Chapter 4 Continuous Random Variables and Probability Distributions	4.1 Continuous Random Variables and Probability Distributions	Continuous Random Variables A random variable X is <i>continuous</i> if its set of possible values is an entire interval of numbers (If $A < B$, then any number x between A and B is possible).	Probability Distribution Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b, $P(a \le X \le b) = \int_a^b f(x) dx$ The graph of $f(x)$ is the density curve.
Probability Density Function For $f(x)$ to be a pdf 1. $f(x) > 0$ for all values of x . 2. The area of the region between the graph of f and the x – axis is equal to 1.	Probability Density Function $P(a \le X \le b)$ is given by the area of the shaded region. y y y = f(x) b x	Uniform Distribution A continuous rv X is said to have a <i>uniform distribution</i> on the interval [A, B] if the pdf of X is $f(x;A,B) = \begin{cases} \frac{1}{B-A} & A \le x \le B\\ 0 & \text{otherwise} \end{cases}$	Probability for a Continuous rv If X is a continuous rv, then for any number c, $P(x = c) = 0$. For any two numbers a and b with $a < b$, $P(a \le X \le b) = P(a < X \le b)$ $= P(a \le X < b)$ = P(a < X < b)
4.2 Cumulative Distribution Functions and Expected Values	The Cumulative Distribution Function The cumulative distribution function, <i>F</i> (<i>x</i>) for a continuous rv <i>X</i> is defined for every number <i>x</i> by $F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy$ For each <i>x</i> , <i>F</i> (<i>x</i>) is the area under the density curve to the left of <i>x</i> .	Using $F(x)$ to Compute Probabilities Let <i>X</i> be a continuous rv with pdf $f(x)$ and cdf $F(x)$. Then for any number <i>a</i> , P(X > a) = 1 - F(a) and for any numbers <i>a</i> and <i>b</i> with $a < b$, $P(a \le X \le b) = F(b) - F(a)$	Obtaining $f(x)$ from $F(x)$ If X is a continuous rv with pdf $f(x)$ and cdf $F(x)$, then at every number x for which the derivative $F'(x)$ exists, F'(x) = f(x).
Percentiles Let <i>p</i> be a number between 0 and 1. The $(100p)$ th percentile of the distribution of a continuous rv X denoted by $\eta(p)$ is defined by $p = F(\eta(p)) = \int_{-\infty}^{\eta(p)} f(y) dy$	Median The <i>median</i> of a continuous distribution, denoted by \tilde{u} , is the 50 th percentile. So \tilde{u} satisfies $0.5 = F(\tilde{u})$ That is, half the area under the density curve is to the left of \tilde{u}	Expected Value The <i>expected</i> or <i>mean value</i> of a continuous rv X with pdf $f(x)$ is $\mu_X = E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$	Expected Value of $h(X)$ If X is a continuous rv with pdf $f(x)$ and h (x) is any function of X, then $E[h(x)] = \mu_{h(X)} = \int_{-\infty}^{\infty} h(x) \cdot f(x) dx$

Variance and Standard Deviation Exponential Distribution Mean and Variance Short-cut Formula for Variance A continuous rv X has an exponential The mean and variance of a random The *variance* of continuous rv X with pdf *distribution* with parameter λ if the pdf is variable X having the exponential f(x) and mean is μ $V(X) = E(X^{2}) - [E(X)]^{2}$ distribution $f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & 0 \end{cases}$ $\sigma_X^2 = V(x) = \int (x - \mu)^2 \cdot f(x) dx$ otherwise $\mu = \alpha\beta = \frac{1}{\lambda}$ $\sigma^2 = \alpha\beta^2 = \frac{1}{\lambda^2}$ $= E[(X-\mu)^2]$ The standard deviation is $\sigma_x = \sqrt{V(x)}$. Applications of the Exponential Cdf of exponential Distribution Normal Distributions Distribution and its memoryless property 4.3 Suppose that the number of events A continuous rv X is said to have a Let *X* have a exponential distribution occurring in any time interval of length t normal distribution with parameters The Normal Then the cdf of *X* is given by has a Poisson distribution with parameter αt μ and σ , where $-\infty < \mu < \infty$ and and that the numbers of occurrences in $0 < \sigma$, if the pdf of X is Distribution nonoverlapping intervals are independent $F(x,\lambda) = \begin{cases} 0 & x < 0\\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$ $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)} \quad -\infty < x < \infty$ of one another. Then the distribution of elapsed time between the occurrences of two successive events is exponential with parameter $\lambda = \alpha$. Standard Normal Distributions c. $P(-2.1 \le Z \le 1.78)$ Standard Normal Cumulative Areas Standard Normal Distribution The normal distribution with parameter Find the area to the left of 1.78 then Let Z be the standard normal variable. values $\mu = 0$ and $\sigma = 1$ is called a Shaded area = $\Phi(z)$ subtract the area to the left of -2.1. Standard Find (from table) standard normal distribution. The normal $= P(Z \le 1.78) - P(Z \le -2.1)$ random variable is denoted by Z. The pdf a. $P(Z \le 0.85)$ curve is = 0.9625 - 0.0179 $f(z;0,1) = \frac{1}{\sigma\sqrt{2\pi}}e^{-z^2/2} -\infty < z < \infty$ Area to the left of 0.85 = 0.8023= 0.9446b. P(Z > 1.32)The cdf is $\Phi(z) = P(Z \le z) = \int f(y; 0, 1) dy$ $1 - P(Z \le 1.32) = 0.0934$ Ex. Let Z be the standard normal variable. Find z if a. Normal Curve z_{α} Notation P(Z < z) = 0.9278.Nonstandard Normal Distributions Approximate percentage of area within Look at the table and find an entry = 0.9278 then read back to find given standard deviations (empirical z_{α} will denote the value on the If *X* has a normal distribution with mean measurement axis for which the area rule). μ and standard deviation σ , then z = 1.46. 99.7% under the z curve lies to the right of z_{α} . b. P(-z < Z < z) = 0.8132 $Z = \frac{X - \mu}{\sigma}$ 95% Shaded area P(z < Z < -z) = 2P(0 < Z < z)68% $= P(Z \ge z_{\alpha}) = \alpha$ $= 2[P(z < Z) - \frac{1}{2}]$ has a standard normal distribution. = 2P(z < Z) - 1 = 0.8132P(z < Z) = 0.9066z = 1.32-30 -20 -0 µ +0 +20 +30

Ex. Let X be a normal random variable
with
$$\mu = 80$$
 and $\sigma = 20$.
Find $P(X \le 65)$.Ex. A particular rash shown up at an
clementary school. It has been determined
has is normally distributed with
 $\mu = 6$ days and $\sigma = 1.5$ days.
Find the probability that for a student
selected at random, the rash will last for
between 3.75 and 9 days. $P(3.75 \le X \le 9) = p\left(\frac{3.75 - 6}{1.5} \le Z \le \frac{9 - 6}{1.5}\right)$
 $= 0.9772 - 0.0668$
 $= 0.9104$ Percentiles of an Arbitrary Normal
DistributionNormal Approximation to the
Binomial DistributionFx. At particular small college the pass rate
of latermediate Algebra is 275 ± 60
 $= 0.9304$ $P(3.75 \le X \le 9) = p\left(\frac{3.75 - 6}{1.5} \le Z \le \frac{9 - 6}{1.5}\right)$
 $= 0.9772 - 0.0668$
 $= 0.9104$ $P(0.000)$ the or
 $= 0.9104$ $P(0.000)$ the or
 $P(0.000)$ the or
 $= 0.9104$ Normal Approximation to the
Binomial rub based on rutals, cach
with probability distributionFx. At a particular small college the pass rate
of latermediate Algebra is 275×1500
 $= 0.9304$ $P(0.000) = P(-1.5 \le Z \le 2)$
 $= 0.9104$ Percentiles of an Arbitrary Normal
Distribution $P(X \le A > 0, \frac{1}{2} + \frac{1000}{2} +$