with localization for all rings in R if and only if tight closure
commutes with localization for all rings in R.

Proof. 1t is clear that if T'T closure commutes with localization for any ring, then so
will tight closure, since the tight closure of an ideal is equal to the 7’1 closure of a
set, of principal ideals (Theorem 2.4.2).



Now suppose that tight closure commutes with localization, and take a set of

ideals I ,...,I, in a ring R described above. Let U be a multiplicative set in R.
Then
UNL,..., L))" = [((wl, ey wn)Rlwy, oo wp, 5)—11 ey 1{)—’; ) N R]
(wl,... U-'R[wy,..., wn,i)—ll ,1{)—’;]) NU'R

U- h”wUlhﬁ
0

In Section 4.4 we strengthen the statement of Theorem 4.2.3 using the notion of

test exponents.

Theorem 4.2.4. Let R be a Noetherian ring of prime characteristic p such that
either R is essentially of finite type over an excellent local ring, or R,..q is F'-Finite.
Let I,... 1, be ideals of R. Suppose that ¢ € R° and z € R are such that cz? €
LY+ ...+ LI, for infinitely many powers q of p. Then z € (I1,...,I,)*

Proof. Let

S:R[wl,... ,wn,i,... ,I—n]
w1 Wy,

Since ¢ € R°, it immediately follows that ¢ € S°; see Corollary 3.2.3. Also, cz? €
L7+ ..+ 1,7 implies that cz? € (wy, ... ,wn)[q] in S for infinitely many ¢. Therefore

I I, \" «
zE(@m”wwmeh”,mWi,”f—D NR=(I,...,I,)"

w1 Wy

4.3 Test Elements for T/ Closure

Theorem 4.1.3 allows us to develop a theory of test elements for 71 closure (see
Section 2.3). Test elements are useful since they help us decide whether a given
element of a ring is in the T'1 closure of a given set of ideals in that ring. Test
elements do not exist for integral closure (see Example 2.5.4), and since the T'1
closure of one ideal is the integral closure of that ideal (see Section 2.4), we expect
the test elements for T'I closure to depend on the ideals. We therefore first specify
what we mean by test elements for 7' closure.

Definition 4.3.1. Let R be a Noetherian ring of prime characteristic p. Let I1,... , I,
be ideals in R. We say that ¢ € R° is a TI closure test element for I, ..., I,, or in

short, a test element for I, ..., I,, if for every z € (Iy,... ,I,)% c2? € I] + ...+ I,

for all nonnegative powers ¢ of p. We call the ideal generated by the test elements

for I,..., I, the test ideal for Iy, ... ,I,, and denote it by 7(I1,... ,I,).



From the proof of Theorem 4.1.3 it immediately follows that:

Corollary 4.3.2. Let R be a Noetherian ring of prime characteristic p such that
either R s essentially of finite type over an excellent local ring, or R.q is F'-finite.
Let I, ... I, be ideals of R, and let S = R[w, ... ,w,, 1{)—11, 1o Then

) Wn,

r(S)NRC (L, ... I,).

Here, 7(S) is the usual tight closure test ideal for S. We also obtain locally stable
T closure test elements for a set of ideals; these are T'I closure test elements of a
set of ideals Iy, ... , I,, that remain test elements for these ideals after we localize the
ring at any multiplicative set.

Theorem 4.3.3. Let R be a Noetherian ring of prime characteristic p such that
either R s essentially of finite type over an excellent local ring, or R.q is F'-finite.
Let I, ... I, be ideals of R. Let c be an element of R° such that R, is reqular. Then
for some positive integer N and all choices a1 € I, ... ,a, € I, , (cay...a,)N is a
locally stable TI closure test element for the ideals I, ... , I,.

Proof. Let U be a multiplicative set in R. Suppose z € (U1}, ... ,U~1IL,)". There-
fore

-1 -1 *
S )

z € ((wl,...,wn)U_lR[wl,...,wn, e

w1 W,
where
I 1 I n

,---,_
wy W,

S = Rlwy, ..., wp, ],

and U denotes the multiplicative set U in R, as well as the image of U in S.

Since R, is regular, so is Scy,..w,, and so cw; ... w, to some positive power N is a
locally stable test element for S (see Theorem 2.3.7). This means that (cw; ... wy,)"
)N

is a test element for U~'S, and therefore (ca; . ..a,)" = (cwy ... w,)V (2 ... 52)V is

a test element for U™1S for any a; € I;.

N

For any such test element d = (ca; ...a,)" we have

dz € (wy, ... ,w,) U8
for all powers ¢ of p, and following the proof of Theorem 4.1.3, we get
A2 e U9+ .. .+ U1

for all nonnegative powers g of p. This implies that d is a T closure test element
for UI,...,U I, and since this holds for all U, we conclude that d is a locally
stable T'I closure test element for Iy,... I, in R. O



For ideals in a finitely generated algebra over a field of characteristic p, we are
able to compute explicit 7’1 closure test elements. Using a theorem of Lipman and
Sathaye, Hochster and Huneke described specific tight closure test elements for such

rings:

Theorem 4.3.4 (Corollary 1.5.5 [HH2]). Let k be a field of characteristic p and
let R be a d-dimensional geometrically reduced domain over k that is finitely generated
as a k-algebra. Let R = kluy,... ,un)/(91,...,9s) be a presentation of R as a
homomorphic image of a polynomial ring. Then the (m — d) X (m — d) minors of the
Jacobian matriz (0g;/0u;) are contained in the test ideal of R, and remain so after
localization and completion. Thus, any element of the Jacobian ideal generated by
all these minors that is in R° is a completely stable test element.

Here the term geometrically reduced means the following: If k is a field and k is
the algebraic closure of k, and R is a k-algebra such that k ®; R is reduced, then R
is geometrically reduced over k.

In practice, £ being of characteristic zero or perfect and R being reduced ensures
that R is geometrically reduced (see tensor products over fields in [ZS1]).

Theorem 4.3.5. Let k be a field of characteristic p and let R be a d-dimensional
geometrically reduced domain over k that is finitely generated as a k-algebra. Let
R = kluy, ... ,unl/(g1,-..,9s5) be a presentation of R as a homomorphic image of
a polynomial ring. Take ideals I, ... ,I, of R where for each i = 1,... ,n, I; is
minimally generated by the elements f,..., fi. of R. Then

n™mrt L™ ' e C1(L,... 1),

where Jpm_q 18 the ideal generated by the (m — d) x (m — d) minors of the Jacobian
matriz J(R) = ().

ouj
Proof. Let S be the ring

I 1,
L

wy T wy,

S = Rlwy, ..., wp,

Then there is a surjective map to S from the polynomial ring

_ 1 1 n n
H =Fkluy, ... Uy Wiy eeo Wiy Tyyeen 3 Ty yeee T, Ty

mapping xf to 1{}—5 Ifforl1 <i<nand1 < j < m,, F; is an element of the
J .

polynomial ring k[uy, ... ,u,] whose image in R is f}, the kernel p of this map is

generated by

1 1 1 1 n n n n
g1, 9sswiry — Fyoooowx,, — B wprt — BV Jwpy,  — B
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z1 0 0 w 0 0 0 0 0

T, O 0 0 w0 0 0 0

0 z2 0 0 0 ws 0 0 0

A 0 w5, 0 0 0 0 wy 0 0

0 0 ¥ 0 0 0 0 Wn 0

0 0 L 0o --- 0 0o --- 0o --- 0 - wp

Figure 4.1: Part of the Jacobian matrix

and possibly other polynomials. So S is isomorphic under this map to H/p. A part
of the Jacobian matrix for this presentation of S will then look like the matrix shown
in Figure 4.1.

Now dimR =d, and sodimS =d+n. If m" =m;+...+m,, then m+n+m'—
(n+d) = m+m'—d, and so we take the ideal Z of the (m +m' —d) x (m+m' —d)
minors of this matrix. We note that Z is contained in the ideal generated by the
(m 4+ m' —d) x (m+ m' — d) minors of the Jacobian matrix of S, and so from
Theorem 4.3.4 we can conclude that Z is in the (tight closure) test ideal for S.
Corollary 4.3.2 then implies that ZN R C 7(14,... , I,).

To find elements of Z that are in R, we make the following partition of the matrix:

Step 1. We take the m' x m' minor of the lower right corner of the matrix by
taking the first n columns, and for each 7, 1 = 1,... , n, removing one of the columns
(say the s;th column) involving a w;. The outcome is x ... 27 wy™ 1. w,™ 1.

Step 2. The upper left corner of this matrix is just J(R). By taking the (m —
d) X (m — d) minors of the upper left corner we obtain J,,_q.

So

zl .. .z w™ ™ w, ™ e C T

It follows that:

Il m1—2 I Mp—2 ) ) )

n — —
(—) (=) Ty ooy 1™ w, ™ Imeg € T,
w1 Wy,

and so

F, . ..F'L™ . L™ *Jn-aCT, (4.1)



since for each i, 2% w; = F}. € I.

By repeating Step 1, and for each 7 = 1,... ,n allowing s; to vary between 1 and
m;, we see that the inclusion in 4.1 will hold for 1 < s; <m; and:=1,... ,n. It
follows that

I.. . L™ [ M2 =™l [mlg o CT.

O

Example 4.3.6. Let R = k[z,y, z] be a polynomial ring over a perfect field &k of
characteristic p. Let I = (f, g) and J = (h) be ideals of R. Then every element of I
is a T'I closure test element for the ideals I and J.

4.4 Test Exponents and the Localization of 7'/ Closure

A recent advance in tight closure theory is the development of test exponents.
Hochster and Huneke show in [HH4] that the existence of test exponents for tight
closure is roughly equivalent to tight closure commuting with localization. This
result suggests that the study of test exponents could provide a breakthrough in the
localization problem for tight closure.

The situation is similar for T'I closure: below we define T'I closure test exponents,
and establish that T'I closure commuting with localization is related to the existence
of test exponents, although the result we get for 7' closure is somewhat weaker
than the corresponding result for tight closure in [HH4]. Nevertheless, Theorem 4.4.4
below strengthens our previous statement (Theorem 4.2.3) on the equivalence of tight
closure commuting with localization with 7' closure commuting with localization.

We begin by stating some relevant facts from tight closure theory.

Definition 4.4.1 ([HH4]). Let R be a reduced Noetherian ring of positive prime
characteristic p. Let ¢ be a fixed test element for R, and let I be an ideal of R. Then
g = p° is called a test exponent for ¢ and I, if whenever cu® € IQ! for some u € R
and ) > ¢, then u € I*.

Thus the existence of test exponents reduces the process of checking whether an
element u of the ring is in the tight closure of an ideal I, to just checking if cu® € I'@!
for some large ), rather than all large (). It is easy to see that the existence of a test
exponent for an ideal forces that ideal to commute with localization (see Proposition
2.3 of [HH4|). The converse of this statement is however difficult to prove. Here,
we produce a parallel definition for 7'I closure test exponents. It will easily follow
that the existence of such an exponent for a set of ideals will force the T'I closure of
those ideals to commute with localization. For the converse, we exploit the fact that



T1 closure can be described in terms of tight closure and apply results of [HH4] to
achieve the desired statement.

Definition 4.4.2. Let R be a Noetherian of prime characteristic p, and let I, ... , I,
be a set of ideals in R. Let ¢ be a fixed test element for I1,... , I, in R. Then ¢ = p°®
is called a test exponent for ¢, Iy, ..., I,, if whenever cu® € I,? + ...+ I, for some
v € Rand Q > ¢, then u € (I1,...,I,)"

Theorem 4.4.3. Let R be a Noetherian ring of prime characteristic p, and let
I,...,1I, be ideals of R. Suppose that c is a locally stable test element for I, ..., I,,
and suppose that c, I, ..., I, have a test exponent q. Then TI closure commutes

with localization for Iy, ... I,.

Proof. Let U be a multiplicative set in R, and let z/1 € (U™'I,... , U 'I,)" We
have
cz'/1e UL+ ...+U LY,

and so for some u € U, ucz? € [1! + ...+ I,7, hence c(uz)? € *+ ...+ I,,°. Since

q is a test exponent, this implies that uz € (Iy,...,I,)*, and so
z/1eU ML,... 1)

O

Theorem 4.4.4. Let R be a Noetherian ring of prime characteristic p that is either
essentially of finite type over an excellent local ring or Ryeq is F'-Finite. Let I, ... , I,
be ideals of R. Suppose that the tight closure of the ideal (wq,... ,w,) in the ring
S = Rlwy, ..., wy, I1/w, ..., I,/w,] commutes with localization at all primes ideals
in Ass (S/(wy, ... ,w,)"). Let ¢ be a locally stable test element for I,... I, in R,
which is also a locally stable test element for the ring S (such test elements exist; see
the statement and proof of Theorem 4.3.3). Then ¢, I, ... , I, have a test exponent.

Proof. Since tight closure of (wy,...,w,) commutes with localization at all primes
in Ass (S/(wy,...,w,)"), Theorem 2.4 of [HH4] implies that ¢, (wy,...,w,) have a
test exponent q.

Now suppose cu® € I;? +. ..+ I,9 for some u € R and Q > ¢q. Then cu? belongs
to the ideal (wy, ... ,wn)[Q] in S, which implies that u € (w1, ... ,w,)". Hence

u€ (wy,...,wy) " NR=(I1,...,I,)%

which proves that ¢ is a test exponent for ¢, Iy,... , I,. O

We are now able to strengthen one direction of the statement of Theorem 4.2.3.



Corollary 4.4.5. If R, S, I1,...,1I, are as in Theorem 4.4.4, then the TI closure
of I, ..., I, commutes with localization at any multiplicative set in R, if the tight

closure of (wy, ... ,wy) in S commutes with localization at all primes that belong to
Ass (S/(wy, ... ,wn)").

4.5 TI Closure in Equal Characteristic Zero

The translation of 7' closure into tight closure enables us to extend 7' closure
to rings of characteristic zero in an effective way. The definition of T closure in
characteristic zero was introduced in [Ho2], but due to the difficulty of working with
the positive characteristic definition, several questions remained unanswered (see
Section 2.4). In this section, we address some of those questions for affine algebras
over fields of characteristic zero. We show that T'I closure in equal characteristic zero
has similar features to tight closure in equal characteristic zero. We also introduce
universal test elements for T'I closure based on universal test elements for tight
closure.

We begin by recalling the definition of T'I closure in characteristic zero:

Definition 4.5.1. Let R be a finitely generated algebra over a field K of character-
istic zero, and let Z = {I4,...,I,} be a set of ideals of R. We say that an element
z of R is in the tight integral closure of I, denoted by Z*, if there exist descent data
(D,Rp, I p,...,I,p), such that for every maximal ideal m of D, if k = D/m, then
zy € I*, where 7, denotes the set of ideals {I;x,... , I}, With Ly = k ®; I p.

See Definition 2.3.11 for the definition of descent data. Similar to the positive
characteristic situation, we can describe 7' closure in equal characteristic zero in
terms of tight closure.

Theorem 4.5.2. Let R be an affine algebra over a field K of characteristic zero,
which can be presented as

R=Kluy,...,un|/(g1,---,9s)

where uq, . .. , U, are indeterminates and g, - . . , gs are polynomials in Kluq, ... , Up].
Suppose I, ..., I, are ideals of R, and x € R. Then x € (I, ... ,1,)" if and only if
I I, \"
x € <(w1,... , Wy RJwy, . .. Wy — ,—"])
w1 Wn,
where w1, ... ,w, are indeterminates.

Proof. The main point of the proof is that one can construct descent data that work
for the ideals I, ... , I, in R as well as for the ideal (wy,... ,w,) in

I I,
ot =)

sy
w1 Wp,

S:R[wl,... , Wn,



Suppose that for each 4, I; = (f{,..., f.) in R and for every i and j, 1 < i <n
and 1 < j <'s,, F; is a polynomial in K[uy,... ,u,] whose image in R is f; Pick
u € Kluy, ..., uy] whose image in R is z.

We can represent S as a polynomial ring

Klug, ... U, Wi, .. Wy, 0, ... ,ail,... ,of, ..., ay ]
modulo the ideal .J which is generated by g1, . . . , g5, polynomials of the form w;o,— F}

for 1 <i<mnand1l < j < s;, and possibly other polynomials (see the proof of
Theorem 4.3.5 for a more detailed description of this isomorphism).

We can now construct descent data D for (wy, ... ,w,) and z in S by adjoining the
coefficients of all the generators of J in K and the coefficients of u in K to the ring
of integers Z. We then replace D by a localization at a single element to assure that
it satisfies the properties of descent data (Lemma of Generic Freeness, [HR]). This
D will also work as descent data for I1,...,I, and z in R, since it is an enlargement
of some basic descent data that one would construct, and once some descent data
work, every enlargement of them work as well (see Section 2.3).

With this construction, we have that z € (Iy,...,I,)" if and only if for every
maximal ideal m of D, setting k = D/m

T € (]1,]6, - ,In,k)i

in R;. Since k is a finite and therefore perfect field, R, will be F-finite, and so

equivalently
I L\~
T € ((wl,... ,wn)Rk[wl,... ,’wn,l—’k,... , ’k]> .
w1 Wy
This is equivalent to z € ((wy, ... ,w,)Sk)", and since this holds for all residue class
fields k of D, we conclude that equivalently z € ((wy,...,w,)S)". a

The description of T'I closure as tight closure in characteristic zero yields the
following:

Theorem 4.5.3 (independence of choice of descent). Let K be a field of char-
acteristic zero, R a finitely generated K -algebra, I, ... I, ideals of R and u € R.
Let (D, I p,...,Inp) be descent data for R, I1,... I, and u. Ifu € (I1,...,I,)%
then for almost all mazimal ideals m of D (i.e. for m in a dense open subset of
MaxSpecD), if k = D/m, then uy, € (I1g,.-. , Ingk)” in Ry.

Proof. By joining finitely many elements of K to D and localizing at an element, we
obtain descent data (A, Sa,v4) for

Il In

sy
w1 Wp,

S:R[wl,... , Wnp,



v = (wy,...,w,) and u. We can localize both A and D at an element of D so that
A will be free and hence faithfully flat over D ([HR]).

Let m € MaxSpecD and let k = D/m. Take m’ € MaxSpecA that lies over m, and
let k' = A/m/. Since tight closure is independent of the choice of descent, uy € vy *
in Sy. On the other hand Sy = k' ® Si (where Sy = Ry[wy, ... , Wy, I;}—’l’”, e I«Z_f])
The map k& — k' is a finite separable extension of fields, since both £ and £’ are
finite. It follows now from [HH3] Theorem 7.29a° that uy € x* in Sk, which implies

that u € (Il,ka . ,In,k)i in Ry. [

We now introduce the notion of universal test element for 7' closure in the case
where R is an affine domain over a field of characteristic zero.

Definition 4.5.4. Let R be an affine algebra over a field of characteristic zero that
is a domain and let [y,... , I, be ideals of R. Let (D, Rp, I p,--.,1I,p) be descent
data. Then an element c¢p € R}, is called a universal test element for I p,... ,Inp
if for every u € (I, ..., I,)*, and almost all m € MaxSpecD, if k = D/m, then

cpur? € Lip? + ..o+ i,

for all positive powers g of p, where p is the characteristic of &.

Similar to the situation in the positive characteristic case, we can explicitly cal-
culate universal test elements for the 7’7 closure of a set of ideals. We first state the
analogous theorem for tight closure.

Theorem 4.5.5 ([HH2] 2.4.10). Let A D Z be a domain finitely generated over Z
with fraction field F, and let R4 be a finitely generated A-algebra. Suppose that Rz

is an absolute domain of dimension d, that is, F @ Ry (where F is the algebraic
closure of the field F) is a domain. Let

Ra= Alut, ... ,um]/(91,---,9s)-

Then every element of the ideal generated by the (m — d) x (m — d) minors of the
Jacobian matriz (0g;/0u;) is a universal test element of R4 over A.

Similar to the positive characteristic situation, we can deduce

Theorem 4.5.6. Let K be a field of characteristic zero and let R be an equidimen-
stonal finitely generated reduced algebra over K. Take ideals I, ... ,I, of R where
for each i = 1,... ,n, I; is minimally generated by the elements fi,... ,ffni of R.
Let (D,Rp, Lip, ... ,Inp) be descent data such that if F is the fraction field of D,
then Rx is an absolute domain of dimension d. Suppose that Rp is presented as

Rp = Dluy, ... ,uml/(g1,---,9s)-



Then every nonzero element of
I mi1—1 I mnflj
1,D cedp,D m—d

is a universal test element for I p,..., I, p, where Jpy_q is the ideal generated by
the (m — d) x (m —d) minors of the Jacobian matriz (6g;/du;).

Proof. Let u € (Ip,...,I,)*. Then for almost all maximal ideals m of Rp, if k =
D/m,ug € (I, ..., Ink)" Equivalently, by Theorem 4.5.2, uy € ((w1,...,w,)Sk)",
where
Sp = Rplw, ... ,wn,i,... ,I—n]
Wy W,

If ¢ is a universal test element for Sp over S, then ¢, is a test element for Sy for
almost all m € MaxSpecD, k = D/m (see [HH2] or Theorem 2.3.13). If ¢ happens to
be in Rp, it will follow that ¢ is a T'I closure test element for the ideals 1 4, ... , I
for almost all m € MaxSpecD, k = D/m, and so ¢ will be a universal test element
for I p,... , I p.

Asin Theorem 4.3.5 we use the D-algebra structure of Sp and construct part of its
Jacobian matrix, and take appropriate minors of the Jacobian to generate universal
test elements for I p,..., I, p in Rp.

With the presentation of Ry as a finitely generated D-algebra given above, Sp

will be isomorphic to the polynomial ring

1 1 n n
Dlug, .o Uy Wiy, Wy Ty e Ty e e 5 e ee 5 Ty
modulo the ideal generated by
1 Fl 1 _Fl n Fn n Fm
gl,...,gs,wlxl 1,...,w1./1/‘m1 ml,...,wn.’ﬂl— 1,...,wn$mn— Mn

and possibly other polynomials, where F; is an element of the polynomial ring
Dluy, ... ,uy| whose image in Rp is f]’-', 1<i<n, 1<j<m A part of the
Jacobian matrix of Sp will then look like the matrix shown in Figure 4.1 on page 43.

We are given that dim Rr = d, and so dim Sy =d+n. If m' = my + ... + m,,
then m +n+m' — (n +d) = m+m' — d, and so to obtain universal test elements
via Theorem 4.5.5, we are interested in the ideal generated by the (m + m' — d) x
(m +m' — d) minors of this matrix, which is contained in the ideal generated by the
(m 4+ m' —d) x (m +m' — d) minors of the Jacobian matrix of Sp.

Following the exact same steps as in the proof of Theorem 4.3.5, we can see that
this ideal will contain the ideal

-1 -1
H=5Lp™ ... L,p"" Tna

Since H C Rp, every element of H gives a universal test element for I; p,... , I, p.
O



CHAPTER V

Normal Ideals of Graded Rings

In this chapter, we explore different methods to construct classes of normal ideals
for graded rings. These are ideals that produce normal Rees rings for normal rings.
In most practical cases, this means that they produce blowups that are smooth in
codimension one. The method we introduce to construct such ideals is an effective
one: given a graded ring, we can easily produce several normal ideals. We will begin

by recalling some necessary definitions. For more on the construction of Rees rings
see [V].

5.1 Basic Facts

Suppose that R is any N-graded domain, which is a quotient of a polynomial ring
k[xo, ... ,Zm] modulo a homogeneous ideal J, where k = Ry is an arbitrary domain
and xo, ... , T, are variables of positive weights Ay, ..., A,,. In practice, k£ is usually
a field. Let m = (zy, ...., ;) be the irrelevant ideal of R. By abuse of notation, by
Zo,--- , Ty, we will mean the images of the variables xy, ... ,x,, in R. Throughout,
R, refers to the ideal of R generated by the elements of degree at least o in the
graded ring R.

We begin our search for normal ideals by reviewing some basic facts about them.

Theorem 5.1.1. If S is a normal domain, then S[It] is normal iff I™ is integrally
closed for every positive integer n.

Proof. This follows immediately from Corollary 2.2.5, since the normalization of S|/t
has the form
SeolteIPe....

O

Theorem 5.1.2. In an N-graded domain (S, m), for any positive integer «, the
m-primary ideal I = S>, 1s integrally closed.
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Proof. If z is a homogeneous element of S which lies in I, then there is some nonzero
c € S such that cz™ € I™ for all positive integers n. It follows that degcz™ > na.
Hence degc+ ndegx > na, and so degzx > o +

% for all n. As n gets very large,

we see that degz > a and so x € I = S5,. O

Using these two facts, we will be looking for an (m-primary) ideal I of the form
R>,, with the property that I" = R>,, for all integers n > 1. It is worth pointing
out that Lemma 2.1.6 in [EGA] guarantees the exists of such an «; we discuss this
in Section 5.5.

5.2 Main Theorem

Theorem 5.2.1 (Main Theorem). Let R be a graded domain, which is a quotient
of a polynomial ring k[zo, ... ,zy] modulo a homogeneous ideal J, where k is an
arbitrary domain and xq, ... ,x,, are variables of positive weights Ay, ..., A,,. Let A
be the least common multiple of Ay, ..., Ap. Then the ideal I = R>pa s a normal
ideal. In particular, if R is normal, the Rees ring R[It] is normal.

We will show that for all positive integers p, I = R>p,4. By Theorem 5.1.2, this
will complete the proof.

Theorem 5.2.2 (Inductive Step). Let R, I, and A be as in Theorem 3. For
p>2,if IP = R>(p—1)yma then I = R>pma.

It is obvious that I” C R>pma. We have to show that the other inclusion holds.
Also, observe that elements in R>p,4 are sums of monomials in the z; with coeffi-
cients in k, whose degrees are larger than or equal to pmA, and therefore we notice
that R>,ma is generated by such monomials. Hence it is enough to show that every

monomial of k[xy, ..., x| which lies in R>,,4 also lies in I?.

Lemma 5.2.3. With notation as above, let xi°..x¢" € Rspma, where cy, ..., cp are
nonnegative integers, and let aq, ..., a,, be positive integers such that a;A; = A for all
i. Assume P71 = R>p-1yma- Fizn such that 1 < n < m, and suppose that a; < ¢;
for 0 < i < n. For each © smaller than n, let k; be the unique positive integer such
that k;a; < ¢; < (ki + 1)a;. Then:

1) if ko + ...+ kp—1 < m —1, then for some a; (n < j<m), a; <cj;

2) if ko + ... + kn_1 > m, then z°...xém € IP.

Proof of Lemma. 1) If ¢; < a; for all n < i < m, then



pmA < coAo+ ... + cmAnpm
< (ko + DaoAo + ... + (kn-1 + Dap—1A4n—1 + 0, Ap + ... + a4y
=(ko+ ...+ kn-1)A+nA+(m—n+1)A
<(m-1)A+nA+(m-n+1)A
= 2mA.
It follows that p < 2, contrary to the hypothesis.
2) Choose nonnegative integers sg, ..., S, 1 such that s; < k; forall 0 < i <n—1,
and sg + ... + s,—1 = m. We see that

co Cm — 5000 Sn—10n—1 co—S0a0 Cn—1—Sn—-1an-1 _.C C
xo ....Tw;n —_ .7/‘0 ...xn_l * xo ....Tn_l xnn....TTrTLn.
Now
S0ao Sp—10p—1
deg ...z,
= S()A + ...+ Sn—lA
=mA,
. . . Sn—10n—
which implies that zg°® ...z, ' € 1.
On the other hand
Cc0—S0a0 Cn—1—8n—10n-1 ¢ C
deg z B e e
=degz’...x&" —mA
> pmA —mA
= (p—1)mA.
— Cn—1—8n—-10an— _
Therefore z(? %% g7 71l glm € TP g0 xl...alm € IP.

O

Proof of Inductive Step. We have z°...xi" € R>pma, Where cg, ..., ¢, are nonnegative
integers, and we want to show that it lies in I” as well. Let ay, ..., a,, be positive
integers such that a;A; = A for all 4.

If ¢; > ma; for any i, say if cg > mag, then we will get

Ty ...xem = g - xdT O e
Now, deg 2" = magAy = mA, and so zy'* € I. On the other hand,
degzy? M. xim = degxy...xi™ — mA > pmA —mA = (p— 1)mA.
So zg? ™™ ..xém € [P~ by our assumption. Therefore zg°...z¢m € I?, and we are
done.

So let us look at the case where ¢; < ma; for all i.

Now, we cannot have c¢; < a; for all 7, because in that case we get



pmA < coAo + ... + cnAm < apAo + .. + 0 Ay = (M + 1)A,

and so .
pm<m+1:p<1+ag2,

which is a contradiction.

So without loss of generality let ¢y > ag, and let ky be the positive integer (0 <
ko < m) such that koag < co < (ko + 1)ay.

Hereafter, we proceed by induction: Having chosen kq, ..., k,_1, if ko+... + k1 >
m, then z’...x&* € IP by the above lemma, and hence we are done.

However, if kg4 ...+ k,—1 < m—1, by part 1 of the lemma there exists a j > n for
which a; < ¢;. We can without loss of generality assume that j = n, and repeat the
same cycle. Thus we are reduced to considering the case where a; < ¢; forv =0, ..., m.
Let the ko, ..., k,, be the unique positive integers for which k;a; < ¢; < (k; + 1)a;,
(0 <i < m). We can easily see that kg + ... + k., > m, because otherwise

pmA < coAo+ ... + cAnp

< (ko + 1)agAo + ...(km + DamAm

=(ko+..+kn)A+(m+1)A

<(m—-1)A+(m+1)A

=2mA,

which implies that p < 2, contrary to our assumption. It follows then from part

2 of the same lemma that z(°...z¢" € IP. This completes the proof of the inductive
step. U

Conclusion of Proof of Main Theorem. We need I? to be integrally closed for all p >
1. By Theorem 5.1.2, it suffices to have I? = R4 for p > 1. We prove this by
induction. The case p = 1 is the definition of I. If I* = Rspma forall1 <k <p-1,
then from the inductive step it follows that I” = R>ppa. If R is normal, it follows
from Theorem 5.1.1 that R[I?] is a normal ring. O

5.3 Examples

Example 5.3.1. Let k£ be a field, and R = k[z,y, 2]/(z* + v® — 2°), where z,y, 2
have weights 15,10, and 6, respectively. the least common multiple of these variables
is 30, and therefore by theorem 3,

— _ 4 ,..3,2 ,.3 3.3 2,3 2,2.2 ,.2,,,4 2.5 5
I —RZGO—(.’I],J?y,.TyZ,.TZ,.’L'y,.’EyZ,.’L'yZ,J?Z,.’L’y,

4, 03,3 2025 6 .,8 ,10,.9 ,27 35, 4.4 ,5.2 6
zy'z, Yy’ wy?2”, wy2’, w2, 20yt ytet YRyt vt y)

is a normal ideal for this ring.



Example 5.3.2. In general, if k is a field, and R = k[z,vy, z]/(z* + y* + 2°) is a
domain, where the variables z, y, z have weights bc, ac, and ab, respectively, the ideal
I = R>94pc will be a normal ideal of R.

Example 5.3.3. For the polynomial ring R = k[x,y, z] over a field k, one can find
many normal ideals by assigning different weights to the variables z, y and z. For
example, if we set degx = 1, degy = 1 and degz = 2 we find that the ideal
I = Ry = (2, 2%y, 2292, 2%z, 29>, xyz, y*, y?z, 2*) is a normal ideal.

Remark 5.3.4. The method described in Example 5.3.3 above for finding normal
ideals of polynomial rings is not as interesting in the case of two variables. It is a
theorem due to Zariski (see [2S2]), that the set of integrally closed ideals in a regular
local ring of dimension two is closed under multiplication. Therefore, in the ring
R = k[z,y], all integrally closed ideals are normal. In particular, all ideals of the
form I = R>,, where o is a positive integer, are normal (all powers of I are integrally
closed).

Remark 5.3.5. Looking at Theorems 5.1.1 and 5.1.2, it is natural to wonder whether

for an N-graded normal ring R and all positive integers o, one can say that (R>,)" =
R, for n € N. The answer in general is no. For example, consider the ring
R = klz,y] where k is a field, degz = 2, and degy = 3. Let I = (R>7)®. We
will check if I is equal to Ry . Since Rsr = (z*,yz?, 292, y%), we can calculate
I = (22, 2%, 2892, 25¢3 2Py, xhy®, 239®, 22y", 298, 1%). If T is the set of pairs (a, b)
corresponding to generators x%y° of I, we plot the points in I' on the R? plane, and
we see that there are no pairs of positive integers (c, d) in the convex hull of the region
I + R2", besides those in T+ R2™ itself. This implies that I is an integrally closed
ideal (see [E]). On the other hand z'' € Ry, but z!'! does not belong to I = 1.
Therefore R>y; cannot be the integral closure of I. (Note that it also follows from
Zariski’s theorem mentioned in Remark 5.3.4 that I is an integrally closed ideal.)

Remark 5.3.6. One might ask if all ideals of the foorm I = Rs,, o € N, in a
normal graded ring are normal. The answer is no. A counterexample is the ring
R = k[z,y,2]/(x* +y32 + 2*), where z, y and z have degrees 2, 1 and 1, respectively.
The ideal I = Ry = (=,y, 2) is integrally closed, but I? = (2%, zy, zz,y?, yz, 2%) is
not: (z)? 4 (y?)(yz) + (22)2 = 0, and hence = € I2, but z is not in /2. This, by the
way, is an example of a ring whose test ideal is not normal, given by Hara and Smith
in [HSm].



5.4 How Effective is this Bound?

A natural question for a graded ring of the form
R =k[xg,...,zn]/J

that we have been studying in this chapter is: What is the smallest positive integer
« such that R>, is a normal ideal? We do not know the answer to this question.
However, we know that the bound oo = mA is the sharpest one can get up to multiples
of A (with notation as in Theorem 5.2.1). That is, if n < m and o = nA, R>, is not

necessarily a normal ideal.
Example 5.4.1. Take a polynomial ring R = k[z, y, 2] over a field k, such that
degr =12 degy =15 degz = 20.

A = lem(12,15,20) = 60. We know that I = R>19 is a normal ideal. The ideal
J = R>4 = R>¢p is however not a normal ideal. This is because J? is not integrally

closed:
Pyt e J?
since
(@%y°2%)? = (2°2°) (2y°2) € (J?)?,
but
*y** ¢ J2
An interesting question is whether in general, given a ring R = k[zo, ... ,Zn)/J

as above, R>;,4-1 is a normal ideal. We do not know the answer to this question.

5.5 Another Class of Normal Ideals

Let R be a graded ring of the form k[xy,...,2,]/J, where k is a Noetherian
domain. By applying Lemma 2.1.6 of [EGA] to

RI=Ryg®R>1 ® R0 ® ...,

one can identify a class of normal ideals for R, different from those described earlier
in this chapter.

Theorem 5.5.1. Let R = k[xy, ... ,x,]/J be a graded domain, where k is a Noetherian
normal domain. Suppose that the variables xy, . .. , x,, have positive weights Ag, ... , Ap,

respectively. Then the ideal I = Ry, is a normal ideal, where

h =lem(1,2,...,max(Ag,...,An))-



Proposition 5.5.2. Let R = k[xo, ... ,Zn]/J be a graded domain over a Noetherian
domain k, and let the variables xq, . .. , x,, have positive weights Aqg, ... , A, respec-
tively. Then the graded blowup R = R0 ® R>1t @ Rxot* @ ... is generated as an
(R%)o = R>¢ algebra by the homogeneous elements

Z’ot, e ,.’L'()tAO, xlt, ce ,.’L’ltAl, ce ,ZIJmt, e ,xmtAm (51)
of Rl

Proof. For a nonnegative integer «, the elements of R>, can be written as sums of
monomials in k[zg, ... , Z,,]. We consider a homogeneous element x = 2 . .. z,,“mt"
of R", where ¢; > 0 for i = 0,...,m; so cgAg + ... + A, > n. If all the ¢
are 0, then n = 0 and x € (R")y, and so there is nothing to show. Suppose,

without loss of generality, that cy,...,cs are nonzero for some s < m, and that
Cs11 = Csyo2 = ... = Cy = 0. Also, suppose that e < s is such that
A()C() + ...+ Ae_lce_l S n S A()C() + ...+ Aece- (52)

We can now write
— .Cet1 c Ag\co Ae_1\Ce—1 Ceyn—Agco—...—Ae_1Cc—1
X =2 25 (2gt70)O L (Teqt ) (@t emlfemt)

From the inequality in 5.2 it follows that 0 < n — Agcg — ... — Ae_1Ce 1 < Aece. Let
0 < ¢ < ¢, be such that

Acc<n—Agcog— ... — Ae_1Ce1 < Ae(c+1).

Set A=n—Agcg—...— Ae_1¢e—1 — Ac.c. We see that 0 < A < A,, where A < A, if
¢ < ce, and A =0 if ¢ = ¢.. So we can write

x = 2o a8 (2pt0) O L (mem ) (et ) (5 HY),

which is a monomial generated over k[zg, ... ,x,] by the terms appearing in 5.1.
U

Proof of Theorem 5.5.1. By the arguments given in Section 5.1, the ideal I = R}, is
normal if I = R, for all positive integers n. By Proposition 5.5.2, RY is an algebra
of finite type over (Rf)o, and so R is Noetherian. Now, Lemma (2.1.6) of [EGA]
implies that there exists a positive integer h, for which (R%),,;, = ((R%),)" for alln > 0.
So there is an h for which (R>4)" = R>ps for all n > 0. Moreover, the proof of this
lemma shows that  is the least common multiple of the weights of the (R%),-algebra
generators of R¥. So by Proposition 5.5.2, h = lem(1,2, ... ,max(4y, ..., A,,)). Now
if we set I = R>j, we have I = Ry, for all positive n, and hence I is a normal
ideal. O



Remark 5.5.3. The number A given in Theorem 5.5.1 is very useful mostly in the
cases where the weights of the variables are small. Theorem 5.2.1 says that in a
polynomial ring k[zo, ... ,zy,], where zq, ..., z, have weights Ay,..., An,, respec-
tively, the ideal J = R>, is a normal ideal where o = mlcm(A, ..., An). So let us
compare these two given numbers a and h:

If R = k[x,y,u,v], where the variables x,y,u and v have weights 1,2,2 and 1,
respectively, then h = 2, whereas o = 3 X 2 = 6, and so h gives a better normal
ideal.

But if R = k[z,y, z], where the variables x,y and z have weights 12, 15 and 20,
respectively, then o = 2 x 60 = 120, while h = lem(1,2,. .. ,20) = 232792560, which
is such a large number that it is almost impossible to work with it.
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