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ABSTRACT The analysis of high-dimensional data often begins with the identification of lower
dimensional subspaces. Principal component analysis is a dimension reduction technique that
identifies linear combinations of variables along which most variation occurs or which best
“reconstruct” the original variables. For example, many temperature readings may be taken in a
production process when in fact there are just a few underlying variables driving the process.
A problem with principal components is that the linear combinations can seem quite arbitrary.
To make them more interpretable, we introduce two classes of constraints. In the first, coefficients
are constrained to equal a small number of values (homogeneity constraint). The second
constraint attempts to set as many coefficients to zero as possible (sparsity constraint). The
resultant interpretable directions are either calculated to be close to the original principal
component directions, or calculated in a stepwise manner that may make the components more
orthogonal. A small dataset on characteristics of cars is used to introduce the techniques. A more
substantial data mining application is also given, illustrating the ability of the procedure to
scale to a very large number of variables.

KEY WORDS: Principal component, interpretable, homogeneity, sparsity, stepwise algorithm,
dimension reduction, data mining

Introduction

Principal component analysis can be an effective tool for reducing dimensionality in

problems where many variables are measured. This is especially true when there are

strong linear relationships among the variables. By identifying linear combinations of

the original variables that capture the most variation, the data are reduced. Quite often

these new variables (the principal components) can be interpreted. For example, in pro-

blems where many physical dimensions of objects are measured, the first direction may

be quite close to a sum (or equivalently an average) of the variables, and consequently

correspond to overall size. Subsequent directions may identify contrasts between variables

in which there is substantial variation.

To interpret the principal components, one must filter through the coefficients (or load-

ings) of the linear combinations and identify patterns. This can be quite challenging in

problems with many variables, which is precisely when principal components may be

most helpful. This paper introduces several methods to simplify the linear combinations,

making them more interpretable.
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To illustrate the approach, consider data on 91 cars (Lock, 1993), with 17 variables such

as price, fuel economy, weight, engine size, etc. Variable names are given in Table 1, and a

more detailed description of the data and some preliminary processing is given later. The

coefficients of the first five and last principal components based on the correlation matrix

are given in Table 1. The coefficients in the first component are quite similar in absolute

magnitude, ranging from 0.141 to 0.295, with most values in the range (0.20, 0.28). This

similarity motivates the homogeneity constraint, in which each coefficient is proportional

to either +1 or 0. In the third section we show that for these data, the best first homo-

geneous direction has no loadings equal to zero, giving an interpretation corresponding

to vehicle size. In some cases we may want to constrain the weights of a homogeneous

component to sum to 0, yielding contrast constraints.

The second principal component has several coefficients near zero, while others take a

wide range of values. To aid interpretation, we may want to make this direction sparse, by

setting several of the coefficients to zero. If few enough of the coefficients are non-zero,

they may still be interpretable without homogeneity restrictions mentioned above.

Other papers have considered methods for simplifying principal components. Hausman

(1982) restricts the possible loading values to be proportional to 0 or +1, while Vines

(2000) constrains loadings to be proportional to integers. Both approaches are similar to

our homogeneity and contrast constraints. Groups of principal components can also be

rotated, explaining the same variation, but being more interpretable. See for example

discussion and references in Jolliffe (1989). Jolliffe & Uddin (2000) optimize a penalized

variance function, shrinking loadings towards zero. Jolliffe et al. (2003) use a variation of

the LASSO (Tibshirani, 1996) to shrink loadings, possibly generating some zero values.

The sparsity constraints introduced in the third section of this paper are similar to these

approaches. Additional details of these methods and a comparison with the proposed

approach are given in the sixth section.

Table 1. Loadings of the first five and last principal components, based on correlation matrix of the

cars data

Variable PC 1 PC 2 PC 3 PC 4 PC 5 Last PC

Min price 0.230 20.376 20.118 20.154 20.211 0.363

Price 0.220 20.421 20.131 20.114 20.243 20.808

Max price 0.203 20.439 20.136 20.077 20.258 0.465

City MPG 20.265 0.002 20.103 20.450 0.089 0.001

Highway MPG 20.247 0.013 20.005 20.611 0.108 0

Engine size 0.282 0.050 0.184 20.202 20.036 20.003

Horsepower 0.243 20.289 0.190 20.005 0.343 0.001

RPM 20.141 20.411 20.149 0.140 0.754 20.001

Rev./mile 20.241 20.135 20.344 0.126 20.013 20.001

Fuel tank capacity 0.273 0.004 20.064 0.214 0.113 0.001

Passengers 0.192 0.321 20.461 0.231 0.037 20.001

Length 0.263 0.073 0.058 20.295 0.153 0

Wheelbase 0.275 0.108 20.172 20.130 0.094 0

Width 0.271 0.163 0.189 20.105 0.152 20.001

Turn circle 0.247 0.175 0.196 20.117 0.189 0.001

Rear seat room 0.178 0.195 20.637 20.260 0.108 0.001

Weight 0.295 0.011 0.017 0.097 0.081 0
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To set the stage for our approach, we comment briefly on a few important issues here. In

all the articles mentioned above, the criterion used to obtain modified components or

compare performance with the original principal components is the variance captured

by the new components. This criterion can be misleading in some applications. The pro-

portion of variance explained by the first few principal components can be made arbitrarily

large by the inclusion of highly correlated variables, while information may be lost in

other directions. This can be a problem when regression follows. We remedy this by

also considering the “reconstruction error” in estimating the original data with some of

the principal components as predictors.

Principal components have other desirable properties in addition to maximization of

variance explained and minimization of reconstruction error. We propose quantities that

measure these properties, and the extent to which they are retained by interpretable

components.

Another important issue is computation. Our approach scales well to very large datasets,

a problem for some of the previous approaches.

In the next section,we first address four important properties of principal components and

their quantification. Three different constrained principal components andmethods for their

calculation are introduced and illustrated using the cars data in the section after. The fourth

sectiondiscusses an alternative stepwisemethod to calculate the constrained components. In

the fifth section we illustrate the method using a data mining application. Comparisons with

related work and a discussion of other interesting problems are given in the sixth section.

Quantifying Optimal Properties of Principal Components

Interpretable components are not principal components, but they can often be quite

similar. This section reviews four optimal properties of principal components, and devel-

ops methods to quantify these properties for interpretable components.

Properties of Principal Components

Given an n � p data matrix X consisting of p continuous measurements on each of n

objects, we seek a p � q projection matrix G with columns gi, i ¼ 1; . . . ; q. This matrix

is such that XG, the q-dimensional projection of X onto G captures most of the variance

in the original p dimensional space. One solution to this problem is principal components,

which identifies a solution G with the following properties:

(a) The columns of G are orthogonal.

(b) The projected data XG are uncorrelated.

(c) The variance of Xgi is maximized subject to (a). That is, g1 is chosen to maximize

Var(Xg1), g2 is chosen to maximize Var(Xg2) among all vectors orthogonal to g1, etc.

(d) Suppose that the original data are reconstructed using a projection of the data onto a

k-dimensional subspace. The subspace defined by g1, . . . ,gk will minimize the recon-

struction error. That is, the variance of orthogonal distances from the original data to

the first k principal components is minimized over all possible k-dimensional

subspaces.

The issue of scaling the columns of X is important. We assume that a suitable scaling

has been found. In the examples, the variables are scaled to have unit variance, which

is equivalent to using the correlation matrix of X to identify the principal components.

Throughout this paper, we use G ¼ (g1, . . . , gp) to represent the principal component
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directions, and S to represent the covariance matrix of the appropriately scaled X. The

variance of the ith principal component Xgi is li, the ith eigenvalue of S.

The principal components {Xgi}
q
i¼1 are then a smaller group of variables representing

most of the information in the original data. Since the gi
0s are optimal for properties (a)–

(d), they are usually real-valued and difficult to interpret. In the next section we explore

methods that will find directions ai that are close to the original gi, but more interpretable.

Before giving details of the interpretable components, we introduce methods to quantify

properties (a)–(d).

Quantifying Closeness to the Principal Components

In (a), the linear combinations are orthogonal; we calculate the angle between our inter-

pretable directions. For any two directions ai and aj this angle is arccos (a0iaj). In (b)

the projected data are uncorrelated; thus we calculate the correlation of the data projected

onto the interpretable directions. If only a few directions are to be retained, it may be of

interest to look at the correlations of the data only in this projected space.

Property (c) requires that the variance of the projected data be maximal, subject to

orthogonality of the gi
0. Orthogonality of G ensures that the variances of the projections

of the data will sum to the total variance of the original data. Since the ai
0s are not ortho-

gonal, the variance of Xai is not comparable directly with that of Xgi. We suggest two

ways to measure the variation explained, based on the expression

ai ¼ ai1g1 þ ai2g2 þ � � � þ aipgp

where aij is the projection of ai on gj. Since Var(Xai) ¼ a2i1l1 þ � � � þ a2iplp, a
2
iili provides

a measure of the variance captured by ai in the direction of gi. We thus compare

Var(Xgi) ¼ li with Var(Xaiigi) ¼ a2iili. Since the interpretable component ai will often

be close to gi, aii can be close to 1.

The variation associated with aiigi underestimates the variation associated with gi.

However, each sparse component actually captures the variance in every direction of G.

Instead of using the variance of ai in the direction of gi (a
2
iili), the total variance of the

first k interpretable components ai, . . . , ak in the direction of gi could be calculated.

That is, use li
Pk

l¼1 a
2
li to summarize variance captured by a1, . . . ,ak in the direction

gi. This sum of variances could be compared to Var(Xgi) ¼ li, A potential problem

with this approach is that it can over-estimate the variance associated with gi because

of the non-orthogonality of the interpretable components.

For property (d), the principal components will give minimal reconstruction error (see

for example, Rao 1965). This reconstruction error can be quantified as follows. Let X̃ be

the n � p data matrix with column means subtracted, and A a p� k projection matrix with

columns representing linear combinations. The columns of A could be from principal com-

ponents or interpretable components. The projection of X̃ onto A is T ¼ ~XA. To reconstruct
X̃ using the projected data T, we calculate

X̂ ¼ T(T 0T)�1T 0 ~X ¼ TP̂ (1)

which may be thought of as the regression of the original data X̃ on the projected data T.

The (matrix) difference between original and reconstructed data,

F ¼ ~X � X̂ ¼ ~X � TP̂ (2)
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gives the reconstruction errors. The trace of the variance of this difference,

trace(Var(F)) ¼ trace(F0F=n) (3)

gives the unexplained variance when reconstructing the original data using the k directions

in A. We shall use equation (3) to quantify property (d). If A contains the first k principal

component directions, then (3) simplifies to the total variance minus the variance

explained by the first k components,

trace(Var(F)) ¼ trace(S)�
Xk

i¼1

li ¼
Xp

i¼kþ1

li

The principal component directions G can be obtained by minimizing equation (3)

subject to the condition that the columns of T are orthogonal. By increasing the interpret-

ability of Xgi, the absolute orthogonality of columns of T is sacrificed. In many cases, T

may not be far from orthogonal, and the reconstruction error may be close to that of the

same number of principal components.

It is interesting to note that in equation (2) the principal component directions can be

calculated one at a time, each time removing the reconstruction of the components

already identified. This stepwise method will be applied to interpretable components in

the fourth section.

Constrained Principal Components

This section introduces methods for identifying interpretable directions ai, i ¼ 1, . . . , p.
By interpretable we mean either many coefficients will be zero, eliminating many vari-

ables from a component, or the coefficients in the components only take a few distinct

values. Both cases, either a complex combination of a few variables or a simple combi-

nation of possibly more variables, can be easier to interpret than the original component.

Homogeneity Constraints

The ith direction ai could be made interpretable if its elements took very few distinct

values, say 0 or +c for c such that a0iai ¼ 1. This homogeneity constraint corresponds

to a direction that is an average of some of the variables, or their negative values.

There are 3p possible values for ai. To find the best ai, we minimize arccos (g0iai), the

angle to the ith principal component direction, or equivalently maximize the inner product

g0iai. Note that the maximization is over �c, 0, c values, not all real values. The search

algorithm is straightforward. Among all ai with k non-zero elements, identify the k

elements of gi with largest absolute values. Set the corresponding elements of ai to

+1=
ffiffiffi
k
p

, matching signs with the k elements of gi. All other elements of ai are 0, and

a0iai ¼ 1. The ai closest to gi is then identified by repeating this procedure for

k ¼ 1, 2, . . . , p. For example if g1 ¼ (0:41, � 0:03,� 0:42, 0:81) the vectors

(0, 0, 0, 1), (0, 0,� 1, 1)=
ffiffiffi
2
p

, (1, 0,� 1, 1)=
ffiffiffi
3
p

and (1,� 1,� 1, 1)=2

would be the closest to g1 among a with k ¼ 1, . . . , 4 non-zero elements. In this case,

(1, 0,� 1, 1)=
ffiffiffi
3
p

is closest to g1 with an angle of 18.8 degrees. As k increases, the

angle will not necessarily decrease.
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An alternative constraint would set aij [ {�c1,0,c2} such that
Pp

j¼1 aij ¼ 0. That is, the

linear combination is a difference of the average of one set of variables and the average of

another set of variables, called a contrast. Constants c1 and c2 are chosen so that a
0
iai ¼ 1.

For example, in the cars data a minimum, typical, and maximum price are given. The

typical price is just the average of the other two. If the three prices are scaled by the

same factor, the last principal component is quite close to

0:41(Min price)� 0:82(Price)þ 0:41(Max price):

This corresponds to a difference between the Price and the average of Min price and

Max price. Since the variance of the last principal component is almost zero (non-zero

due to rounding error), this indicates that Price is simply the average of the other two

variables. In this case, the principal component needs little simplification since all other

elements are at least an order of magnitude smaller. In situations where noise levels are

higher, such contrast constraints may focus attention on simplified directions.

The algorithm for identifying contrast directions is very similar to that for homogeneous

directions. One minor difference is that the coefficient vector must contain at least one

element of each sign. In the modified algorithm, the loadings corresponding to the

largest positive and negative coefficients of the original linear combination are never

set to zero, and other components are selected by absolute magnitude.

Homogeneity Constraints Applied to the Cars Data

The original data contained 27 variables, including manufacturer, model, and other

categorical variables. All categorical variables were removed, along with the variable

luggage room, which has 11 missing values. Two cars with missing values of rear
seat room were also removed, leaving 17 variables and 91 observations. The variables

were scaled to have unit variance, and the principal components calculated. The first five

homogeneous and contrast directions are given in Table 2, with the angles to the

corresponding principal component directions.

The first principal component is better summarized by a homogeneous direction than by

a contrast, since it has a much smaller angle. Other components are less clear. Before

interpreting the components, we examine properties (a)–(d). There are 17
2

� �
¼ 136

angles between the 17 interpretable directions for both the homogeneous and contrast

components. The distribution of these angles is summarized in Figure 1. Most angles

are between 70 and 110 degrees, indicating relatively orthogonal directions.

Criterion (b), the correlation between projected variables, is given by boxplots in

Figure 2, along with correlations in the original dataset. The original data has many

more correlations above 0.50. Although the data projected onto the interpretable directions

are not uncorrelated (as the principal components projections would be), the correlations

in the data are greatly reduced.

For criterion (c), we compared the variance of the data projected on the homogeneous

and contrast directions with that of principal components. Results were quite similar to

later comparisons made for the sparse components, and are not shown.

Criterion (d), the unexplained reconstruction variance, equation (3), is given in Figure 3.

Both constrained methods have reconstruction error only slightly larger than the principal

components. For comparison, we also include the average reconstruction error when a

random orthogonal transformation is used (based on 50 random simulations of uniform

angular rotations of the original basis). In this case, the highly correlated nature of the
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data means that even if directions are selected at random, the data can be reconstructed

with reasonable accuracy.

In this problem, contrast and especially homogeneous components perform well. We

now give some possible interpretations of the simplified components. The first com-

ponent can be interpreted as the size of the car, with all the positive weights positively

Table 2. Cars data: interpretable directions, and angles with corresponding principal component

directions. The normalizing constant for the homogeneous components is omitted

Variable

Homogeneous Contrast

1 2 3 4 5 1 2 3 4 5

Min price 1 21 0 0 21 0.13 20.30 0 20.23 20.37

Price 1 21 21 0 21 0.13 20.30 0 0 20.37

Max price 1 21 21 0 21 0.13 20.30 0 0 20.37

City MPG 21 0 0 21 0 20.44 0 0 20.23 0

Highway MPG 21 0 0 21 0 20.44 0 0 20.23 0

Engine size 1 0 1 21 0 0.13 0.26 0.33 20.23 0

Horsepower 1 21 1 0 1 0.13 20.30 0.33 0 0.55

RPM 21 21 21 0 1 20.44 20.30 0 0.40 0.55

Rev/mile 21 0 21 0 0 20.44 20.30 20.44 0.40 0

Fuel tank capacity 1 0 0 1 0 0.13 0 0 0.40 0

Passengers 1 1 21 1 0 0.13 0.26 20.44 0.40 0

Length 1 0 0 21 0 0.13 0.26 0 20.23 0

Wheelbase 1 0 21 0 0 0.13 0.26 0 20.23 0

Width 1 1 1 0 0 0.13 0.26 0.33 0 0

Turn circle 1 1 1 0 1 0.13 0.26 0.33 0 0

Rear seat room 1 1 21 21 0 0.13 0.26 20.44 20.23 0

Weight 1 0 0 0 0 0.13 0 0 0 0

Angle (deg.) 10 22 33 31 35 35 26 29 40 31

Figure 1. Boxplots of angles between components, cars example. Each boxplot represents angles for

components from a specific method
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related to the size of the car and negative weights negatively related to the size of the

car. The second homogeneous component has a negative relation with the price vari-

ables, horsepower, RPM and a positive relation with passengers, width, turn circle

and rear seat room. It can be interpreted as a contrast between cheap, weak and

large cars (e.g. minivans) versus the expensive, powerful and smaller cars (e.g.

sports cars). Interpretation of other homogeneous components and contrast components

is possible, but not given here.

Sparsity Constraints

Very often a principal component direction may have some near-zero coefficients. Setting

them to zero may not cause a large change in variance explained by this component or the

total variance explained by the first several components. Such a component with many

zero elements will be called a sparse component.

As in the homogeneous and contrast cases, to find sparse components that nearly obey

the four properties of principal components, we minimize the angle between the sparse

component direction and the corresponding principal component direction. The angle is

minimized when no elements are zero, so we add a penalty term, such as the number of

nonzero elements. Thus we minimize

C1 ¼ u=(p=2)þ hk=p, (4)

over ai and k, the number of non-zero elements in ai. In equation (4), u is the angle

between sparse component ai and principal component gi, and h is a tuning parameter.

As h increases, the component minimizing C1 becomes more sparse. Criterion C1 may

be thought of as the percent angular error (since the angle to the principal component

will not exceed p=2) plus a constant times the percentage of non-zero loadings.

Other criteria are possible. For example, one could maximize C2 ¼ (p� k)( cos u)h.

The p� k term is large when most coefficients are zero. The cos u term is large when

the interpretable direction is close to the principal component direction. Larger h values

Figure 2. Correlations of projected data, Cars example. The first boxplot represents the original data,

and the others correspond to various methods described in Sections 3 and 4
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cause the second term to shrink, leading to less sparse directions that are closer to the

principal component direction. The C1 criterion could select the original principal com-

ponent in some cases. Such a selection is impossible for C2. Otherwise these two criteria

behave similarly.

The main goal of C1 and C2 is to provide a convenient way to index the possible a. In

practice, several values of the tuning constant h could be tried.

The search for the sparse directions is similar to the homogeneous case. For fixed k,

optimizing C1 or C2 is equivalent to minimizing u. The optimum will occur when the k

non-zero elements of ai correspond to the k coefficients of gi with largest magnitude.

Setting the (p� k) elements of gi with smallest absolute values to zero and renormalizing

the resultant vector yields the sparse component ai for fixed k. We loop over k to find the

best sparse component ai. Since the sparse components are real-valued, the identification

of a reasonable scale of the X columns will be less critical than with homogeneity con-

straints. Interpretation will still be aided by a reasonable scaling of X.

This approach amounts to setting the coefficients of the linear combination with smal-

lest absolute values equal to zero. In some contexts, coefficient magnitude may not capture

all available information about variable importance. Cadima & Jolliffe (1995) discuss this

issue and present an alternative approach.

Sparsity Constraints Applied to the Cars Data

We illustrate sparsity criterion C1 using the cars data. The first five sparse components

when h ¼ 0:8 and h ¼ 0:81 are given in Table 3. With h � 0:8, the first sparse component

is the principal component direction. The interpretation is simplified with h ¼ 0:81, giving

Figure 3. Reconstruction errors for homogeneous and contrast components in the cars dataset,

compared to original principal components and reconstruction using random directions
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non-zero coefficients in the first component corresponding directly to the car’s size. Since

car size is linearly related to all the variables, the first principal component explains much

more variance than the sparse component.

We now examine criteria (a)–(d) for the sparse components. For criterion (a), Figure 1

plots the distribution of the angles between the sparse components ai when h ¼ 0:8 and

h ¼ 0:81. For h ¼ 0:8, most of the angles are between 80 and 100 degrees. For

h ¼ 0:81, most of the angles are between 84 and 95 degrees. The median angle in both

cases is 90 degrees.

For criterion (b), the correlations of the projected data are displayed in Figure 2. The

projected data are much less correlated than the original data.

For criterion (c), the variances of the projected data for the first eight sparse components

are given in Table 4, for h ¼ 0:5, 0:7, 0:8, 0:81, 0:91. Eight components were chosen

since they explain over 95% of the variation in the data. The variance in principal com-

ponent direction gi for sparse component ai (i.e., a
2
iili) is given on the left of the table,

for i ¼ 1,2, . . . ,8. The variances of Xg1 explained by the first sparse components obtained

with h ¼ 0:81 and h ¼ 0:9 are much lower than l1. Other variances are reasonably close

to variance of the corresponding principal component. As mentioned earlier, the sparse

component captures variance in all the directions of G. For this reason, we give the

total variance of a1, . . . , a8 in the direction of gi on the right part of the table, for

i ¼ 1, . . . , 10. The ninth and tenth principal components are considered because of the

non-orthogonality of the sparse components. This non-orthogonality means that variance

in the direction of all principal components is captured. The sparse components corre-

sponding to h ¼ 0:50, 0:70, 0:80 over-explain the variance in the direction of g1, and

the sparse components with h ¼ 0:81, 0:90 under-explain the variance. In rows 2–8,

the variance in the direction of the component is closer to the variance of the principal

Table 3. Cars data: sparse directions, and angles with corresponding principal component directions

Variable

h ¼ 0:8 h ¼ 0:81

1 2 3 4 5 1 2 3 4 5

Min price 0.23 0.40 0 0 0 0 0.40 0 0 0

Price 0.22 0.45 0 0 0 0 0.45 0 0 0

Max price 0.20 0.47 0 0 20.30 0 0.47 0 0 0

City MPG 20.27 0 0 0.55 0 0 0 0 0.55 0

Highway MPG 20.25 0 0 0.75 0 0 0 0 0.75 0

Engine size 0.28 0 0 0 0 0.45 0 0 0 0

Horsepower 0.24 0.31 0 0 0.39 0 0.31 0 0 0.41

RPM 20.14 0.44 0 0 0.87 0 0.44 0 0 0.91

Rev./mile 20.24 0 0.40 0 0 0 0 0.40 0 0

Fuel tank capacity 0.27 0 0 0 0 0.44 0 0 0 0

Passengers 0.19 20.34 0.54 0 0 0 20.35 0.54 0 0

Length 0.26 0 0 0.36 0 0 0 0 0.36 0

Wheelbase 0.27 0 0 0 0 0.44 0 0 0 0

Width 0.27 0 0 0 0 0.43 0 0 0 0

Turn circle 0.25 0 0 0 0 0 0 0 0 0

Rear seat room 0.18 0 0.74 0 0 0 0 0.74 0 0

Weight 0.29 0 0 0 0 0.47 0 0 0 0

Angle (deg.) 0 21 31 35 30 51 21 31 35 34
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component, indicating that all but the first principal component are well approximated by

the sparse components. The variances in the 9th and 10th rows are less than half the var-

iances of the corresponding principal component, indicating that the first eight sparse

components are not capturing much variance in the directions of g9 or g10. This small

variance is reassuring, since it indicates that the sparse components are mostly capturing

variances in the intended directions.

As h increases, the reconstruction error (criterion (d)) will also increase. The recon-

struction errors of sparse components with various h are plotted in Figure 4. Values of h ¼

Table 4. The variance of the cars data, projected onto sparse components, for

h ¼ (0:5, 0:7, 0:8, 0:81, 0:9). Sparse component directions are denoted by ai, principal component

directions by gi

i Var(Xgi)

Variance of Xai in gi direction, for i ¼

1, . . . , 8 (i.e., a2iiVar(Xgi))

Total variance of Xa1, . . . , Xa8 in gi
direction for i ¼ 1, . . . , 10. (i.e.

Var(Xgi)
P8

l¼1 a
2
li)

0.5 0.7 0.8 0.81 0.9 0.5 0.7 0.8 0.81 0.9

1 10.76 10.76 10.76 10.76 4.21 3.42 11.65 12.40 12.73 5.67 6.38

2 2.32 2.30 2.01 2.01 2.01 2.01 2.48 2.21 2.28 2.42 2.27

3 1.00 0.91 0.74 0.74 0.74 0.74 0.93 0.80 0.76 1.11 0.91

4 0.79 0.69 0.58 0.53 0.53 0.53 0.73 0.76 0.72 0.76 0.63

5 0.58 0.52 0.47 0.44 0.40 0.40 0.52 0.57 0.55 0.37 0.24

6 0.33 0.32 0.28 0.26 0.26 0.26 0.32 0.31 0.28 0.32 0.28

7 0.26 0.25 0.22 0.22 0.19 0.19 0.25 0.19 0.17 0.24 0.17

8 0.25 0.23 0.23 0.20 0.20 0.20 0.24 0.22 0.23 0.23 0.27

9 0.22 0.00 0.04 0.07 0.03 0.05

10 0.13 0.00 0.02 0.01 0.02 0.07

Figure 4. The reconstruction errors of the sparse and principal components
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0:5, 0:7 and 0.8 give almost the same reconstruction error as the principal components,

while h ¼ 0:81 and 0.9 are just slightly worse. For h ¼ 0:5, 0:7, 0:8, 0:81, 0:9, the corre-
sponding percentages of non-zero coefficients are 51%, 38%, 32%, 27% and 26%, respect-

ively. Even with sparse components, the data can be reconstructed with little error. This is

an interesting contrast with the criteria for variance explained, which seem much more

affected by the sparsity of the first principal component. This provides an illustration of

our preference in the first section for reconstruction error over variance explained.

We now examine the sensitivity of the first component to h. Figure 5 shows the C1

criterion as a function of k, and its constituent parts, for five different values of the

penalty parameter h. The C1 value plotted for each k is the maximum C1 value over

all a1 with k non-zero coefficients. As the number of non-zero loadings (k) increases,

the angle to the first principal component decreases by an almost constant amount.

When the linear penalty hk=p is added to u=(2=p), small nonlinearities in C1 become

apparent. When h is near 0.80, these nonlinearities are responsible for instability of the

optimal value of k. Does this instability mean that the C1 criterion should be discarded?

Not necessarily. This example is one in which it would be difficult for an analyst to

choose the number of non-zero components. The sensitivity of C1 draws attention to

this difficulty, which we view as a positive characteristic.

Stepwise Calculation of Interpretable Components

In the previous section, the interpretable directions ai were chosen to be ‘close’ to fixed

principal component directions. If some ai are not very close to the corresponding direc-

tion, departures from properties (a)–(d) may be severe. This section offers one possible

solution: a way to construct ai
0s one at a time.

Figure 5. The C1 criterion for sparse components and its constituent parts. As the number of non-

zero loadings (k) increases, the penalty hk=p (- - -) increases linearly, and the angle u to the principal
component decreases. Penalty terms (- - -) and C1 criteria (–) are plotted for five different values of

the tuning constant h. As the penalty constant h increases, the minimum of C1 (denoted by †) shifts

from k ¼ 17 to a smaller value
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The algorithm below capitalizes on a stepwise interpretation of principal components. If

the first principal component direction is used to reconstruct the data, and this reconstruc-

tion is removed from the data, then the first principal component of the new data will

simply be the second principal component of the original data. The algorithm is described

below, followed by some comments.

1. Initialize:

F X̃

A NULL

Repeat for i ¼ 1, . . . , p:
2. g first principal component direction of ŜF ¼ F0F=n.
3. A  [A ..

.
a� where a is the interpretable direction corresponding to g (see Comment IV

for details).

4. Update F as the difference between the original data X̃ and its reconstruction using the

directions in A:

F X̃2 X̃ A(A0X̃0X̃A)21 A0X̃0X̃

End repeat.

Comments

I In Step 4, if we set T ¼ ~XA, the second term becomes T(T 0T)�1T 0 ~X. This term can be

viewed as the prediction of ~X using T as predictor variables in a regression model.

II In Step 2, using the value of F from Step 4, the F0F=n term can be expressed as

F0F=n ¼ ~X
0 ~X=n� ~X

0 ~XA(A0 ~X
0 ~XA)�1A0 ~X

0 ~X=n ¼ Ŝ� ŜA(A0ŜA)�1A0Ŝ, (5)

where Ŝ ¼ ~X
0 ~X=n is the sample covariance of X̃.

III Suppose A was constructed from principal component directions instead of interpret-

able directions. That is, in Step 3, a ¼ g. Then the algorithm would just identify the

principal component directions g1, . . . ,gp.
This can be shown using the spectral decomposition of Ŝ:

Ŝ ¼
Xp

i¼1

gilig
0
i

where li is the ith eigenvalue of Ŝ. If A ¼ ½g1, . . . ,gk�, then the second term of equation

(5) becomes

ŜA(A0ŜA)�1A0Ŝ ¼
Xk

i¼1

gilig
0
i

That is, at the kth step, the spectral decomposition of ŜF will be composed of exactly

the last p� k elements of the spectral decomposition of Ŝ. Thus, the first eigenvector of

ŜF will be the (k þ 1)th principal component direction.

IV In Step 3, the interpretable direction a corresponding to g is not calculated by directly

applying constraints to g. From Step 2, g is the first principal component direction of

ŜF , but the linear combination Fg is not equal to ~Xg if A is not constructed from prin-

cipal component directions. Using the relation Fg ¼ ~X(g� A(A0 ~X
0 ~XA)�1A0 ~X

0 ~Xg), we
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transfer the linear combination back to ~X. Thus, a is calculated by applying constraints

to the direction g� A(A0 ~X
0 ~XA)�1A0 ~X

0 ~Xg.

Since in each step, the linear effect of previously identified projections of X has been

partialed out, the resultant components tend to improve the uncorrelatedness of the pro-

jected data T. In the next section, we illustrate stepwise sparse components. An alternative

to using just one of homogeneity, contrast or sparsity constraints (as described above) is

explored later.

Stepwise Sparse Components for Cars Data

The stepwise sparse components when h ¼ 0:8 and h ¼ 0:81 are given in Table 5. When

h ¼ 0:8, there is very little difference from the sparse components in Table 3. There are

more differences when h ¼ 0:81. These differences are probably due to the discrepancy

between the first sparse direction and the first principal component direction. Subsequent

directions adjust for this difference and find slightly different directions, rather than still

attempting to come close to the principal component directions.

Performance criteria were examined for this example. Similar orthogonality of the ai
0s

and the uncorrelatedness of T are found here, plotted in Figures 1 and 2. The variance of

the projected data and reconstruction errors are very similar to results in the previous

section.

Stepwise Best Components for Cars Data

The stepwise procedure could be carried out separately for homogeneous, contrast, and

sparse components. Instead, we calculate all three components in Step 3, and select the

interpretable component with smallest angle to the direction g. A single run of the

Table 5. Stepwise sparse components, cars dataset

h ¼ 0.8 h ¼ 0.81

Variable 1 2 3 4 5 1 2 3 4 5

Min price 0.23 0.40 0 0 20.27 0 0.43 0 0 0

Price 0.22 0.45 0 0 20.29 0 0.47 0 0 0

Max price 0.20 0.47 0 0 20.29 0 0.48 0 0 0

City MPG 20.27 0 0 0.54 0 0 0 0 0.51 0

Highway MPG 20.25 0 0 0.75 0 0 0 0 0.65 0

Engine size 0.28 0 0 0 0 0.45 0 20.25 0.25 0

Horsepower 0.24 0.31 0 0 0.37 0 0.33 0 0 0

RPM 20.14 0.44 0 0 0.78 0 0.35 0 0 0.67

Rev./mile 20.24 0 0.39 0 0 0 0 0.26 0 0.33

Fuel tank capacity 0.27 0 0 0 0 0.44 0 0 0 0.47

Passengers 0.19 20.35 0.53 0 0 0 20.25 0.53 20.22 0

Length 0.26 0 0 0.37 0 0 0 0 0.22 0

Wheelbase 0.27 0 0 0 0 0.44 0 0 0.24 0

Width 0.27 0 0 0 0 0.43 20.24 20.27 0.19 0.31

Turn circle 0.25 0 0 0 0 0 0 0 0 0

Rear seat room 0.18 0 0.75 0 0 0 0 0.71 0.24 0

Weight 0.29 0 0 0 0 0.47 0 0 0 0.33
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stepwise algorithm will then produce a combination of three types of interpretable

components.

Here we use h ¼ 0:81 for the sparse components computation. The 1st, 9th and 11th

components were homogeneous, the 3rd, 7th and 12th were contrasts, and other com-

ponents were sparse. The reconstruction errors are improved over sparse components

with h ¼ 0:81, and are almost exactly the same as for the original principal components.

Data Mining Example

In this section we illustrate a more substantial application, with 200 variables and over

2000 observations. The proposed methodology is illustrated both as a dimension reduction

technique, and in the context of logistic regression.

The dataset concerns a direct marketing application, in which a person responds or does

not respond to a direct mailing. The data were provided by Gary Saarenvirta, and were

used in the Statistical Society of Canada 2000 Case Study. A total of 2158 observations

are available, broken into 1079 responders and 1079 non-responders. These data come

from a larger set, with a response rate of about 1%. All responders in the larger set

were used, and an equal number of non-responders were sampled at random, yielding

the 2158 observations. The 200 explanatory variables consist of personal information

such as gender, purchasing habits, etc, and demographic information for the census enu-

meration area in which the individuals live. The objective is to construct a model to predict

response/non-response using the 200 variables. Most of the variables have been

normalized.

Many teams participating in the case study found that linear methods such as logistic

regression were among the more effective classification models for this data. Stepwise

variable selection on the original predictors was attempted, but performance was generally

better with low-dimensional projections as predictors. Successful projections included the

first 10–40 principal components and partial least squares. Both a strength and weakness

of projection methods is that all 200 predictors are combined with non-zero weights in the

linear combinations. This gives predictions that may be more stable than variable selec-

tion, but it renders the model uninterpretable. Interpretable directions may offer a compro-

mise between principal components and variable selection. If the interpretable directions

allow good reconstruction of the original predictors, they may be more likely to perform

well in a logistic regression.

We calculated the original homogeneous, contrast, and sparse directions, their corre-

sponding stepwise version, and the stepwise best components. The homogeneity and con-

trast constraints have as many as 170 non-zero coefficients. Although the coefficients take

restricted values, interpretation of so many non-zero coefficients will be difficult. We

prefer to use the sparsity constraints only in this example.

We obtained the sparse components via the stepwise method described in the fourth

section. Setting h ¼ 1:5 gives less than 30 non-zero coefficients per direction in almost

all sparse components. The reconstruction errors for 100 components (interpretable or

principal) were less than 5% of the total variance. A similar comparison is given in

Figure 6.

The first sparse component has 27 non-zero coefficients, all but one of which are posi-

tive. Absolute values of these coefficients range from 0.17 to 0.22 with most of them are

0.18 or 0.19, corresponding roughly to an average. The variable names are listed in

Table 6. Only one variable has a negative coefficient – the number of taxfilers with

income from $1–$14,999. All the variables are enumeration area variables, rather than

personal variables. It seems all these variables measure wealth in the enumeration area.
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The one variable with a negative coefficient measures the number of low income people,

which also seems consistent with the idea that this component measures wealth. The meth-

odology has identified a component with a clear interpretation, removing other less

important variables and simplifying interpretation. Other components may be interpreted,

but this will not be described here.

Figure 6. The reconstruction errors of the first 120 sparse components and the principal components,

direct marketing example. The lower line corresponds to the principal components

Table 6. Variables with nonzero coefficients in the 1st sparse component, direct marketing example

Percentages

% Family income .$50 K % Household income .$50 K

% Males 15þ with income �$30 K % Managerial & admin occupation

Dollar amounts

Average family income Median family income

Average household income Median household income

Average income males 15þ Median income males 15þ

Average total income Average male total income

Average female total income

Total counts of taxfilers

With RRSP $4K-8K With RRSP �$8K

Claiming donations With income $1–$15K

With income $55K–$74K With income $75K–$99K

With T4 earnings .$45K With dividend income

Male with dividend income With dividend income $1–$500

With RRSP contributions With RRSP contributions $1K–$4K

Male with RRSP contributions Female with RRSP contributions

984 H. A. Chipman & H. Gu



For logistic regression, we use either the first 10 principal components or the first 10

sparse components as predictors. Ten instead of 100 components are used because

interpretation of more than ten components is daunting.

The data were randomly divided into train and test sets containing 2/3 and 1/3 of the

data respectively. Logistic regression models were fit to the training data using the two

distinct groups of predictors.

Comparisons of fit are made via the gains chart in Figure 7. In this plot, each model gen-

erates a predicted probability of responding for every test case. The test cases are then

ordered by decreasing probability of response. In the gains chart, this ordering corresponds

to the horizontal axis. Suppose we choose to mail to the top proportion p of test cases, or

correspondingly select the leftmost proportion p of the horizontal axis. At the horizontal

value p, the height of the curve is the number of selected cases who actually responded

divided by the total number of responders. A 45 degree line corresponds to random

sampling of cases. The higher the curve above a 45 degree line, the more responders

are selected early. Note that the best possible curve would be initially linear and then

flat across the top of the chart, corresponding to selecting all the good cases first. In this

problem, about 43% of the test cases are responders, so the best line would be flat after

about p ¼ 0:43.
In this case we see negligible difference in the gains between models based on either the

first 10 principal or interpretable components. The interpretable components appear just as

accurate for predicting response, while offering the advantage of interpretability.

Discussion

In this section we make comparisons with the approaches for simplifying principal com-

ponents mentioned in the first section, and discuss future work.

Figure 7. Gains chart for logistic regression applied to the direct marketing example
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Previous approaches to simplifying principal components can be divided into two

groups: those seeking loadings proportional to integers, and those with real loadings,

many of which are zero or close to zero. Comparisons with homogeneous/contrast and
sparse components are then natural.

Optimization is a challenge when loadings are constrained to be proportional to

{0,+1} or more generally, integers, since for q distinct possible loadings and p dimen-

sions, there are qp possible loadings. Hausman (1982) proposes a branch-and-bound

search algorithm which identifies the constrained component maximizing variance,

while being much faster than an exhaustive search. The solution involves a partial

covariance matrix, like the stepwise search suggested in the fourth section. Although

faster than an exhaustive search, such a branch-and-bound algorithm will not scale

well to large problems like the data mining example in the fifth section. Performance

limits may be similar to branch-and-bound algorithms for subset selection in regression

(Furnival & Wilson, 1974) where entertaining more than 50 or 60 dimensions is

infeasible.

To identify loadings proportional to integers, Vines (2000) uses “simplicity performing

transformations”, which are constrained rotations and rescalings applied to pairs of vari-

ables. A sequence of rotations are executed to maximize variance of the resultant vari-

ables, with the constraint that the loadings defining the new variables be proportional to

integers. Since many searches over all pairs of variables are required, there will be as

many as p
2

� �
� p2=2 pairs of variables to be considered. For large dimension p, this may

be challenging.

In contrast, our algorithm scales linearly in p, since the optimal loadings with k non-zero

elements are available in closed form for all three types of component. Thus, only a loop

over k from 1 to p is necessary. While we cannot guarantee minimal variance, as Hausman

does, the solutions are fast and, based on the examples, effective.

We compared our homogeneous components to Vines’ simple principal components,

and found very similar results, except in examples where the simple principal components

were proportional to larger integers.

Among methods which produce real-valued but sparse loadings, rotation of principal

components is the oldest. Once a group of important components are identified, they

are rotated to increase interpretability, while keeping the orthogonality of the individual

components. Jolliffe (1989) discusses this technique and argues that it is most effective

when applied to groups of components whose variances are roughly equal. Jolliffe &

Uddin (2000) introduce a one-step alternative to the two-step procedure of first finding

the principal components and then rotation. In their procedure, they maximize the variance

of each projection plus a penalty term, yielding coefficients close to 0 or 1. While this

approach does not typically set any loadings to zero, it pushes them towards these

values. Like our sparse components, Jolliffe & Uddin have a parameter that controls the

influence of the penalty and the sparsity of the resultant components. A similar approach

is proposed by Jolliffe et al. (2003), but with the constraint that the sum of absolute load-

ings in a component be less than some constant. This is similar to LASSO shrinkage

(Tibshirani, 1996), and yields some loadings exactly equal to 0. Both methods proposed

by Jolliffe & Uddin involve optimization in a space with many local optima, and could

be more time consuming than our procedure.

All the approaches to simplified principal components mentioned above attempt to

maximize the variance of the projected data. In the third section we saw that the recon-

struction error and the variance of the projected data were quite different criteria. Although

the interpretable components may not have as large a variance as the principal com-

ponents, they were quite competitive in reconstructing the data. Thus, the fact that our
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interpretable components do not attempt to directly maximize variance is an important dis-

tinction, and not necessarily a disadvantage.

The current approach is also unified: for all three meanings of “interpretable”, the same

method of minimizing angle to the corresponding principal component is used to identify

the interpretable components. This method can seek to be close to the original com-

ponents, or proceed in a stepwise manner, partialling out the effect of each interpretable

component as it is identified. We think that our approach should be complementary to pre-

vious work, in that we attempt to find interpretable directions by different methods.

In our approach, there remain some interesting issues for future research. For example,

we have not developed a formal method for selecting the tuning parameter h in sparsity

criteria C1 and C2. We have chosen the h value in examples by trying different values.

By thinking of the problem in terms of reconstruction error, an analogy with regression

can be made. This suggests that the choice of h could be made via cross-validation,

attempting to minimize (or find a sufficiently low value of) the reconstruction error on a

test set.

Another interesting direction is the application of these techniques to methods other

than principal components. Many adaptive modelling procedures (e.g. neural networks,

projection pursuit regression, discriminant analysis, canonical correlation analysis, etc)

are built upon linear combinations of variables, but are not interpretable. By constraining

the linear combinations, models that are interpretable and still effective might be found.
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