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Abstract
We present an algorithm that checks in polynomial time wiethsimplicial complex is a tree. We
also present an efficient algorithm for checking whetherrapex is grafted. These properties have strong
algebraic implications for their corresponding facet Idea

1 Introduction

The main goal of this paper is to demonstrate that it is ptessibcheck, in polynomial time, if a monomial
ideal is the facet ideal of a simplicial tree.

Facet ideals were introduced in [4] (generalizing [9] anfjl #& a method to study square-free monomial
ideals. The idea is to associate a simplicial complex to asgtree monomial ideal, where each facet (max-
imal face) of the complex is the collection of variables thppear in a monomial in the minimal generating
set of the ideal (see Definition 2.4). The ideal will then bkeckthe “facet ideal” of this simplicial complex.
Special simplicial complexes are called “simplicial tre@3efinition 2.9). Facet ideals of trees have many
properties; for example, they have normal and Cohen-MagdRées rings [4]. Finding such classes of ide-
als is in general a very difficult problem. Simplicial treéscahave very strong Cohen-Macaulay properties:
their facet ideals are always sequentially Cohen-Macd@gynd one can determine under precisely what
combinatorial conditions on the simplicial tree the fadital is Cohen-Macaulay [5]. In [7] it is shown that
the theory is not restricted to square-free monomial ideddspolarization, one can extend many properties
of facet ideals to all monomial ideals. All these propertasd many others, make simplicial trees extremely
useful from an algebraic point of view.

But how does one determine if a given square-free mononeall id the facet ideal of a simplicial tree?
In Section 3, we show that this can be decided in polynomiasti

This extended abstract is organized as follows: in Sectievedntroduce the notion of a complex, a
tree, and a cycle. Section 3 contains the main theoretisaltrthat enables us to produce a polynomial time
algorithm to decide whether a given complex is a tree. Therdlgn itself is introduced in Section 3.1,
and the complexity and optimizations are discussed in @&e£8.2 and 3.3. Section 4 focuses on the alge-
braic properties of facet ideals: in Section 4.1 we discusgethod of adding generators to a square-free
monomial ideal (or facets to the corresponding complexhabthe resulting facet ideal is Cohen-Macaulay.
This method is called “grafting” a simplicial complex. Famgplicial trees, being grafted and being Cohen-
Macaulay are equivalent conditions [5]. We then introdut@lgorithm that checks whether or not a given
simplicial complex is grafted in Section 4.2, and discussd@mplexity in Section 4.3.

Implementations. The algorithms described in this paper have first been cau€u@oAL, the program
language of the CoCoA system [2]. These prototypical imgletations can be downloaded from the web-
site www.dm.unipi.it;Acaboara/Research/SimplicialTrees/Trees.coc. Much mifficéent (but not so user
friendly) C++ implementations are being developed usirgdicoalib framework [3]. The C++ code will be
available in the full paper according to the specificatioh&XCA [1].
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2 Simplicial complexes and trees

2.1 Definitions and notation
We define the basic notions related to facet ideals. Mordldetiad examples can be found in [4] and [5].

Definition 2.1 (Simplicial complex, facet). A simplicial complexA over a set of vertice® = {vy,...,v,}

is a collection of subsets df, with the property thafv;} € A for all 4, and if FF € A then all subsets aF’
are also inA (including the empty set). An element &f is called afaceof A, and the maximal faces are
calledfacetsof A.

Since we are usually only interested in the facets, rathar #il faces, of a simplicial complex, it will be
convenient to work with the following definition:

Definition 2.2 (Facet complex).A facet complexs a finite setA of finite sets, such that for ali, G € A,
F ¢ G. EachF € Ais called afacetof A, and eachy € F'is called avertexof F' and ofA.

Remark 2.3. The set of facets of a simplicial complex forms a facet componversely, the set of subsets
of the facets of a facet complex is a simplicial complex. Twe tlefinitions are therefore interchangeable.

We define facet ideals as follows, giving a one-to-one cpoedence between facet complexes and
square-free monomial ideals.

Definition 2.4 (Facet ideal of a complex, facet complex of amléal).

e Let A be a facet complex whose vertices are containe¢vin...,v,}. Letk be a field, and let
R = k[z1,...,x,] be the polynomial ring with indeterminates, . ..,z,. Thefacet ideal ofA is
defined to be the ideal &t generated by all the square-free monomigls . . z;,, where{v;, , ..., v;, }
is a facet ofA. We denote the facet ideal &f by F(A).

o Let] = (My,...,M,) be an ideal in the polynomial ring[z1,...,z,], wherek is a field and
My, ..., M, are square-free monomialsin, . . ., z,, that form a minimal set of generators thrThe
facet complex of is defined to bé () = {F1, ..., F,}, where for eachi, F; = {v; | z;|M;, 1 <
j<n}.

From now on, we often usey, ..., z, to denote both the vertices df and the variables appearing in
F(A). We also sometimes ease the notation by denoting facetseyctirresponding monomials.

We now generalize some notions from graph theory to compleXete that a graph can be regarded as a
special kind of facet complex, namely one in which each faestcardinality 2.

2.2 Simplicial trees

Simplicial trees are a generalization of graph-theoregies, in light of the fact that a graph can be regarded
as a special kind of complex, where the facets are the eddghs gfaph.

Definition 2.5 (Path, connected complex)Let A be a facet complex. A sequence of facEts. .., F, is
called apathifforall i = 1,...,n — 1, F; N F;11 # (. We say that two facetB' andG areconnectedn A
if there exists a patlty, .. ., F,, with F; = F andF,, = G. Finally, we say thai\ is connectedf every pair
of facets is connected.

Notation 2.6. If F', G andH are facets of\, H <y G meansthatf N F C GN F, i.e. H is a subset of7
“inside” F'. The relation< r defines a preorder (reflexive and transitive relation) orfabet set ofA.

Definition 2.7 (Leaf, joint). Let F' be a facet of a facet compleX. ThenF is called aleaf of A if either
F is the only facet ofA, or else there exists sonié € A\ {F'} such that for allH € A\ {F}, we have
H <p G.If FNG # 0, the facetG above is called fint of the leafF'.



Example 2.8. In the complexA = {xyz, yzu, uv}, xyz anduwv are leaves, bujzu is not a leaf. Similarly,
in A" = {zyu, zyz, xzv}, the only leaves areyu andzzv.
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Definition 2.9 (Forest, tree). A facet complexA is aforestif every nonempty subset ak has a leaf. A
connected forest is calledteee

Example 2.10. The complexes in Example 2.8 are trees. The comlex {zyu, xyz, zzv, yzw} pictured
below has three leavag/u, xvz andyzw; however, it is not a tree, because if one removes the fagetthe
remaining complex has no leaf.

2.3 Cycles

Definition 2.11 (Cycle). A nonempty facet complex is@ycleif it has no leaf. A cycle igninimalif none of
its proper subsets are cycles.

Remark 2.12. Clearly a complex is a tree if and only if it does not have a stibaich is a cycle.
The main tool used in the paper to prove Theorem 3.7 is thetsteiof cycles.

Definition 2.13 (Strong neighbor). Let A be a complex and’, G € A facets. We say thak’ andG are
strong neighborswritten F ~ G, ifforall H €¢ A, FNG C H impliesH = ForH =G.

The relation~ is symmetric, i.e F' ~ G ifand only if G ~ F', and reflexive, i.eF ~ F.
Itturns out that a cycle can be described as a sequence pfticonnected facets. The following lemma
follows directly from Definition 2.13.

Lemma 2.14.Let A be a complex, and ldfy, . .. , F,, be facets suchthatforall=1,... ,n—1, F; ~ F;11
andF,, ~ Fyin A. Then{Fy,..., F,}isacycle.

Lemma 2.15. Suppose)\ is a minimal cycle, and let = |A|. Thenn > 3, and the facets oA can be
enumerated in such a way that= {Fi,..., F,}, and for alli, F; ~ F; 14, as well asF,, ~ F;. Moreover,
in all other casesF; ¢ F} (so that each facet is a strong neighbor of precisely two rofiheets).

The proof of this last lemma is based on the observation treyaon-trivial tree has at least two leaves
[4]. Further, if F' is not a leaf ofA, but is a leaf ofA \ {G} for some face, thenF andG must be strongly
connected im\.

3 Characterization of trees

As mentioned earlier, facet ideals of simplicial trees hetveng algebraic properties. For example, they have
normal and Cohen-Macaulay Rees rings. One would thergf@réd be able to decide whether a given facet
complex is a tree or not. We refer to this problem asdbeision problem for simplicial trees

Note that the naive algorithm (namely, checking whethengmon-empty subset has a leaf) is extremely
inefficient; for a complex of: facets, there ar@™ — 1 subsets to check. Also note that the definition of a
tree is not inductive in any obvious way: for instance, dtiag a single leaf to a tree need not yield a tree, as
Example 2.10 shows. This seems to rule out an easy recutgiwéthm.

We now demonstrate that the decision problem for simplitegts can in fact be solved in polynomial
time.



Definition 3.1. A precomplexs a finite multiset (a set in which repeated elements arevalipI1 of finite
sets. Just like for facet complexes, an elemgénk 11 is called a facet and an elementc F' is called a
vertex.

Remark 3.2. Trivially, any facet complex is also a precomplex. On theeothand]l = {xyz, zyz,x2} is
an example of a precomplex which is not a facet complex. I faibe a facet complex because (a) the facet
xyz occurs more than once, and (b) the faceis a subset of the facet)-.

Definition 3.3 (Reduction). Let A = {F},..., F,,} be a facet complex, and 1&t be a set of vertices. We
define theeductionof A alongV' to be the precomplex

ANV :={F\V,...,F,\V}.
Note that in generald \\ V is not a facet complex.
Definition 3.4 (Residue).Let A be a complex, and I€f, G, G2 be three distinct facets. Let
1rGi:={HeA|G; <p HandH # G, }.
LetS = Tr G1 UTr Gy and define théF, G, G)-residueof A to be the following precomplex:
ASHE = (A\8)\| F.

Remark 3.5. Note that in the expressiqa \ .S) \\ F, the setS is a set of facets, whilé&" is a set of vertices.
Also note thatF' € S. Further, ifGy; £r G2 andGs £r G1, thenGy,Gs € S.

Definition 3.6 (Triple condition). Let A be a complex. A triple of facet&F, G1, Gs) is said to satisfy the
triple conditionif G; £ G, andGy £ G, and ifG; \ F andGs \ F are connected ith &2

Our central claim is the following:

Theorem 3.7 (Main Theorem). Let A be a complex. Then is a tree if and only if no triple of facets i
satisfies the triple condition.

Sketch of the proof!=": Suppose there is a triple of facetg, G, G2) satisfying the triple condition. Let
{H,,...,H,} be a minimal path connecting, \ F andG> \ F in A%"“>. ChooseK; € A such that

H; = K; \ F forall ;, and such thak’; = G; andK,, = G2. One can show thdtF, K1, ..., K, } isa cycle

in A.

“<": Suppose that is nota tree. Theh has some minimal cycle, which can be writte{ &3, . . ., F, }
satisfying the condition of Lemma 2.15. Then it can be shdvat the triple(F}, F», F,,) satisfies the triple
condition. 0

Corollary 3.8. If F is part of a minimal cycle, then there exist sofie, G € A such that(F, G, G>)
satisfies the triple condition. O

3.1 A polynomial-time tree decision algorithm

By Theorem 3.7, to check if acompléx= {Gy, ..., G} is atree, we only need to check the triple condition
for all triples of elements ofA. The checks themselves are straightforward. Since thie tripndition for
(F,G,G") is clearly unchanged if one switchésandG’, we can limit triple checking to the elements of the
set{(F,G;,G;) € A% | G; # F # G,,i < j}. The procedures for the basic steps follow immediately from
the earlier definitions.

Algorithm 3.9 (Tree decision algorithm).
Input: a compleXA = {Gy, ..., G} with n vertices.
Output: True if A is a treeFalseotherwise.

1. ForeachtripléF, G,G') € {{F,G;,G;) € A3 | G; # F # G,,i < j}



(@) If G <p G' or G’ <r G, continue with the next triple.
feXel

(b) LetIl = AZ™ .

(c) If G\ F andG' \ F are connected ifll, returnFalse

2. ReturnTrue.

The algorithm uses very little memoryy andII requirenl bits each, and the memory required to per-
form the connectedness check and to store the various asusteegligible. Thus, the total memory usage
is roughly twice the amount necessary far memory locality is hence quite good, and computation can
generally take place in the cache. We will hence only dedl tiihe complexity.

3.2 Complexity

In the worst case we have to chetk (é) = 1I(l—1)(I — 2)/2 triples. For each triple, the cost of step (a)
is O(n), the cost of step (b) i©(nl) and the cost of step (c) ©(nl). The total time complexity of the
algorithm is thereforé®(ni*).

Example 3.10. Consider the comple’ = {zy,zz,yz, yu, 2t}. We have to check - (2) = 30 triples. We
start with the triple(zy, ©z, yz).

o 1z Loy yzSiNnCezy Nz =2 € y=xyNyz. Similarlyyz £,y zz.
e z2\zy = zandyz \ zy = z are connected (they are equal) in the precompigx¥* = {z, z, u, 2t}.

We have hence discovered thatis not a tree. A more unlucky choice of facets could have bnbagout
the checking oR7 useless triples before the discovery thats not a tree, the other two useful triples being
(yz, zy, xz) and{xz, zy, yz).

Example 3.11. Some statistics for a bigger random example. Consider thiolex A = {lka, qik, tykj,
wuw, rjb, etoab, gde, zv, rtj, grom, gzm, tgzb, rgvm, glav, geocn, ik faz, bn, ekjs, pfon, wtodv}. We
discover that it is not a tree after checkihfpcets; we performed the connectedness check only onceelf o
checks alB - (23?) = 3420 triples, one finds that45 of them require a connectedness check, 4irsdof them
reveal thatA is not a tree.

Example 3.12. The compleX{z;z;+12,12 | © = 1,...,400} is trivially a tree. Checking this by a direct
application of Algorithm 3.9 requires dealing with- (*3°) = 31,760, 400 triples, and takes abot.6
seconds on an Athlon 2600+ machine for our C++ implementatidl the timings in the remainder of this

paper refer to this machine.

3.3 Optimization

The runtime of Algorithm 3.9 can be improved by introducilogne optimizations. First, note thatif is a
facet such that no tripléF, G, G’) satisfies the triple condition, then by Corollary 38 cannot be part of
any minimal cycle ofA. Therefore,F’ can be removed from, reducing the number of subsequent triple
checks. We refer to this optimization as tleenoval of useless facets

Example 3.13. We check the treéz; ;112,12 | i = 1,...,400} of Example 3.12 with a version of Algo-
rithm 3.9 with removal of useless facets. This requiresidgatith 10, 586, 800 triples and takes abo&t6
seconds.

An important special case of a “useless facet” is a reduddalk as captured in the following definition:

Definition 3.14 (Reducible leaf).A facet F of a facet complex\ is called areducible leafif for all G, G’ €
A, eitherG <p G’ orG' <p G.

Remark 3.15. F'is areducible leaf ofA if and only if F' is a leaf of everyA’ C A with F € A'.



The remark immediately implies that a reducible leaf cartmeopart of a cycle. Thus, it can be removed
from A, and the algorithm can then be recursively appliedite= A\{F'}. In our experience, most simplicial
trees possess a reducible leaf; in fact, it is an open questiether this is always the case. Checking whether
a given facet?’ is a reducible leaf requires ordering all facets with respee », which takesO(nllog!)
steps. A reducible leaf can thus be found in timé?logl). This suggests that removing all reducible
leaves at the beginning of Algorithm 3.9 is a worthwhile op#ation.

Sparse Complexes

If every facet in a compleXd with [ facets intersects a substantial {) number of facets the number of cycles
is probably high and our algorithm is usually able to detewt of them easily. If this does not happen we
can exploit the complex “sparseness” in our algorithm.

Definition 3.16 (Sparse Complexes)Let A be a facet complex withfacets over a set of verticesV'. If
every facet intersects at masother facets and < [ thenA is asparse comple&andd is theconnectivity
boundof A.

Let us suppose that the sparse compleis overn vertices, has facets, and its connectivity boundds
To check ifA is a tree it is sufficient to check the connected triples oRlyr each facef’ (I facets): first
construct the set of all facets connected td” (called theconnection setat costO(nl)), then for allG, G’
in the set 2 pairs) perform the triple check i, G, G’) (costO(nl) per triple). The total cost i©(ni%d?).
The space required to construct the connection sef¥d3, hence negligible. For sparse examples, this
optimization is clearly worthwhile:

Example 3.17. We check the tre€z;z; 1242 | ¢ = 1,...,400} of Example 3.12 with the algorithm
detailed above. We deal wit98 triples and spend.2 seconds.

Example 3.18. The complex{z;z;+1 - Z;+200 | ¢ = 1,...,3200} is a tree. Tree checking with the
algorithm detailed above requires dealing wéth 013, 400 triples, and takes abodb0 seconds. Without
any optimization, the number of triples to checkl & 368, 643, 200 and the time spent by the algorithm is
> 2 days.

4 Algebraic properties of facet ideals

We now study facet ideals from a more algebraic point of viewparticular, we are interested in ways to
determine whether a given complex is Cohen-Macaulay. Weni@red to introduce some new terminology.

Definition 4.1 (Vertex covering number, unmixed complex, idependence number).Let A be a facet
complex.

e A vertex covefor A is a setA of vertices ofA, such thatd N F # () for every facetf’. The smallest
cardinality of a vertex cover ah is called thevertex covering numbesf A and is denoted by (A).
A vertex coverA is minimalif no proper subset ofl is a vertex cover. A facet complek is unmixed
if all of its minimal vertex covers have the same cardinality

e A setB of facets ofA is called arindependent seét F NG = @ forall F, G € B. The maximum pos-
sible cardinality of an independent set of facets, denoged(i), is called thendependence number
of A.

Example 4.2. Consider the two complexes in Example 2.8. We hai®) = G(A) = 2. Also, A is unmixed
as its minimal vertex covergse, u}, {y, u}, {y,v}, {z,u} and{z, v} all have cardinality equal to two. We
further haven(A’) = B(A’) = 1, but A’ is not unmixed, becaude:} and{y, z} are minimal vertex covers
of different cardinalities.

The following observations are basic but useful.

Proposition 4.3 (Cohen-Macaulay complexes [4, 5]).et A be a facet complex with verticesin, . . ., x,,
and consider its facet idedl = F(A) in the polynomial ringR = k[z1, ..., x,]. Then the following hold:



(@) height I = a(A) anddim R/I =n — a(A).

(b) Anidealp = (z;,,...,x;,) of R is a minimal prime ofl if and only if {z;,,...,z; } is a minimal
vertex cover forA.

(¢) Ifk[z1,...,2,]/F(A) is Cohen-Macaulay, thef is unmixed.

4.1 Grafting
One of the most basic ways to build a Cohen-Macaulay compledigrafting.

Definition 4.4 (Grafting [5]). A facet complexA is agrafting of the facet complex\’ = {G4,...,G,}
with the facets, . . ., F,. (or we say thai\ is grafted) if

A={F,....,F.}U{Gy,...,Gs}
with the following properties:
() Giu...UGs C FLU...UF,;
@iy FY,...,F, are all the leaves ah;
(i) {G1,...,Gs}n{Fy,...,F.} =0;
(V) Fori#j, FiNE; =0;
(v) If G;isajointofA, thenA \ {G;} is also grafted.

Note that the definition is recursive, since graftedneds if defined in terms of graftednessaf\ {G,}.
Also note that a facet complex that consists of only one faceeveral pairwise disjoint facets is grafted, as
it can be considered as a grafting of the empty facet comptes.easy to check that conditions (i) to (v)
above are satisfied in this case. It is also clear that thenwfibwo or more grafted facet complexes is itself
grafted.

Example 4.5. There may be more than one way to graft a given complex. Fanpbe some possible ways
of grafting{G1, G»} are shown in Figure 1.

The interest in grafted complexes, from an algebraic pdimtaw, lies in the following facts.

Theorem 4.6 (Grafted complexes are Cohen-Macaulay).et A be a grafted facet complex. Th&f{A) is
Cohen-Macaulay.

Even more holds wheA is a tree.
Theorem 4.7 ( [5] Corollaries 7.8, 8.3).If A is a simplicial tree, then the following are equivalent:
() A is unmixed;
(i) Ais grafted;
(i) F(A)is Cohen-Macaulay.

4.2 Graftedness algorithm

A direct application of Definition 4.4 is not very convenidat checking whether a given facet complax

is grafted, since at each step of the recursion, one polignimeds to check condition (v) for several of the
G;, and this leads to a worst-case exponential algorithm. dieroto arrive at a more efficient algorithm, we
characterize graftedness as follows:

Lemma 4.8. A facet complexA is grafted if and only if (1) for each vertex there exists a unique ledf
such thaty € F', and (2) all leaves oA\ are reducible.
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Figure 1: Three different ways of grafting a compl&x

Proof. First, assume thah is grafted. Condition (1) follows from (i), (i) and (iv). Enfact that all leaves
are reducible is shown by induction on the number of facet&.of he converse is also shown by induction.
SupposeA satisfies (1) and (2), and 1¢f7, ..., F.} and{G4, ..., G} be the sets of leaves and non-leaves,
respectively. Conditions (i)—(iv) hold trivially. Furthef G; is a joint, thenF1, ..., F,. are still reducible
leaves ofA \ {G;} by Remark 3.15; also, there are no additional leave& {G;}. Therefore A \ {G;}
satisfies (1) and (2) and is therefore grafted by inductiquoltiyesis, proving (v). O

The algorithm for checking if a complex is grafted followsnradiately from Lemma 4.8.

Algorithm 4.9 (Graftedness algorithm).
Input: A facet complex\ with [ facets anch vertices.
Output: True if A is grafted Falseotherwise.

1. Build the listsF = (Fy,..., Fy) (leaves ofA) andG = (Gy,...,G,,) (facets of A which are not
leaves).

2. fUgeg G € Uper F, returnFalse

3. If3 F F’ € FsuchthatF' N F’ # (), returnFalse
4. If 3 F € F thatis not a reducible leaf, retuFalse
5.

returnTrue.

4.3 Complexity

The leaf checking cost i©(nl), hence the cost of step 1d¥(ni?). The cost of steps 2 and 3d¥(nl). For
step 4, there ark facetsF' to check. Checking whethéf is reducible take®)(nllog!) steps as mentioned
in Section 3.3. Therefore the total cost for step @i®i2 log ), and this is the cost of the algorithm.

Example 4.10. We have the compleXr = {zyz,yzu, ztu, uv,tw}. We haveF = {zyz,uv,tw} and
G = {yzu,ztu}. Ugeg G € Uper F = {2y, 2, t,u,v,w} andzyz Nuv = zyz Ntw = uv N tw = 0.
Additionally, we check that each' € F is a reducible leaf by showing thatthe §gt N G | G € G} is a
totally ordered set under inclusion. For exampléyi= zyz, then this set is equal toyz, z} which is totally
ordered. This holds for alt” € F, and hence the complex is grafted.



Further work

As Theorem 3.7 and Algorithm 3.9 suggest, to check whetherobra given complex is a tree, it is not
necessary to check if every subset is a cycle. On the othet, itanight be useful to have more information
on the cycles of a complex.

The main ingredientin the proof of Theorem 4.7 is a geneatibn of Kbnig's theorem from graph theory.

Theorem 4.11 ([5] Theorem 5.3).If A is a simplicial tree (forest) and(A) = r, thenA hasr independent
facets, and therefore(A) = 5(A) = r.

If Ais a bipartite graph (not necessarily a tree), then thersteéof Theorem 4.11 still holds. Moreover,
facet ideals of bipartite graphs have and Cohen-Macaulag Regs [8]. These facts lead us to consider the
guestion: “Is there a higher-dimensional generalizatiom loipartite graph?”

The most promising approach so far has been to consider adaoglex “multipartite” if it has no
minimal cycles of odd length. Computational evidence haswithat Theorem 4.11 probably holds for such
complexes. Using Lemmas 2.14 and 2.15 and Corollary 3.8,ave Heveloped an algorithm that detects
minimal cycles in a given complex. Details of this work wik lgiven in the full paper.
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