Chapter 6 Point Estimation	6.1 General Concepts of Point Estimation	Point Estimator A <i>point estimator</i> of a parameter θ is a single number that can be regarded as a sensible value for θ . A point estimator can be obtained by selecting a suitable statistic and computing its value from the given sample data.	Unbiased Estimator A <i>point estimator</i> $\hat{\theta}$ is said to be an unbiased estimator of θ if $E(\hat{\theta}) = \theta$ for every possible value of θ . If $\hat{\theta}$ is biased, the difference $E(\hat{\theta}) - \theta$ is called the <i>bias</i> of $\hat{\theta}$.
The pdf's of a biased estimator $\hat{\theta}_1$ and an unbiased estimator $\hat{\theta}_2$ for a parameter θ . pdf of $\hat{\theta}_2$ θ_1 θ_2 θ_1 θ_1 θ_1 θ_2 θ_1	The pdf's of a biased estimator $\hat{\theta}_1$ and an unbiased estimator $\hat{\theta}_2$ for a parameter θ . pdf of $\hat{\theta}_2$ $\frac{pdf of \hat{\theta}_2}{\theta_1}$ Bias of θ_1	Unbiased Estimator When <i>X</i> is a binomial rv with parameters <i>n</i> and <i>p</i> , the sample proportion $\hat{p} = X / n$ is an unbiased estimator of <i>p</i> .	Principle of Unbiased Estimation When choosing among several different estimators of θ , select one that is unbiased.
Unbiased Estimator Let $X_1, X_2,, X_n$ be a random sample from a distribution with mean μ and variance σ^2 . Then the estimator $\hat{\sigma}^2 = S^2 = \frac{\sum (X_i - \overline{X})^2}{n-1}$ is an unbiased estimator.	Unbiased Estimator If $X_1, X_2,, X_n$ is a random sample from a distribution with mean μ , then \overline{X} is an unbiased estimator of μ . If in addition the distribution is continuous and symmetric, then the sample median and any trimmed mean are also unbiased estimators of μ .	Principle of Minimum Variance Unbiased Estimation Among all estimators of θ that are unbiased, choose the one that has the minimum variance. The resulting $\hat{\theta}$ is called the <i>minimum variance unbiased</i> <i>estimator (MVUE)</i> of θ	Graphs of the pdf's of two different unbiased estimators $pdf of \hat{\theta}_1$ $pdf of \hat{\theta}_2$ θ
MVUE for a Normal Distribution Let $X_1, X_2,, X_n$ be a random sample from a normal distribution with parameters μ and σ . Then the estimator $\hat{\mu} = \overline{X}$ is the MVUE for μ .	A biased estimator that is preferable to the MVUE pdf of $\hat{\theta}_1$ (biased) pdf of $\hat{\theta}_2$ (the MVUE) θ	Standard Error The <i>standard error</i> of an estimator $\hat{\theta}$ is its standard deviation $\sigma_{\hat{\theta}} = \sqrt{V(\hat{\theta})}$. If the standard error itself involves unknown parameters whose values can be estimated, substitution into $\sigma_{\hat{\theta}}$ yields the <i>estimated standard error</i> of the estimator, denoted $\hat{\sigma}_{\hat{\theta}}$ or $s_{\hat{\theta}}$.	6.2 Methods of Point Estimation

Moments Let $X_1, X_2,, X_n$ be a random sample from a pmf or pdf $f(x)$. For $k = 1, 2,$ the <i>kth population moment</i> , or <i>kth</i> <i>moment of the distribution</i> $f(x)$ is $E(X^k)$. The <i>kth sample moment</i> is $\left(\frac{1}{n}\right)\sum_{i=1}^n X_i^k$.	Moment Estimators Let $X_1, X_2,,X_n$ be a random sample from a distribution with pmf or pdf $f(x;\theta_1,,\theta_m)$, where $\theta_1,,\theta_m$ are parameters whose values are unknown. Then the <i>moment estimators</i> $\theta_1,,\theta_m$ are obtained by equating the first <i>m</i> sample moments to the corresponding first <i>m</i> population moments and solving for $\theta_1,,\theta_m$.	Likelihood Function Let $X_1, X_2,, X_n$ have joint pmf or pdf $f(x_1,, x_n; \theta_1,, \theta_m)$ where parameters $\theta_1,, \theta_m$ have unknown values. When $x_1,, x_n$ are the observed sample values and f is regarded as a function of $\theta_1,, \theta_m$, it is called the <i>likelihood function</i> .	Maximum Likelihood Estimators The maximum likelihood estimates (mle's) $\hat{\theta}_1,, \hat{\theta}_m$ are those values of the θ_i 's that maximize the likelihood function so that $f(x_1,, x_n; \hat{\theta}_1,, \hat{\theta}_m) \ge f(x_1,, x_n; \theta_1,, \theta_m)$ for all $\theta_1,, \theta_m$ When the X_i 's are substituted in the place of the x_i 's, the maximum likelihood estimators result.
The Invariance Principle Let $\hat{\theta}_1,, \hat{\theta}_m$ be the mle's of the parameters $\hat{\theta}_1,, \hat{\theta}_m$ Then the mle of any function $h(\hat{\theta}_1,, \hat{\theta}_m)$ of these parameters is the function $h(\hat{\theta}_1,, \hat{\theta}_m)$ of the mle's.	Desirable Property of the Maximum Likelihood Estimate Under very general conditions on the joint distribution of the sample, when the sample size <i>n</i> is large, the maximum likelihood estimator of any parameter θ is approx. unbiased $[E(\hat{\theta}) \approx \theta]$ and has variance that is nearly as small as can be achieved by any estimator. mle $\hat{\theta} \approx \text{MVUE of } \theta$		