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A number of simplified algorithms for carrying out maximum likelihood parallel factor analysis

(MLPARAFAC) for three-way data affected by different error structures are described. The MLPAR-

AFAC method was introduced to establish the theoretical basis to treat heteroscedastic and/or

correlated noise affecting trilinear data. Unfortunately, the large size of the error covariance matrix

employed in the general formulation of this algorithm prevents its application to solve standard

three-way problems. The algorithms developed here are based on the principle of alternating least

squares, but differ from the generalized MLPARAFAC algorithm in that they do not use equivalent

alternatives of the objective function to estimate the loadings for the different modes. Instead, these

simplified algorithms tackle the loss of symmetry of the PARAFAC model by using only one

representation of the objective function to estimate the loadings of all of the modes. In addition, a

compression step is introduced to allow the use of the generalized algorithm. Simulation studies

carried out under a variety of measurement error conditions were used for statistical validation of the

maximum likelihood properties of the algorithms and to assess the quality of the results and

computation time. The simplified MLPARAFAC methods are also shown to produce more accurate

results than PARAFAC under a variety of conditions. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the past three decades, the use of multivariate [1,2] and

multiway [3–5] methods have driven a change in the analy-

tical laboratory from a univariate and chemically selective

paradigm into a multivariate/multiway and mathematically

selective philosophy. Nonetheless, it was not until the 1990s

that some researchers [6–11] started to consider in a consis-

tent manner the nature of the noise corrupting these mea-

surements in the context of multivariate analysis. The

assumption of iid-normal (independent and identically dis-

tributed noise with a normal distribution) upon which uni-

variate least squares methods [12] relied to provide optimal

estimates was recognized as a limitation in the presence of

other types of noise cases. The nature of the noise affecting

multivariate measurements is strongly related to the nature

of the experiment and the type of instrument employed [13],

as well as different cosmetic manipulations [14,15] that make

the noise deviate from the iid condition. Instrumental factors,

such as spatial correlation in the detector sensors, detector

response variation, source intensity instability, temperature

fluctuations, and physical variation in the sample and in the

positioning of the sample within the instrument are a few

examples of the causes of the existence of correlated noise.

In 1994, Paatero [6] resurrected the idea of introducing

some kind of weight information related to the uncertainty

of the variables when the method positive matrix factoriza-

tion (PMF) was introduced. Unfortunately, this weighting

information was only related to the variance of these vari-

ables, correcting for the violation of the identical distribution

of the noise, but their method still assumed that the errors

were independent from channel to channel. A more com-

plete alternative was available a few years later when

Wentzell et al. [7] formulated maximum likelihood principal

component analysis (MLPCA) which considered cases

where the iid condition was completely violated due to the

presence of heteroscedasticity and correlated noise. A prin-

cipal innovation of this method was the use of the error

covariance matrix (ECM), which is a more general way of

describing the magnitude of the errors and the relationships

among them. A few other closely related methods [8–10]

have also been introduced to handle bilinear data in a

maximum likelihood fashion, sometimes adding other con-

straints or information.
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The application of this philosophy to multiway data

lagged behind the bilinear case until recently. For trilinear

data, the optimality of the least-squares solution obtained by

PARAFAC was proven by Liu and Sidiropoulos [16] using

simulated data that provided solutions that approached the

Cramer–Rao lower bound, when the noise was iid. There-

fore, it was perceived as useful to extend least squares

approaches to cases of non-iid measurement noise. Recently

Bro et al. [11] introduced a generic method called maximum

likelihood via iterative least squares estimation (MILES),

which worked as a iterative preprocessing tool to condition

the data from a maximum likelihood perspective in order

that least squares methods such as PCA and parallel factor

(PARAFAC) analysis could optimally handle the estimation

process. The method is based on a majorization strategy in

which the original objective function is substituted by a

simpler and equivalent objective function in each step of

the estimation process. Unfortunately, the simplicity of this

numerical implementation is hindered by the amount of

computation time needed. Since the method runs the full

least squares optimization in each step, the time needed to

get an estimate is sometimes excessive. Another important

drawback of this approach is that the physical problem

becomes obscured by the efficient but unfamiliar numerical

methodology.

More recently, a method called maximum likelihood par-

allel factor analysis (MLPARAFAC) was introduced to the

chemometrics literature [17]. The main difference with re-

spect to MILES is that MLPARAFAC is a method based

solely on an alternating least squares (ALS) optimization.

The implementation is straightforward and runs faster since

the noise information is introduced in each iteration rather

than in each optimization step as it is in MILES. The method

was designed to estimate the parameters of the well-known

PARAFAC model from a maximum likelihood perspective

in cases where different violations of the assumed iid-normal

error condition exist. Four algorithms for carrying out

MLPARAFAC based on an ALS framework were described

in this work. The simplest of these was designed to work

with cases where the measurement errors are non-uniform

(heteroscedastic) but uncorrelated. The most general form of

the algorithm can treat data with any type of error covar-

iance structure. Two simplifications of the general algorithm

were also presented which more efficiently handle more

restricted error covariance structures. All of the algorithms

were shown to produce maximum likelihood estimates

through a comparison of the distribution of the objective

function with the �2 distribution. It was also shown that the

quality of the estimated loading vectors for MLPARAFAC is

significantly better than for the PARAFAC models in cases

where the error covariance matrix is known.

Although the original paper on MLPARAFAC outlined

the theory for dealing with correlated error, demonstrated its

validity through simulation, and introduced some exact

simplifications based on mathematical properties of the

matrices used in the estimation process, it was found that

many important situations remained uncovered and they are

the subject of this paper. This work will be divided into two

parts: the first part will introduce, test, and apply the

methodology to simulated data, while a companion paper

will treat the application of MLPARAFAC to three experi-

mental data sets. This paper will initially analyze the two

simplifications introduced in the earlier work, since more

interesting and useful simplifications can be found when

those algorithmic alternatives are approached from a geo-

metrical and computational point of view. This will lead us

to the extension of one of these alternatives to more general

cases where the noise structure along one order is less

restricted and to cases where the error structure is correlated

along two orders. Cases where the noise structure is corre-

lated along more than two orders will need to be treated

using the general algorithm, but since this is usually im-

practical from a computational point of view when the raw

data are used, a compression approach will be introduced.

After the algorithmic issues have been covered, a thorough

analysis will be provided in order to go from these mathe-

matically clear and well-defined cases to the more ‘‘gray’’

real cases. Also, some simulations will show the effects in the

estimates when some cases with a considerable departure

from the assumed structure are used with the corresponding

simplification.

1.1. Notation
In this paper, scalars are indicated by italics and vectors by

bold lower-case characters. Bold upper-case letters are used

for two-way matrices and underlined bold upper-case letters

for three-way data. The letters A, B, C and I, J, K are reserved

for indicating the first, second, and third mode of three-way

data and the dimensions of those modes, respectively. Also,

the letter P is reserved to represent the number of factors

used in the model. The terms mode, way, and order are used

interchangeably, as well as the terms factors and compo-

nents. When three-way arrays are unfolded to matrices, the

following notation will be used. If X (I� J�K) is unfolded

while retaining the first order to produce a (I� JK) matrix,

this will be designated Xa. In the same way, matrices Xb

(J� IK) and Xc (K� IJ) will be used to represent unfolded

matrices which retain the second and the third orders,

respectively. In general, other matrices with subscripts a, b,

and c represent unfolding while retaining the first, second,

and third modes. The use of subscripts i, j, k, and p accom-

panying matrices and vectors refers to the use of the i, j, k,

and p-th slice or row of the corresponding data array or

matrix. An important exception to this notational rule is

when subscripts i, j, k, and p accompany matrix I in which

case it refers to the identity matrix of order represented by

the subscript. The use of superscript ‘-T’ accompanying

square matrices indicates that the inverse of the transpose

of the corresponding matrix is calculated. The symbol ‘‘�’’

will be used primarily to indicate the Kronecker product, but

will also be used to represent the tensor product in certain

cases which will be clearly distinguished. The symbol ‘‘ �j j’’
will be used to indicate the Khatri–Rao product [3], which is

a compact version of a column-wise Kronecker product.

2. THEORY

In the original paper introducing MLPARAFAC [17], it was

noted that for many chemical applications, error covar-

iance affects only one order, or at least the covariance in
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other orders can be neglected. This can, in certain cases,

result in substantial simplification of the generalized algo-

rithm. For the purpose of illustration, only the case where

correlations exist along the rows will be considered, since

correlations along other orders can be rendered equivalent

through permutation of the original array or appropriate

adjustment of equations introduced. For this case, three

common situations can be distinguished: (1) the error

covariance is different among all of the rows forming the

array; (2) the error covariance is different among rows

forming different slices but identical among the rows of

the same slice; and (3) the error covariance is identical

among the rows of all the slices. Simplifications for cases

(2) and (3) were formulated based on mathematical

identities and the more general scenario represented by

case (1) was considered unsolvable by any simplification.

Deeper scrutiny of these simplifications led the authors to

realize the existence of more powerful and general simpli-

fications for these cases. The next subsections will

revisit these two simplifications from a geometrical and

algorithmic point of view. One of these simplifications

will be further extended to the case where error

covariance is different among all of the rows forming the

array and to the case where correlation is present along

two modes.

2.1. Correlation along one order
2.1.1. Case 1A
Imagine a trilinear data set such that the error correlation can

be expected to affect only one order, which we will assume to

be the second order. In addition, in certain cases where this

assumption applies, it may be possible to make the addi-

tional assumption that the error covariance matrix is the

same for each row in all the slices of data. Given that the

observed data, X, can be considered the sum of the true data,

Xo, and an array of measurement errors, E, this can be

mathematically represented using any of the following three

equations:

X ¼ Xo þ E

Xk ¼ Xo
k þ E

xi:k ¼ xo
i:k þ e

ð1Þ

The trilinear data can be equivalently represented as a three-

way array of elements, a slice-by-slice representation, or a

vector representation, respectively. As mentioned above, all

these representations are equivalent but only the last repre-

sentation allows a clear representation of the characteristics

of the noise, which follows a normal distribution around

zero and with variance/covariance matrix R, e � N(0, R).

Since the errors are correlated, R cannot be expressed as a

multiple of the identity matrix. This case is conceptually

similar to the case treated by Brown et al. [15] in which

bilinear data corrupted by drift noise were accommodated

by applying an optimally designed filter. Therefore, we can

consider our problem as a similar preprocessing problem in

which each frontal slice k of data is multiplied by a filter as

shown in Equation 2:

FXk ¼ XkF ð2Þ

F is an optimal filter matrix that will be applied to the data,

and thus to the individual error vectors in each slice as

shown in Equation 3:

FXk ¼ ðXo
k þ EÞF ¼ Xo

kFþ EF ð3Þ

The error covariance matrix after filtering can be expressed as:

FR ¼ EðFTeTeFÞ ð4Þ

Since the filter matrices are constant, they can be extracted

from the expectation operator Eð�Þ to obtain:

FR ¼ FTEðeTeÞF ¼ FTRF ð5Þ

F is an optimally constructed filter in the sense that it will

rotate and scale the data yielding a new noise data, EF, which

follows a normal distribution around zero with variance/

covariance matrix equal to a multiple of the identity matrix,
FR ¼ �2I. Therefore, dropping the proportionality constant

(which can be viewed simply as a scaling factor) and sub-

stituting this equality into Equation 5 yields:

I ¼ FTRF ð6Þ

The filter matrix F, which solves Equation 6, can be readily

obtained considering the estimation process as an extended

eigenproblem in which matrix R is initially rotated to yield a

diagonal matrix that then goes through a scaling process

producing the identity matrix. This linear transformation can

only be executed when F is defined as the product of the

eigenvectors of F, U, multiplied by the inverse of the diag-

onal matrix S formed by the square root of corresponding

eigenvalues of F as shown in Equation 7.

F ¼ U�S�1

R ¼ US2UT ¼ USSUT
ð7Þ

It is worth noting that, even though the term filter has

been used thus far, this optimal filter will not have the typical

form of a least squares polynomial filter such as the usual

symmetric/antisymmetric band diagonal Savitzky–Golay

filters [18]. In fact, it will not technically be a filter since no

noise reduction is carried out. It can better be understood as a

‘‘modulator’’ which transforms the original signal corrupted

by non-iid noise to a signal corrupted by iid-noise. This

transformation affects not only the noise but also the im-

bedded true signal that is the aim of the estimation process.

Fortunately, this transformation will not affect the trilinear

structure, since all the slices are going to be rotated and scaled

equivalently, as is evident from Equation 3. Additionally,

uniqueness, which is one of the most appealing characteristics

of trilinear data, will be preserved since the inverse transfor-

mation exists and can be easily applied to the estimated

loadings describing the order along which the noise is corre-

lated. This is mathematically represented by Equation 8:

FX̂Xa ¼ ÂAIaðĈC
T � FB̂B

TÞ
B̂B ¼ F�1 FB̂B

� � ð8Þ

The advantages of this approach with respect to the previous

approach formulated in Table IV of Reference [17] to treat this

type of data optimally are twofold. First, it will not be

necessary to calculate the inverse of WaðWa ¼ IK � RÞ in order

to estimate the parameters of the model since the error
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structure information is reflected in the data and not in the

projection of the data. This is rather convenient, since R can be

rank deficient for a variety of reasons. Second, the estimation

procedure will be carried out using the standard PARAFAC

algorithm, which is more stable and less computationally

involved than the algorithm in Table IV of Reference [17].

2.1.2. Case 1B
In addition to the simplest case treated above, Figure 1

represents a few other cases where the complexity of the

error structure increases gradually up to the most complex

case where the errors affecting all the elements of the multi-

way data are related. Case B represented in Figure 1 takes the

simplest error structure one step further to the case where

noise is still correlated along one dimension but the structure

and/or magnitude of it changes from slice to slice. The first

reasonable approach to treat such a case might be to use the

previously described strategy, utilizing in each case a filter

matrix derived from the error covariance matrix obtained for

each individual slice as shown in Equation 9:

FXk ¼ XkFk ð9Þ

Equation 10 shows that the reasoning holds from a noise

treatment perspective, since the local filtering will produce a

diagonal matrix because the filter matrices are going to rotate

and scale the original error covariance matrix for each slice in

order to fulfill the iid condition.
FRk ¼ FT

k EðeT
k ekÞFk ¼ FT

kRkFk ð10Þ

However, when this strategy is thoroughly explored via

Equation (11), it is clear that the ‘‘cleaning effect’’ produced

over the noise has a negative collateral effect over the part of

the data related to the chemical information since the trili-

nearity is destroyed due to a different rotation of the data in

each slice.
FXk ¼ ðXo

k þ EkÞFk ¼ Xo
kFk þ EkFk ð11Þ

A solution based on a mathematical simplification of the full

error covariance matrix was introduced in Reference [17].

The approach used to obtain this simplification was based on

the idea of finding a simpler representation of the error

covariance matrix to express the normal equations to esti-

mate the loading for each mode. A relatively concise and

computationally efficient formulation was found for the

estimation of the loading for the modes A and C, but the

I = 2

J = 3

K = 2

X

X1 X2

X1 X2

Xa

Xa

)( T
avec X

Three-way 
Representation

Two-way 
Representation

Variance/Covariance
Representation

Case

A

B

C

D

E

Figure 1. Illustration of the possible scenarios in which correlated errors might pervade a three-way array and

the corresponding representations of the structure of the error covariance matrix to describe all the sources of

variation. Arrows indicate which elements of the unfolded or vectorized three-way array have correlated errors.

Different arrows represent different error structures.
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equation for the estimation of B was still a function of the full

error covariance matrix for this particular mode, as can be

seen in Equation (12):

vec B̂B
T

� �
¼ VT

bX
�1
b Vb

� ��1
VT

bX
�1
b vec XT

b

� �
ð12Þ

Equivalently to the notation in reference 17, Vb is a JP� IJK

matrix with ZT
b ¼ ðC�AÞT repeating along the diagonal. The

matrix Xb is the full error covariance matrix for vecðXT
b Þ,

providing information about the error covariance among all

the measurements. The presence of Xb in this equation

makes this simplification practically useless since its dimen-

sions in a practical application will make the storage and

manipulation for this equation prohibitive.

The lack of success of this approach can be attributed to

the well-established strategy in standard PARAFAC in

which the different estimation sub-steps are formulated

using the same objective function expressed differently for

each mode. This strategy is used because, due to the sym-

metry of the PARAFAC model, the implementation is not

only efficient but also extremely simple, making the normal

equations very similar from one mode to the other. However,

when the characteristics of the noise are taken into account,

this symmetry is lost, making it necessary to express the

problem as the general problem, since the existence of a

simplified version of the error covariance matrix in the given

space is not possible or extremely difficult to find. Therefore,

in this paper, a new approach is introduced in which the data

are initially arranged in order to have the major source of

correlated noise along the mode B, followed by the second

major source of correlation along mode C leaving mode A as

the mode not affected by correlated noise. After the data are

arranged, the estimation equations are obtained by expres-

sing all the sub-steps as minimization problems of the

objective function written to preserve mode A alone. It is

worth noting in advance that this alternative is laborious,

since the equations will no longer be simple bilinear repre-

sentations in which the mode to be determined is repre-

sented independently and the other two modes are

represented as a composite mode, but as a more complex

set of equations in which the modes are going to be inter-

related most of the time.

We will start by showing the estimation of the normal

equation for case B represented in Figure 1. For this parti-

cular case, we will be able to see how the equation obtained

for mode A is exactly the same as the equation shown in

Reference [17] as proof that this strategy is equivalent to the

standard strategy used in the past. Also, our goal will

be accomplished by formulating a tractable equation for

mode B, making Equation (12) unnecessary. Even though

the estimation of the loading for mode C was not particularly

complex, the new strategy will provide a set of equations

that is less demanding from a storage point of view. We start

by defining the objective function as Equation (13):

f ¼
XK
k¼1

trace ðXk �ADkB
TÞW�1

k ðXk �ADkB
TÞT

h i
ð13Þ

In this equation, Xk represents the kth slice of the three-way

array X, A and B are matrices of dimensions I�P and J�P

representing the loading vectors for mode A and B respec-

tively, Dk is a P�P diagonal matrix with the kth row of the

K�P matrix C along the diagonal and W�1
k is the inverse of the

error covariance matrix that describes the noise affecting all

the rows of the kth slice of the three-way array X. The

implementation of an alternating least squares algorithm for

the estimation of mode A loadings assumes B and C are

known and then Equation (13) is minimized with respect

to each element forming A. Before proceeding with the

derivation, it will be convenient to express Equation (13) as

the quadratic form shown in Equation (14) where

Mk ¼ Xk �ADkB
T:

f ¼
XK
k¼1

traceðMkW
�1
k MT

k Þ ð14Þ

Equation (15) shows the derivation:

@f

@Aip
¼ @f

@Mk

@Mk

@Aip

� �T

¼
XK
k¼1

trace 2MkW
�1
k

@MT
k

@Aip

� �

¼
XK
k¼1

trace 2MkW
�1
k

@ Xk �ADkB
T

� �T

@Aip

 !

¼
XK
k¼1

trace 2MkW
�1
k �EipDkB

T
� �T

� �

¼
XK
k¼1

trace 2 Xk �ADkB
T

� �
W�1

k �EipDkB
T

� �T
� �

¼
XK
k¼1

trace �2XkW
�1
k BDkE

T
ip þ 2ADkB

TW�1
k BDkE

T
ip

� �

¼ �2
XK
k¼1

trace XkW
�1
k BDkE

T
ip

� �

þ 2
XK
k¼1

trace ADkB
TW�1

k BDkE
T
ip

� �
ð15Þ

Equation (15) represents the first derivative of the objective

function with respect to the elements of A. The matrix Eip is an

elementary I�P matrix with all of its elements equal to zero

with the exception to the element located in the position i� p,

which is equal to 1. This equation will be equal to zero for the

optimum value of Aip given B and C. In order to calculate this

value of Aip Equation (15) is transformed as follows:

XK
k¼1

trace XkW
�1
k BDkE

T
ip

� �
¼
XK
k¼1

trace ADkB
TW�1

k BDkE
T
ip

� �
XK
k¼1

vec DkB
TW�1

k XT
k

� �T
vec Epi

� �

¼
XK
k¼1

vec AT
� �T

vec DkB
TW�1

k BDkE
T
ip

� �
XK
k¼1

vec DkB
TW�1

k XT
k

� �T
vec Epi

� �

¼
XK
k¼1

vec AT
� �T

II �DkB
TW�1

k BDk

� �
vec Epi

� �

vec
XK
k¼1

DkB
TW�1

k XT
k

� � !T

vec Epi

� �

¼ vec AT
� �TXK

k¼1

II �DkB
TW�1

k BDk

� �
vec Epi

� �
ð16Þ
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Equation (16) is one of the IP equations necessary to estimate

the loadings of A. The rest of the equations are obtained as

the right and left parts of this equation are multiplied by the

different vectorized Epi matrices. Since this term is comple-

tely independent in both sides of the equation, the process

can be carried out in a straightforward manner using a

matrix E formed as [vec(E11) vec(E21) . . . vec(EIP)]. A closer

examination of this matrix reveals that E is the identity

matrix of order IP, making the multiplication theoretically

sound but numerically unnecessary and providing Equation

(17) to estimate the loadings of mode A:

vecðATÞ ¼
XK
k¼1

ðII �DkB
TW�1

k BDkÞ
 !�1

vec
XK
k¼1

ðDkB
TW�1

k XT
k Þ

 !

ð17Þ

Taking into consideration the properties of the vec operator

and the Kronecker product, Equation (17) can be trans-

formed to:

A ¼
XK
k¼1

XkW
�1
k BDk

XK
k¼1

DkB
TW�1

k BDk

 !�1

ð18Þ

For this scenario, Equation (18) is a more compact and

computationally efficient representation of the equivalent

Equation (30) in Reference [17] and reproduced here as

Equation (19).

A ¼ XaW
�1
a ZT

a ðZaW
�1
a ZT

a Þ
�1 ð19Þ

The summations over k found in Equation (18) can be

eliminated by using the unfolded representation of X retain-

ing mode A (Xa) and by expressing Wa as the block diagonal

error covariance matrix with the individual error covariance

matrices for each slice along the diagonal and expressing the

projection space by Za ¼ IaðC� BÞT.

For convenience, the mathematical procedure to derive the

estimation equations for the rest of the loadings in this and

the rest of the different scenarios are provided in the

Appendix. The results of these derivations are given below.

vecðBÞ ¼
XK
k¼1

ðDkA
TADk �W�1

k Þ
 !�1

vec
XK
k¼1

ðDkA
TXkW

�1
k Þ

 !

ð20Þ

ck ¼ BTW�1
k B�ATA

� ��1
vec ATXkW

�1
k B

� �h iT
E ð21Þ

It is interesting to note how both equations are composed of

the two key parts of a standard weighted least squares

estimator: a projection matrix spanning the space where

the best approximation of the noiseless signal is located

and a vector representing a weighted projection of the data

onto the space where the signal is located. The awkward

form of these two components is a consequence of the

manner in which these equations were obtained, as antici-

pated at the beginning of this section. Two important details

have to be mentioned for the expression to obtain loadings

for mode C: vector cT
k represents the kth row of the K�P

matrix C and the matrix E in this case is a matrix formed as

[vec(E11) vec(E22) . . . vec(EPP)] and is used to choose the

necessary elements for the estimation of ck, since the opti-

mization was originally designed to have this vector along

the main diagonal of Dk.

2.2. Correlation along two orders
2.2.1. Case 1C
Figure 1C represents cases where the error structure be-

comes more complex by affecting elements of the data set

located in two different modes. Such types of scenarios are

not unusual, for example in kinetic studies where the course

of the reaction is followed spectroscopically giving rise to

errors that are correlated in both the time and wavelength

modes, while the other mode may be composed of samples

with different compositions of the reactants that are run

independently of one another. For this case, we will consider

that the three-way data, X, will be unfolded preserving the

samples of different compositions in mode A, while modes B

and C will be combined in one composite mode formed by

the spectral information and the time information for each

sample. The objective function in this case can be expressed

as shown in Equation (22).

f ¼ trace½ðXa �AIaðC� BÞTÞW�1
a ðXa �AIaðC� BÞTÞT�

¼ trace½ðXa � ~AAðC� BÞTÞW�1
a ðXa � ~AAðC� BÞTÞT�

ð22Þ

As mentioned in the notation section, the variables with the

‘‘a’’ subscript such as Xa and Ia represent the three-way

arrays X and I unfolded preserving mode A independently.

Array I is P�P�P with all the elements equal to zero but

those on the superdiagonal, which are equal to unity. A

small modification was made in the second expression in

Equation (22) to make it more compact by expressing ~AA as

the product of A by Ia. Equation (22) will be used only to

obtain the loadings for modes B and C, since the loadings for

mode A can be obtained by Equation (19). It is important to

anticipate that the expressions obtained are not going to have

the visual clarity to be interpreted as Equation (19) due to the

manner in which they were obtained. The expression for the

estimation of the loadings B for this noise characteristic is

shown in Equation (23):

vecðBTÞ ¼
XK
m¼1

XK
n¼1

W�T
nm � Lmn

� � !�1

�
XK
m¼1

XK
n¼1

W�T
nm � Rmn

� � !
vecðIJÞ

ð23Þ

Equations (24) and (25) show the expressions to calculate

matrices R and L, respectively.

L ¼ ðC� IPÞ~AAT ~AAðC� IpÞT ð24Þ

R ¼ ðC� IPÞ~AATXa ð25Þ

It should be noted that in order to obtain Equation (23), a

number of manipulations of the different matrices involved in

the estimation process are performed as shown in the Appen-

dix. The most remarkable manipulation the reader must be

aware of in order to understand Equation (23) is the partition-

ing of the JK� JK inverse error covariance matrix W�1, the

KP�KP matrix L, and the KP�KJ matrix R into three K�K

super-matrices composed of the corresponding J� J, P�P,

and P� J matrices. A graphical representation is presented in

Equation (A19) in the Appendix. It is clear from the equation

that subscripts m and n indicate the use of different partitioned

pieces of W�1, L, and R. Although Equation (23) does not

resemble the traditional representation of a weighted least

Improvements to MLPARAFAC: Theory 221

Copyright # 2005 John Wiley & Sons, Ltd. J. Chemometrics 2005; 19: 216–235



squares estimator, a closer look will actually indicate, as

before, that it is formed by the key pieces of this type of

estimator: a projection matrix spanning the space where the

vector to be estimated resides (the term within the inverse

operator) and a weighted image of the signal in the same space

(the term following the inverse operator). The equation to

estimate the loadings for mode C are equivalently obtained

and will have a similar structure as can be seen in Equation

(26):

vecðCTÞ ¼
XP
m¼1

XJ
n¼1

Tmn � ST
nm

� � !�1

�
XJ
m¼1

XJ
n¼1

LT
mn � Rnm

� � !
vecðIKÞ

ð26Þ

Equations (27)–(30) show the necessary expressions to

calculate the matrices involved in Equation (26). As

before, matrices KJK and KKJ are JK�KK commutation

matrices.

T ¼ BT � IK
� �

KJKW
�1
a KKJ ð27Þ

S ¼ B� IPð Þ~AAT ~AA ð28Þ

L ¼ W�1
a KKJ ð29Þ

R ¼ B� IPð Þ~AATXa ð30Þ

Again, the subscripts m and n indicate the use of different

partitioned pieces of the full matrices previously shown. In

all cases, we have tried to produce the most compact

representation for the expression used to calculate the esti-

mates, but it is possible that further simplifications have been

unnoticed by the authors. Also, some of these expressions

will be computationally implemented in a more efficient way

than the one used here, which was preferred for its nota-

tional simplicity.

2.2.2. Case 1D
Figure 1D represents chemical scenarios that are very similar

to the previous case. The complexity of the system is taken a

step further by considering that the noise propagates in a

correlated fashion along two modes but the structure of this

correlated noise changes from sample to sample indepen-

dently. This type of situation is not uncommon when

spectroscopic techniques such as NIR spectroscopy are

used due to path length variations. Mathematically, the

trilinear errors-in-variable model best suited to describe

these data can be obtained by minimizing Equation (31):

f ¼
XI
i¼1

ixa � i~aa C� Bð ÞT
� �i

W�1
a

ixa � i~aa C� Bð ÞT
� �T

ð31Þ

This objective function yields expressions for the estimates

that are very similar to the previous case, but in this

particular case the estimates are obtained in a row by

row fashion for mode A, and as a summation over the I

objects in mode A for modes B and C, as can be seen in

Equations (32)–(34):

ia ¼ ixa
iW�1

a ZT
a Za

iW�1
a ZT

a

� ��1 ð32Þ

vec BT
� �

¼
XI
i¼1

XK
m¼1

XK
n¼1

iW�T
nm � iLmn

� � !�1

�
XI
i¼1

XK
m¼1

XK
n¼1

iW�T
nm � iRmn

� � !
vecðIJÞ

ð33Þ

vec CT
� �

¼
XI
i¼1

XP
m¼1

XJ
n¼1

iTmn � iST
nm

� � !�1

�
XI
i¼1

XJ
m¼1

XJ
n¼1

iLT
mn � iRnm

� � !
vecðIKÞ

ð34Þ

The estimation of the loadings for mode B and C will use the

same equations shown before, but in all cases the matrix ~AA

will be replaced by the corresponding row vector i~aa and the

I� JK matrix Xa will be replaced by the row vector ixa. It is

important to emphasize that a set of I error covariance

matrices of dimensions JK� JK will be used by this method

making this alternative very expensive from a storage and

computational point of view.

Thus far in Section 2, a number of different simplified

scenarios have been examined, ranging from the simplest,

where the error covariance matrix can be fully represented

by a J� J matrix, to the most complex case, where it is

necessary to consider I different JK� JK error covariance

matrices. From the estimation equations, it is evident that

the computational effort and the storage space increase as

the complexity of the error structure characterizing the noise

affecting the data grows. Therefore, the main advantage of

using a simpler alternative will be the reduction of time

needed to estimate the loadings for each mode. On the other

hand, some scenarios will show the merit of using the more

complex alternatives in order to provide the maximum like-

lihood estimation for each mode. The situation in which

practioners will have to compromise to estimate the best

possible errors-in-variables model using the minimum

amount of time will depend on the characteristics of the

data at hand and will be difficult to assess on an a priori basis.

In the experimental section of this paper, a number of

simulated data sets are used to validate the statistical proper-

ties of these algorithms and also to show the advantages of

using one algorithm over the other in terms of time, compu-

tational power, and quality of the results.

2.3. Correlation along three orders
In the previous sections, the expressions for a number of

simplified algorithms were derived for a variety of scenarios

characterized by error covariance matrices of different com-

plexity. However, there are going to be cases where none of

these simplifications will provide the best solution, making it

necessary to use the full algorithm presented in Reference

[17]. As noted in that work, the full algorithm is not a viable

alternative except when the dimensions of each order are

unrealistically small. This is also the case with some of the

simplifications discussed here (e.g., case 1D) for which the

amount of storage space is prohibitive from a practical point

of view. In these cases, some compression methods, taking

advantage of different intrinsic levels of structure present

within the data, will be introduced to tackle the situation.

This section provides the theoretical basis of this approach

and describes the implementation in the context of the model
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using the full error covariance matrix, although it is impor-

tant to note that this can also be applied to some of the

simplified models previously discussed.

2.3.1. Compression
Compression is a natural concept for two-way and multiway

data since both types of data can model deterministic

relationships among variables, especially in cases where

a high degree of collinearity and multilinearity exist. These

types of data can be represented by a smaller number of

variables. Using this smaller set of variables, the data can

be described within experimental error as a P-dimensional

hyperplane. In this case, P is called the chemical rank or

pseudorank of the data set in order to distinguish it from

the mathematical rank. In general, the chemical rank is

typically related to the number of underlying chemical

factors or chemical components present in the mixture.

For multiway data, the theoretical basis of the idea was

initially introduced by Carroll et al. [20] in 1980, stating the

optimality theorem of the Canonical Decomposition with

Linear Constraints (CANDELINC) model, which ensures

that the compressed array preserves the original variation

maximally when a set of orthogonal bases, usually Tucker3

factors, are used to project the original array onto the space

spanned by them. In 1981, Appellof and Davidson [21]

provided the first application of trilinear decomposition to

chemistry using both simulated and real LC/emission/

excitation measurements by compressing the original data.

They used the scores provided by the principal component

decomposition of the unfolded data in each mode as

compression bases. Later, Alsberg and Kvalheim pub-

lished a number of papers [22,23] proposing a method

called postponed basis matrix multiplication (PBM) using

B-spline basis sets for the compression of high-dimensional

arrays. A comparative study done by Kiers and Harshman

[24] proved that PBM is equivalent to the more general

approach based on the CANDELINC model. They also

stressed that there is no need for special algorithms in the

CANDELINC approach, showing it was only necessary to

compress the array using a selected set of optimal bases, to

use any existing multiway algorithm on the compressed

array, and to decompress the result by post-multiplying

the solution with the bases. The latest additions to the

arsenal of compression basis sets have been a variety of

wavelet families of basis sets used not only as a compres-

sion method but also as smoothing and denoising alter-

natives [25]. It is worth noting that these positive side

effects commonly attributed to the compression using

wavelets are not completely an intrinsic characteristic of

the basis set, but a consequence of the projection step

involved in the compression procedure.

From a structural point of view, the possibility of using

different basis sets such as Tucker3 factors, PCA factors, B-

splines, and wavelets is a consequence of the different levels

of underlying structure present in the chemical part of any

multiway data. The type of data encountered in chemistry is

normally collinear (well suited for B-splines and wavelets),

bilinear (ideally treated by PCA) and, in many cases, trilinear

(where Tucker3 basis sets are the perfect option). This idea

will be clearly demonstrated from a mathematical point of

view throughout the theoretical development of an example

shown next.

An I� J�K array X is given, such that matrices U (I�D),

V (J�E), and Z (K� F), representing orthogonal basis for the

systematic variation in the first, second, and third mode

respectively, are considered known. Dimensions D, E, and F

are the pseudo-rank (i.e., the rank of the subspace spanning

the systematic variation when noise is not present [26]) for

each mode. It is important to clarify that matrices U, V, and Z

as well as ranks D, E, and F must be estimated beforehand,

but in this case, for the sake of illustration, will be considered

known. The standard estimation of the PARAFAC model

can be expressed via Equation (35):

min
A;B;C

Xa �AIaðC� BÞT
��� ���2

F
ð35Þ

The CANDELINC optimality theorem expresses the exis-

tence of three matrices D, H, and U of orders (D�P), (E�P),

and (F�P) that are related to A, B, and C through a bilinear

relationship with U, V, and Z as shown in Equation (36):

A ¼ UD

B ¼ VH

C ¼ ZU

ð36Þ

From a geometric point of view, this is equivalent to saying

that each mode is linearly constrained to sub-spaces U, V,

and Z. Therefore, if the minimization problem represented

by Equation (35) is to be solved subject to the constraints

expressed by Equation (36), it is only necessary to estimate

the much smaller matrices D, H, and U using the smaller

array Y of order D�E� F obtained after the projection.

Mathematically, this is carried out by projecting X onto the

space spanned by U, V, and Z as shown in Equation (37):

X̂Xa ¼ UUTXaðZZT �VVTÞ ð37Þ

Using Equation (37), array Y can be defined as:

Ya ¼ UTXaðZ�VÞ ð38Þ

Equation (38) coincides with the expression used to calculate

the core matrix for the Tucker3 model [27] when matrices U,

V, and Z represent the respective modes for this model. This

is a clear mathematical proof to demonstrate the earlier

statement indicating Tucker3 loadings as the perfect basis

set for compression of multiway data. As mentioned before,

array Y can be used to estimate D, H, and U and, using the

expressions depicted in Equation (36), the loadings in the

original space can be calculated as the standard estimation

problem depicted in Equation (35), which is reduced to the

one represented in Equation (39):

min
D;H;U

Ya � DIaðU�HÞT
��� ���2

F
ð39Þ

Thus far, it has been demonstrated why Tucker3 pro-

vides the best basis set for compression. In addition to the

method of choice for the compression basis set, another key

piece of information is the dimensions for corresponding

basis set. In general, compression will provide an approx-

imate solution, although it has been reported in the

Reference [28] that, in situations where only one mode is

high dimensional, an exact compression can be obtained by
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compressing this mode with a basis set of dimension equal

to the product of dimensions of the other smaller two

orders. In reality, exact compression can be considered

the exception instead of the rule. No formal theory exists

to choose the number of components for each Tucker3

loading. A rule of thumb is to use at least five more

components than the number of components expected for

the system, since the main objective is to speed up the

algorithm and therefore only information related to the

chemical structure is needed.

Up to this point, the theory and most important equations

for the compression and estimation of multiway data to be

treated with the standard PARAFAC and other multiway

models such as PARAFAC2 and PARATUCK2 have been

introduced. However, when this philosophy is to be ex-

tended for cases where a maximum likelihood method

such as MLPAPAFAC is to be used, a few other equations

must be introduced. These new equations will lead us to

issues related to the selection, calculation, and number of

basis sets needed for this approach.

Even though compression can be applied to any of the

simplified scenarios, we will treat here the case where the

full error covariance matrix must be used. The expression

used to compress the full error covariance matrix is a direct

extension of the projection expression shown in Equation

(40) in a vectorized form:

�a ¼ ðU� Z�VÞTXaðU� Z�VÞ ð40Þ

Equation (40) will convert the original IJK� IJK full error

covariance matrix describing the noise structure present in

the original array X in a compressed DEF�DEF full error

covariance matrix describing the noise in the compressed

array Y. Although Equation (40) represents the theoretical

expression to compress the error covariance matrix, it does

not solve the size problem associated with it. In order to

solve this problem, the compression step must be carried out

on the original data and the compressed arrays used to

calculate the compressed error covariance matrix. These

alternatives are equivalent, as can be seen in Equation (41),

where Equation (40) is used as starting point in a backward

transformation.

�a ¼ ðU� Z�VÞTXaðU� Z�VÞ

¼ ðU� Z�VÞTE vecðET
a ÞvecðET

a Þ
T

� �
ðU� Z�VÞ

¼ E ðU� Z�VÞTvecðET
a ÞvecðET

a Þ
TðU� Z�VÞ

� �
ð41Þ

¼ E vec UTEaðZ�VÞ
� 	Tn o

vec UTEaðZ�V
� 	Tn oT

� �

¼ E vecðNT
a ÞvecðNT

a Þ
T

� �
It is important to differentiate in Equation (41), the

expression Eð�Þ, which represents the expectation value of

the expression in parenthesis from expression Ea, which

represents the noise array E unfolded as an I� JK matrix.

Expression (41) represents the symmetric outer product of

the multiplication of the unfolded error array and the

compression basis set in vector form. This can be trans-

formed to the following matrix expression to be further

explored:

Na ¼ UTEaðZ�VÞ
¼ UT Xa � Xo

a

� �
Z�Vð Þ

¼ UTXa Z�Vð Þ �UTXo
a Z�Vð Þ

ð42Þ

Here, Xa and Xo
a are the unfolded forms of the measured data

array and the error-free data array, respectively. Equation

(42) shows that a successful estimation of the noise in the

compressed space can be obtained if the compression basis

sets are chosen to optimally compress the chemical part

represented by Xo
a . Two detrimental effects can be foreseen

if the chosen basis set does not span the space of Xo
a properly.

The first is related to the loss of meaningful chemical

information during the projection step and it is common to

PARAFAC and MLPARAFAC. The second is a direct con-

sequence of the first one and related to the inclusion of

chemical variability in the error covariance matrix as if it

were noise. Clearly, the second detrimental effect will only

affect MLPARAFAC since PARAFAC does not use any noise

information. In order to prevent these effects when compres-

sion is used with MLPARAFAC, it is necessary to retain as

much variation as possible. This alternative is not advisable

for PARAFAC, since including a large amount of variation

can increase the uncertainty of the estimates, but in the case

of MLPARAFAC there is no danger of this, since this mean-

ingless variation (noise) will be down-weighted via the error

covariance matrix during the estimation process.

It is well known that, in practice, Xo
a is not generally

available; hence, in the absence of a priori knowledge, the

error-free data array is replaced by its best unbiased estimate

(considering the normal assumption), which is the average

array �XXa calculated by obtaining replicates of the measure-

ments. For practical applications, Equation (42) becomes

Equation (43):

Na ¼ UTXa Z�Vð Þ �UT�XXa Z�Vð Þ ¼ Ya � �YYa ð43Þ

Equation (43) also unveils another important practical issue

regarding the selection of the compression basis sets, indi-

cating that the optimal basis set will be obtained as a Tucker3

decomposition of the mean array X. The compressed error

covariance matrix �a will be calculated using a set of R

replicates as shown in Equation (44):

�a �
1

ðR� 1Þ
XR
r¼1

vec Yr
a � �YYa

� �T
n o

vec Yr
a � �YYa

� �T
n oT


 �
ð44Þ

Based on the theoretical expressions derived in this section, a

sequence of steps to prepare the data for the most general

MLPARAFAC algorithm is shown in Table I.

It is important to note that, although this strategy was

explained for the compression of all three orders, it can also

be applied to the compression of one or two orders in a very

straightforward manner. For example, if only mode A is

compressed, Equation (38) will become Equation (45), since

in that case Z and V will be the identity matrix of orders J and

K, respectively and ðZ�VÞ ¼ IJK.

Ya ¼ UTXa ð45Þ

This result is equivalent and symmetric for all the orders.

Therefore, if an order different from A is to be compressed,

the data will be unfolded, keeping the desired order un-

modified, and multiplied by the optimal base describing this
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order. Equivalently, if more than one order needs to be

compressed, this methodology can be individually repeated

for both orders, including a folding and unfolding inter-

mediate step between the multiplication by each basis set.

In the experimental part of this paper, a number of

simulated data sets will be used to test the performance of

the compression approach under different conditions, such

as the level of noise and the amount of structure in the

chemical data. Also, a comparative study between Tucker3

and PCA loadings will be carried out to confirm the theore-

tical results.

3. EXPERIMENTAL

3.1. Data Sets
Since the objective of this work is to introduce the theoretical

basis and test the statistical properties and performance of a

number of simplified alternatives of the MLPARAFAC algo-

rithm, all of the data sets employed in this work were

simulated so that the rank and error structure could be

known with confidence. Experimental results will be pre-

sented in a companion paper to examine the performance of

the algorithm for real experimental systems. Although a

wide range of simulations were carried out, the results

from only six data sets are presented here to support the

main conclusions. In all cases, the data sets were relatively

small, since the studies generally involved statistical valida-

tion requiring numerous runs.

Data Sets 1–5 share the same noise-free structure. This

structure was a rank-three data set of dimensions 12� 15� 6

used to test the statistical characteristics and the perfor-

mance of the different algorithms introduced. The loadings

for mode A were represented by a 12� 3 matrix drawn from

a uniform distribution of random numbers from zero to

three (U(0,3)). Similarly, B was a 15� 3 matrix from U(0,2),

and C was a 6� 3 matrix from U(0,5). The error-free data

were generated using the well-known PARAFAC model,

yielding the 12� 90 matrix of error-free data, unfolded to

maintain the A mode. Each data set is used to generate 100

replicates obtained by adding this noise-free structure to

different realizations of the following error structures.

The matrix of measurement errors for Data Set 1 was a

12� 90 matrix with a very simple structure. The simplest

noise structure studied in this paper (Case 1A) was imposed

on this data set. Initially, six different 12� 15 matrices of

normally distributed random numbers drawn from N(0,0.1)

were generated. These matrices were individually treated

with a 7-point moving average filter along each row in order

to produce error covariance. At the boundaries of the error

matrix, the filter was wrapped around the opposite side in

order to eliminate edge effects. Since these error matrices

were individually treated with the same filter, this approach

produced correlation among the measurements in one mode,

and it is identical for all the slices (Case 1A). Although this

approach is not particularly realistic, it represents a general

case for which the covariance structure could be easily

predicted. Finally, the error-free data were added to the

noise matrix in order to generate the data set.

The matrix of measurement errors for Data Set 2 was a

created in a very similar fashion to the matrix of measure-

ment errors for Data Set 1. The only difference is that each of

the six different 12� 15 matrices of normally distributed

random numbers drawn from N(0,0.1) were individually

multiplied by a different filter matrix. The filter matrices

were constructed from moving average filters (wrapped

around the opposite side in order to eliminate edge effects)

of dimensions 3, 5, 7, 7, 9, 5. Since these error matrices were

individually treated with the same filter, this approach

produced correlation among the measurements in one

mode, and different from slice to slice (Case 1B).

The noise matrix of Data Set 3 was created to introduce

correlated noise in two orders. Initially, a 12� 90 matrix of

normally distributed random numbers drawn from N(0,0.1)

was generated. This matrix was treated with a 67-point

moving average filter along each row in order to produce

error covariance. Since the error matrix was unfolded to

maintain mode A, this approach produced the same row

correlation among the measurements in the other two other

modes (Case 1C).

The noise matrix of Data Set 4 was constructed in a similar

way to the noise matrix of Data Set 3. However, different-size

moving average filters were used along each row in order to

produce error covariance among the measurements in the

two other modes but with a different structure for each row.

Twelve different moving average filter matrices with sizes in

the range between 53 and 77 points were used (Case 1D).

The matrix of measurement errors for Data Set 5 was

created to have the most complex noise structure studied

in this paper (Case 1E). Initially, a 12� 90 matrix of normally

distributed random numbers drawn from N(0,0.1) was

generated. This matrix was vectorized by stacking the trans-

posed rows on top of each other producing a 1080� 1 vector

Table I. Algorithm for the MLPARAFAC algorithm using

compression.

1. Given R replicates of an I� J�K cube of data X. The algorithm
starts by calculating a Tucker-3 model for the average cube of
data, X

½U;V;Z; �YY� ¼ tucker3ð�XX;PÞ ðT1Þ

2. For each replicate, unfold Xr, retain the first order and regress Xr
a

onto the subspace spanned by U, V, and Y in order to calculate Yr
a

for each replicate as shown in Equation T2:

Yr
a ¼ UTXr

aðZ�VÞ ðT2Þ

Using all the Yr
a, estimate the error covariance matrix in the

compressed subspace, represented by �a in Equation T3.

�a �
1

ðR� 1Þ
XR
r¼1

vec ðYr
a � �YYaÞT

n o
vec ðYr

a � �YYaÞT
n oT


 �
ðT3Þ

3. Submit �a and each Yr
a to the MLPARAFAC algorithm previously

introduced until convergence is achieved.

½Dr;Hr;Ur� ¼ MLPARAFACðYr;�a;PÞ ðT4Þ

4. Using the following relationships, the uncompressed MLPARA-
FAC loadings can be obtained.

Ar ¼ UDr

Br ¼ VHr

Cr ¼ ZUr
ðT5Þ
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that was multiplied by a 1080� 1080 filter matrix. This filter

matrix was formed by accommodating eight 135� 135 filter

matrices of a 127-point moving average filter along the

diagonal to produce error covariance. As before, the bound-

aries of the filter matrices were wrapped around the opposite

side in order to eliminate edge effects. Considering that

dimension of the filter matrices was 135� 135 this approach

produced correlation among the measurements in three

modes. Again, the error-free data were added to the noise

matrix in order to generate the data set.

The matrix of measurement errors for Data Set 6 was also

created to represent the most complex in case 1E but with a

more heterogeneous structure. The noise structure was con-

structed in a similar fashion to Data Set 5, but in this case eight

different 135� 135 filter matrices of 101-, 133-, 109-, 131-, 119-,

121-, 127-, and 97-point moving average filters along the

diagonal were used to produce error covariance. As before,

the boundaries of the filter matrices were wrapped around the

opposite side in order to eliminate edge effects. Considering

that dimension of the filter matrices was 135� 135 and each

individual filter matrix was created with a different number of

points, this approach produced correlation with a very hetero-

geneous structure among the measurements in three modes.

Data Sets 7–10 were rank-three data sets of dimensions

32� 128� 8 and were used to test the compression approach

for different conditions of noise and data structure. In a

generic way, the data sets are generated to contain the same

broad spectral characteristics commonly observed in fluor-

escence excitation/emission matrices. The pure components

for modes A and B were generated by adding Gaussian

peaks of random means and standard deviations. The posi-

tion of the center of each peak is a random number drawn

between one and the largest channel number. The width of

each peak is also drawn from a uniform distribution with a

range between 10 and 40 (U(10, 40)). The spectra were

normalized to unit length in all cases. The information about

the intensity for each component is carried in mode C, in

which the pure component concentrations are represented

by an 8� 3 matrix drawn from a uniform distribution of

random numbers from 0 to 30 (U(0,30)). Two different issues

affecting the compression were investigated with these data

sets: the amount of chemical information contained in the

data and the level of noise affecting the data. Data Sets 7 and

8 were constructed with unimodal components for modes A

and B. Data Sets 9 and 10 were constructed using compo-

nents obtained by adding five Gaussian peaks for each

component. All the data sets were constructed using the

same error structure. In all cases, an error structure equiva-

lent to Data Set 1 was used to compare the results obtained

after compression with results obtained without any com-

pression using an algorithm which is optimal but not com-

putationally involved. For this case, a 61-point moving

average filter was used for each row. The error structure is

the same in each case but the signal-to-noise ratio (SNR) is

varied to test the performance of compression with respect to

the noise. Data Sets 7 and 9 have a SNR¼ 1000 and Data

Sets 8 and 10 have a SNR¼ 250. The SNR values reported

here represent the best case scenario, since they are calcu-

lated as the ratio between the maximum peak for the most

concentrated sample and the value for the noise defined as

three times the standard deviation. Therefore, there will be

parts of these data sets with poorer SNR. All the data sets

utilize 25 replicates calculated by adding the respective

noise-free data and a different realization of the noise

structure described for each data set.

3.2. Computational aspects
All calculations performed in this work were carried out on a

Sun Ultra 60 workstation with 2� 300 MHz processors and

512 MB of RAM and a 3.2 GHz Pentium-IV PC with 1 GB of

RAM. All programs were written in-house using Matlab 6.0

(The MathWorks, Inc., Natick, MA) with the exception of the

PARAFAC and TUCKER3 functions that were run using the

N-Way Toolbox [29].

4. RESULTS AND DISCUSSION

In this section, the estimation equations for each method will

be validated using Data Sets 1–5 in order to cover different

possible scenarios. In addition to the validation discussion,

some general conclusions will be drawn about the merits of

using the different algorithms based on the quality of the

results and computational efforts invested to get them. Data

Sets 7–10 will be used to compare the quality of the results

for the compression approach with standard PARAFAC

using different scenarios (noise level, amount of structural

information, and different basis sets) which have a very

simple error structure in order to use the simplification

developed for Case 1A as a benchmark value.

4.1. Statistical validation
In order to validate the various proposed algorithms, it was

necessary to verify that they yield the maximum likelihood

solution. This can be accomplished by exploiting the statis-

tical characteristics of S2 values for the correct model. This

methodology has been explained elsewhere [8,17] but it will

be briefly reproduced here for the sake of completeness.

Operationally, this is done by analyzing replicate data sets,

each with the same matrix of error-free data and the same

error structure, but with different realizations of the mea-

surement error each time. If the distribution of S2 values for

these replicates follows a �2 distribution with the appropri-

ate degrees of freedom [17,30], it can then be concluded that

the algorithm is finding the maximum likelihood solution.

Probability plots are used in this work to make this compar-

ison. Initially, the replicate data sets (normally 100 replicates)

are analyzed and the S2 values are stored. Then, the S2 values

are sorted from the smallest to the largest and assigned a

cumulative probability according to their position in the list;

this is called the observed probability. For instance, the third

element in the list would be assigned an observed probabil-

ity of 2/n, where n is the number of replicates. The expected

probability is then calculated using the �2 distribution. The

cumulative probability density function for �2 can be calcu-

lated using the incomplete gamma function as shown in

Equation (46):

PðS2j�Þ ¼ �inc
S2

2
;
�

2

� �
ð46Þ
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where � is the number of degrees of freedom [17]. If the two

distributions are the same, a plot of the observed probabil-

ities versus the expected probabilities should yield a straight

line with a slope of unity. If the model is insufficient to

account for the systematic variance, either because the form

of the model is incorrect or the parameters are suboptimal,

then the points of the plot will lie above the ideal line. If the

model accounts for an excessive amount of variance, (i.e., the

estimated rank is too high and measurement variance is

modeled), the points will lie below the ideal line.

Figure 2 shows the probability plots obtained when all of

the algorithms introduced in this work; in addition, the

general MLPARAFAC algorithm (without compression)

and PARAFAC are used to estimate Data Sets 1–5. The general

MLPARAFAC was included as a benchmark since it can

accommodate any covariance structure. Figure 2 shows a

perfect trend, starting with all the methods but PARAFAC

providing optimal models and ending with only the general

MLPARAFAC algorithm providing an optimal model. As

the complexity of the error structure increases, the methods

designed to handle simpler error structures join the

PARAFAC method, indicating the suboptimality of their

estimates. Even though this trend was theoretically expected

since each data set was constructed mimicking the error

structure and therefore the objective function used to derive

the estimation equation for each method, the results show

from a numerical point of view the correctness of the estima-

tion expressions for each case and how all of these methods are

different simplified instances of a general class of method. It is

important to emphasize that this particular methodology is

very sensitive to suboptimal solutions; therefore, it should not

be used to compare the quality of different solutions.

4.2. Model quality and performance
The preceding section dealt with the statistical validation of

the maximum likelihood estimation process, but nothing has

been said about the quality of the estimates obtained using

these new algorithms. Although it has been previously

demonstrated [17] that MLPARAFAC estimates are closer

to the true underlying factors than the PARAFAC estimates,

two reasonable questions are still not answered: (1) How do

the MLPARAFAC estimates from different simplifications

behave as the complexity of the error structure increases?

and (2) what is the computational price paid for the incre-

ment on complexity. Both questions will be answered using

simulated data. The computational workload and the quality

of the data will be assessed using the average time needed

for convergence and loading vector angles, respectively.

Both magnitudes will be calculated using 100 replicates. In

order to put this comparison into context, the value for each

Figure 2. Probability plots obtained for 100 replicates of different simulated data sets using different

algorithms such as parallel factor analysis (PARAFAC) (~); simplifications 1A (þ ), 1B (�), 1C (^), 1D

(&); and full maximum likelihood parallel factor analysis (MLPARAFAC) (*). The solid line with unity slope

indicates ideal behavior for maximum likelihood estimation.
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method relative to the value for the PARAFAC model will be

used.

As mentioned above, the quality of the estimates will be

measured as the closeness of estimates to the true factors

using vector angles as a figure of merit. This figure of merit is

the angular difference between the true loading vectors and

the estimated loading vectors in each mode. For example, the

vector angle between two loading vectors in mode A is given by:

�ap ¼ cos�1
âaT
pap

âap
�� �� ap

�� ��
 !

ð47Þ

where ap and âap are the true and estimated values for the pth

loading vector of A. Analogous equations can be used for the

other orders. Smaller angles mean a greater similarity, so by

comparing the vector angles obtained by the different simpli-

fications of MLPARAFAC with those of PARAFAC, the

agreement with the true vector can be assessed. An alternative

measure is the correlation coefficient of the vectors, which is

simply the term in parentheses, but since this approaches

unity with small differences, it is less sensitive. The quality

of the estimates as well as the computation time will be

compared in a relative fashion with respect to the correspond-

ing values for the PARAFAC model. Equations (48) and (49)

represent the expressions to calculate the relative average

angle (RA) and the relative computation time (RCT):

RQ ¼
���X

���PAR

ð48Þ

RCT ¼
�ttX
�ttPAR

ð49Þ

Two completely different scenarios will be explored in

order to have a broad view of the problem, since the degree to

which these results will be extendable to a given application

depends on the nature of the application and the character-

istics of the noise. Data Sets 1 and 5 will be used since they

represent very different scenarios in which clear comparisons

can be made and conclusions drawn. The validation results

showed that all of the simplifications provided optimal esti-

mates for Data Set 1; therefore, this is a good scenario to test

the computational advantages of using simpler algorithms

over more complex algorithms when the data merit the

simplification. Data Set 6 has a more complex error structure

and these simplifications are also used to treat it.

Figures 3 and 4 show the results for the comparison in

terms of quality and performance, respectively, when differ-

ent simplifications are used. As expected, all the methods but

PARAFAC provided the same results for Data Set 1 in terms

of quality in Figure 3, since the error structure used was the

simplest case. However, when the time employed to reach

the convergence is taken into account (Figure 4), it is possible

to appreciate the advantages of using simplified algorithms

when the data at hand merit the use of a simplification.

In Figure 3, the relative average angle for Data Set 5

exhibits a nice trend, showing an improvement of the quality

of the results as the complexity of the algorithms used

increases. PARAFAC and general MLPARAFAC are located

at the two extremes, corresponding to the methods provid-

ing the worst and best estimates. Again, a positive correla-

tion between the complexity of the algorithm and the time

needed to obtain the best possible solution is observed,

indicating in this case that a better solution will require the

use of more computational effort. These results were ex-

pected, since the common wisdom tends to assume that the

application of more complex algorithms (which in turn

translates into error covariance matrices that are bigger
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Figure 3. Comparison of the improvements in the quality of the estimates obtained

for different MLPARAFAC algorithms for three characteristic data sets. The quality is

measured using the relative average vector angle with respect to PARAFAC and the

results are based on 100 replicates.
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and richer in information) will provide estimates of a better

quality. Even though the error structures in real applications

tend to be simple in general [13], the authors believe that in

this particular case, the perfect monotonic trend in quality

was mainly the result of an oversimplified (i.e., very sym-

metric) error structure. To avoid a misleading conclusion in

this regard, this issue was further explored using a Data Set

6, which has a similar but less symmetric error structure.

The results for Data Set 6 are quite surprising. For Data Set

5, a trend showing a monotonic improvement in the quality of

the results with the complexity of the algorithm used was

observed, but the simulations for Data Set 6 show a very

different scenario. PARAFAC and general MLPARAFAC

were the only methods that coincide with the expected trend

results. The remainder of the simplifications did not provide a

clear trend in quality. For instance, the simplifications assum-

ing that the errors are correlated along one order and are the

same everywhere (Case 1B) gave estimates that are as good as

the ones provided by the methodology assuming errors with

the same structure affecting two orders (Case 1D). Another

striking inconsistency evident from Figure 3 is that the quality

of the results for the simplifications representing case 1B and

1D were worse than the quality of the results for Cases 1A and

1C, respectively. The mathematical theory behind these ex-

pressions makes Cases 1A and 1C subsets of the more general

implementations representing Cases 1B and 1D, respectively,

when the models are properly used. Therefore, all these

inconsistent results clearly illustrate the importance of a

thorough characterization of the error structure, since the

applications of an incorrect model can significantly degrade

the quality of the result. It is important to note that the

comparison of these methodologies from a computational

point of view is meaningless for Data Set 6, since all of them

produced a variety of sub-optimal models.

In reality, data commonly found in chemistry will have a

behavior closer to the scenario illustrated by the simulations

using Data Set 5. Probably, the error structure will not be

exactly equivalent to the error covariance matrix used to

derive the expression for a particular simplification, but it

will not depart to the extent that Data Set 6 did to make the

simplifications useless. However, it is important to fully

characterize the error structure in order to apply the most

suitable algorithm given the data set at hand in order to

avoid erratic results such as the ones shown for Data Set 6.

Unfortunately, due to the length and scope of this paper,

only exact mathematical simplifications were shown, but in a

companion paper to this work, a number of important

guidelines will be introduced and used with different ex-

perimental data sets in order to cover more gray scenarios.

Finally, it is important to emphasize that, although only

the results for three data sets were shown, many different

data sets with the same characteristics of Data Sets 1, 5, and 6

were used to ensure the generality of the conclusions drawn.

4.3. Compression results
In the results shown in the previous section, general

MLPARAFAC always provided the best solution, provoking

the question: why not use general MLPARAFAC for every

case? There are two reasons for this. The first is that general

MLPARAFAC usually takes more time to produce the
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estimates, as already demonstrated. The second reason is

that the previous results used general MLPARAFAC for a

very small data set. For a more typical size data set, general

MLPARAFAC cannot be applied directly due to storage and

memory limitations. In order to overcome these limitations,

a compression strategy was formulated. This section will

show that, even though compressed MLPARAFAC will not

give exactly the same results as general MLPARAFAC, the

solutions will generally be superior to the PARAFAC solu-

tion. Figure 5 shows the comparative results for different

cases (Data Sets 7, 8, 9, and 10) and compression basis sets

with respect to PARAFAC and general MLPARAFAC. In

general, these results clearly demonstrate that improved

estimates of loadings with respect to PARAFAC can be

obtained from the general algorithm when information

about the measurement error structure is compressed and

is incorporated into the modeling process in the correct way.

As already noted, the extent to which these improvements

will be significant for a given application depends on the

nature of the chemical data and the level and structure of the

noise affecting the measurements. As can be seen from

Figure 5, when the amount of information related to the

chemical data increases, a larger number of factors are

needed to yield better estimates using the compressed data.

For Data Sets 7 and 8, which are constructed by unimodal

components, six factors are enough to produce good results

while for Data Sets 9 and 10, 10 components are necessary to

produce similar results. It is important to note, that Tucker3

and Tucker1 (PCA) basis sets produces very similar results in

all cases, at least to the extent of these simulations. The

different noise levels produce an equivalent worsening of

all methods, indicating that this does not play an important

role in the compression strategy. In addition to the PAR-

AFAC, general MLPARAFAC, Tucker1-MLPARAFAC, and

Tucker3-MLPARAFAC, Tucker3-PARAFAC is also included

to dissect the improved results with respect to PARAFAC in

its two most important contributions: the effects of compres-

sion and the use of the error information in the estimation

process. It can be observed in all cases that although the

compression step by itself produced some improvement in

the results, the use of compression and weighting yield much

better estimates. It is also important to comment about the

worsening of the estimates as the number of components

increases, shown as a trend in all cases when the compressed

data are treated with standard PARAFAC. This situation does

not occur when MLPARAFAC is used due to its capacity to

down-weight noisy regions as anticipated in the theory

section.

In reality, the difference between the quality of the estimates

of compressed MLPARAFAC and PARAFAC will not be as

large as the differences encountered in the simulation studies,

since the results presented here were obtained assuming an

absolute knowledge of the measurement error covariance

matrix, while in practice this is typically estimated on the

basis of replicate measurements and hence may be less reli-

able. Therefore, the benefits of including measurement error

information must be weighed against the detrimental effects of

including poor-quality information. In many cases, it will be

more advisable to use one of the previous simplifications

because, in those situations, the advantages gained by pooling
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error covariance estimates may outweigh the benefits of using

the full error covariance matrix.

5. CONCLUSIONS

In this work, the standard practice of expressing the estima-

tion process by minimizing the different formulations of the

same objective function was discarded since it does not take

into account the loss of symmetry caused by the introduction

of error information. A new approach, in which the same

objective function is used to estimate the loadings for all the

modes, was introduced due to the benefits of locating the

noise information in one or two modes as a simple repre-

sentation and using it equivalently to obtain the estimation

equations for each mode.

Four algorithms for carrying out simplified variations of

general MLPARAFAC when the data at hand are corrupted

by correlated noise affecting one or two orders have been

described in this work by using the new approach. Also, a

compression step was included prior to the use of general

MLPARAFAC for cases where the noise structure is affecting

three modes and the volume of data precludes the use of

general MLPARAFAC on the raw data.

All of the algorithms were shown to produce maximum

likelihood estimates through a comparison of the distribu-

tion of the objective function with the �2 distribution. It was

also shown that the use of simplified algorithms when the

data at hand merit the simplification is beneficial from a

computational point of view. When the error structure was

properly used, the quality of the estimates was the same for

all the methods designed to handle this error structure. Two

simulated scenarios where the error structure assumed

departs from the actual error structure were studied to

illustrate the importance of a thorough characterization of

the error structure.

The merits of using compressed MLPARAFAC over

PARAFAC were studied in different scenarios. Also, no

significant differences were found between Tucker3 and

Tucker1 basis sets, at least for the data used in the simulation

studies.

Although the principles of general MLPARAFAC and a

number of simplifications have been established here, a

number of more practical aspects related to its application

on experimental data remain to be examined. These include

issues related to the characterization of the error structure

and the application of the different simplifications. These

subjects will be the focus of a companion paper.
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APPENDIX

Case 1B: Mode B
This scenario is represented by the following objective

function:

f ¼
XK
k¼1

trace½ðXk �ADkB
TÞW�1

k ðXk �ADkB
TÞT� ðA1Þ

Defining: Mk ¼ Xk �ADkB
T, Equation (A1) can be mod-

ified to yield:

f ¼
XK
k¼1

traceðMkW
�1
k MT

k Þ ðA2Þ

Using standard relations for derivatives of matrices and

vectors [19], this gives:

@f

@Bjp
¼ @f

@Mk

@Mk

@Bjp

� �T

¼
XK
k¼1

trace 2MkW
�1
k

@MT
k

@Bjp

� �

¼
XK
k¼1

trace 2MkW
�1
k

@ðXk �ADkB
TÞ

@Bjp

� �

¼
XK
k¼1

trace 2MkW
�1
k ð�ADkE

T
jpÞ

T
� �

¼
XK
k¼1

trace 2ðXk �ADkB
TÞW�1

k ð�ADkE
T
jpÞ

T
� �

¼
XK
k¼1

trace �2XkW
�1
k EjpDkA

T þ 2ADkB
TW�1

k EjpDkA
T

� �

¼ �2
XK
k¼1

trace XkW
�1
k EjpDkA

T
� �

þ 2
XK
k¼1

traceðADkB
TW�1

k EjpDkA
TÞ

ðA3Þ

Setting this derivative equal to zero to find the minimum

leads to:

XK
k¼1

trace XkW
�1
k ET

jpDkA
T

� �
¼
XK
k¼1

traceðADkB
TW�1

k EjpDkA
TÞ

XK
k¼1

trace DkA
TXkW

�1
k Ejp

� �
¼
XK
k¼1

traceðBTW�1
k EjpDkA

TADkÞ

ðA4Þ

Expressing the traces as the product of two vectors [20]

yields:

XK
k¼1

vecðW�1
k XT

kADkÞTvecðEjpÞ

¼
XK
k¼1

vecðBÞTvecðW�1
k EjpDkA

TADkÞ

vec
XK
k¼1

ðDkA
TXkW

�1
k Þ

 !T

vecðEjpÞ

¼ vecðBÞT
XK
k¼1

ðW�1
k �DkA

TADkÞvecðEjpÞ

ðA5Þ

Equation (A5) is one of the JP equations necessary to

estimate the loadings of B. The rest of the equations are

obtained as the right and left parts of this equation

are multiplied by the different vectorized Ejp matrices.

Since this term is completely independent in both sides of

the equation, the process can be carried out in a straight-

forward manner using a matrix E formed as ½vecðEIIÞ
vecðE21Þ . . .vecðEJP�. A closer look of this matrix shows that

E is the identity matrix of order JP, making the multiplication

theoretically sound but numerically unnecessary and pro-

viding Equation (A6) to estimate the loading of B:

vecðBÞT ¼
XK
k¼1

ðW�1
k �DkA

TBDkÞ
 !�1

vec
XK
k¼1

ðDkA
TXkW

�1
k Þ

 !

ðA6Þ

Case 1B: Mode C
Similarly, this objective function is used to represent the

following scenario. It is important to realize that it can be

expressed as the summation over the K slices:

f ¼
XK
k¼1

trace½ðXk �ADkB
TÞW�1

k ðXk �ADkB
TÞT� ¼

XK
k¼1

fk

ðA7Þ

Defining: Mk ¼ Xk �ADkB
T, Equation A7 can be modified

to yield:

fk ¼ traceðMkW
�1
k MT

k Þ ðA8Þ

Using standard relations for derivatives of matrices and

vectors [19], this gives:

@fk
@Ckp

¼ @fk
@Mk

@Mk

@Ckp

� �T

¼ trace 2MkW
�1
k

@MT
k

@Ckp

� �

¼ trace 2MkW
�1
k

@ðXk �ADkB
TÞT

@Ckp

 !

¼ trace 2MkW
�1
k ð�AEppB

TÞT
� �

¼ trace 2ðXk �ADkB
TÞW�1

k ð�AEppB
TÞT

� �
¼ trace �2 	 XkW

�1
k BEppA

T þ 2 	ADkB
TW�1

k BEppA
T

� �
¼ �2 	 trace XkW

�1
k BEppA

T
� �

þ 2 	 traceðADkB
TW�1

k BEppA
TÞ

ðA9Þ
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Setting this derivative equal to zero to find the minimum

leads to:
trace XkW

�1
k BEppA

T
� �

¼ traceðADkB
TW�1

k BEppA
TÞ

traceðATXkW
�1
k BEppÞ ¼ traceðDkB

TW�1
k BEppA

TAÞ
vecðBTW�1

k XT
kAÞTvecðEppÞ ¼ vecðDkÞTvecðBTW�1

k BEppA
TAÞ

vecðBTW�1
k XT

k Þ
TvecðEppÞ ¼ vecðDkÞTðATA� BTW�1

k BÞvecðEppÞ
ðA10Þ

The last expression in Equation (A10) is one of the PP

equations necessary to estimate the loadings of k row of

matrix C. The rest of the equations are obtained as the right

and left parts of this equation are multiplied by the different

vectorized Epp matrices. Since this term is completely inde-

pendent in both sides of the equation, the process can be

carried out in a straightforward manner, using a matrix E

formed as ½vecðE11Þ vecðE22Þ . . .vecðEPPÞ�. Contrary to what

happened in the estimation of mode B, matrix E is used to

pick the relevant elements in both members, since we are

only interested in the estimation of the elements located in

the diagonal of Dk. Therefore, Equation (A11) is used to

estimate the loading of C in a row by row fashion:

ck ¼ BTW�1
k B�ATA

� ��1
vec ATXkW

�1
k B

� �h iT
E ðA11Þ

Case 1C: Mode B
This scenario is well represented by the following objective

function:

f ¼ trace½ðXa � ~AAðC� BÞTÞW�1
a ðXa � ~AAðC� BÞTÞT� ðA12Þ

In order to make the equation more tractable the following

modifications were applied:

M ¼ ðXa � ~AAðC� BÞTÞTand ~AA ¼ AIa to yield :

f ¼ traceðMTW�1
a MÞ ðA13Þ

@f

@Bjp
¼ @f

@M

@M

@Bjp

� �T

¼ trace 2W�1
a M

@M

@Bjp

� �

¼ trace 2W�1
a M

@ ðXa � ~AAðC� BÞTÞT
h i

@Bjp

0
@

1
A

¼ trace 2W�1
a Mð�~AAðC� EjpÞTÞ

� �
¼ trace 2 	W�1

a ðXT
a � ðC� BÞ~AATÞð�~AAðC� EjpÞTÞ

� �
¼ �2 	 trace W�1

a XT
a
~AAðC� EjpÞT

� �
þ 2 	 traceðW�1

a ðC� BÞ~AAT ~AAðC� EjpÞT ðA14Þ
Setting this derivative equal to zero to find the minimum

leads to:

trace W�1
a XT

a
~AAðC� EjpÞT

� �
¼ traceðW�1

a ðC� BÞ~AAT ~AAðC� EjpÞTÞ

trace W�1
a ðC� EjpÞ~AA

T
Xa

� �
¼ traceðW�1

a ðC� EjpÞ~AA
T ~AAðC� BÞTÞ

trace W�1
a ðIK � EjpÞðC� IPÞ~AA

T
Xa

� �
¼

traceðW�1
a ðIK � EjpÞðC� IPÞ~AA

T ~AAðCT � IPÞðIK � BTÞÞ ðA15Þ

Equation (A15) becomes Equation (A18) using the ma-

trices L and R as defined in Equation (A16) and (A17),

respectively.

R ¼ ðC� IPÞ~AA
T
Xa ðA16Þ

L ¼ ðC� IPÞ~AA
T ~AAðC� IpÞT ðA17Þ

trace W�1
a ðIK � EjpÞR

� �
¼ traceðW�1

a ðIK � EjpÞLðIK � BTÞÞ
ðA18Þ

Equation (A18) can be expressed as Equation (A20) when the

matrices forming both members of the previous equation are

partioned as shown in Equation (A19). Matrices mnW�1
a , nmR

and nmL have orders J� J; P� J, and P�P respectively.

trace
XK
m¼1

XK
n¼1

mnW�1
a Ejp

nmR

 !
¼ trace

XK
n¼1

XK
m¼1

mnW�1
a Ejp

nmL

 !
BT

 !

trace
XK
m¼1

XK
n¼1

Enm
jp RmnW�1

a

 !
¼ trace BT

XK
n¼1

XK
m¼1

mnW�1
a Ejp

nmL

 ! !

vecðEpjÞTvec
XK
n¼1

XK
m¼1

nmRmnW�T
a

 !

¼ vecðBÞTvec
XK
n¼1

XK
m¼1

mnW�1
a Enm

jp L

 !

vecðEpjÞT
XK
n¼1

XK
m¼1

mnW�T
a � nmR

� � !
vecðIJÞ

¼ vecðBÞT
XK
n¼1

XK
m¼1

ðnmLT � mnW�1
a Þ

 !
vecðEjpÞ

vecðEpjÞT
XK
n¼1

XK
m¼1

mnW�T
a � nmR

� � !
vecðIJÞ

¼ vecðEjpÞT
XK
n¼1

XK
m¼1

ðnmL� mnW�T
a Þ

 !
vecðBÞ

ðA20Þ

Equation (A20) is one of the JP equations necessary to

estimate the loadings of B. The rest of the equations are

obtained as the right and left parts of this equation are

multiplied by the different vectorized Epj and Ejp matrices,

respectively. Since these terms are completely independent

on both sides of the equation, the process can be carried out

in a straightforward manner using matrices E1 and E2

formed as [vec(E11) vec(E21) . . .vec(EPJ)] and [vec(E11) ve-

c(E21) . . . vec(EJP)], respectively. A closer look at these ma-

trices shows that E1 is the identity matrix of order JP while E2

is equal to the commutation matrix KPJ. When the equation is

trace

11W�1
a 	 	 	 1KW�1

a

..

. . .
. ..

.

K1W�1
a 	 	 	 KKW�1

a

2
664

3
775

Ejp

Ejp

Ejp

2
64

3
75

11R 	 	 	 1KR

..

. . .
. ..

.

K1R 	 	 	 KKR

2
64

3
75

0
BB@

1
CCA

¼ trace

11W�1
a 	 	 	 1KW�1

a

..

. . .
. ..

.

K1W�1
a 	 	 	 KKW�1

a

2
664

3
775

Ejp

Ejp

Ejp

2
64

3
75

11L 	 	 	 1KL

..

. . .
. ..

.

K1L 	 	 	 KKL

2
64

3
75ðIK � BTÞ

0
BB@

1
CCA

ðA19Þ
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rearranged to estimate the loading of B, Equation (A 21) is

obtained:

vecðBTÞ ¼
XK
m¼1

XK
n¼1

W�T
nm � Lmn

� � !�1

�
XK
m¼1

XK
n¼1

W�T
nm � Rmn

� � !
vecðIJÞ

ðA21Þ

Case 1C: Mode C
This scenario is well represented by the following objective

function:

f ¼ trace Xa � ~AAðC� BÞT
� �

W�1
a Xa � ~AAðC� BÞT
� �T


 �
ðA22Þ

In order to make the equation more tractable the following

modifications were applied: M ¼ ðXa � ~AAðC� BÞTÞT and
~AA ¼ AIa to yield:

f ¼ traceðMTW�1
a MÞ ðA23Þ

@f

@Ckp
¼ @f

@M

@M

@Ckp

� �T

¼ trace 2W�1
a M

@MT

@Ckp

� �

¼ trace 2W�1
a M

@ ðXa � ~AAðC� BÞTÞ
h i

@Ckp

0
@

1
A

¼ trace 2W�1
a Mð�~AAðEkp � BÞTÞ

� �
¼ trace 2W�1

a ðXT
a � ðC� BÞ~AATÞð�~AAðEkp � BÞTÞ

� �
¼ �2 	 trace W�1

a XT
a
~AAðEkp � BÞT

� �
þ 2 	 trace W�1

a ðC� BÞ~AAT ~AAðEkp � BÞT
� �

ðA 24Þ

Setting this derivative equal to zero to find the minimum

leads to:

trace W�1
a XT

a
~AAðEkp � BÞT

� �
¼ trace W�1

a ðC� BÞ~AAT ~AAðEkp � BÞT
� �

trace W�1
a ðEkp � BÞ~AAT

Xa

� �
¼ trace ðC� BÞ~AAT ~AAðEpk � BTÞW�1

a

� �
trace W�1

a ðEkp � IJÞðIP � BÞ~AAT
Xa

� �
¼

trace ðC� IJÞðIP � BÞ~AAT ~AAðEpk � IPÞðIK � BTÞW�1
a

� �
trace W�1

a KKJðIJ � EkpÞKJPðIP � BÞ~AAT
Xa

� �
¼

traceððIJ � CÞKJPðIP � BÞ~AAT ~AAKPPðIP � EpkÞKPKðIK � BTÞW�1
a KKJÞ

trace W�1
a KKJðIJ � EkpÞKJPðIP � BÞ~AAT

Xa

� �
¼

trace ðIJ � CÞðB� IPÞKPP
~AA

T ~AAKPPðIP � EpkÞKPKðIK � BTÞW�1
a KKJ

� �
trace W�1

a KKJðIJ � EkpÞðB� IPÞ~AA
T
Xa

� �
¼

trace ðIJ � CÞðB� IPÞ~AA
T ~AAðIP � EpkÞKPKðIK � BTÞW�1

a KKJ

� �
ðA 25Þ

It is worth noting two important manipulations carried out

in Equation (A25). First, the commutation matrices are

introduced in order to invert the order of the Kronecker

products ðEkp � IJÞ and ðC� IJÞ. Second, due to the sparse

nature of ~AA, the following equality holds:

KPP
~AA

T ¼ ~AA
T ðA26Þ

Equation (A25) becomes Equation (A31) using the matrices

T, S, L, and R as defined in Equations (A27) to (A30):

L ¼ W�1
a KKJ ðA27Þ

R ¼ ðB� IPÞ~AA
T
Xa ðA28Þ

S ¼ ðB� IPÞ~AA
T ~AA ðA29Þ

T ¼ ðBT � IKÞKJKW
�1
a KKJ ðA30Þ

trace LðIJ � EkpÞR
� �

¼ trace ðIJ � CÞSðIP � EpkÞT
� �

ðA31Þ

Equation (A31) can be expressed as Equation (A33) when the

matrices forming both members of the previous equation are

partioned as shown in Equation (A32). Matrices mnL, nmR,
mnS, and nmT have dimensions K�K; P�K ; P�P and K�K

respectively.

trace
XJ
m¼1

XJ
n¼1

mnLEkp
nmR

 !
¼ trace C

XJ
n¼1

XP
m¼1

mnSEpk
nmT

 !

XJ
m¼1

XJ
n¼1

trace Ekp
nmRmnL

� �
¼ vecðCTÞTvec

XJ
n¼1

XP
m¼1

mnSEnm
pk T

 !

vecðEpkÞT
XJ
m¼1

XJ
n¼1

mnLT � nmR
� � !

vecðIKÞ

¼ vecðEpkÞT
XJ
n¼1

XP
m¼1

ðnmT� mnSTÞ
 !

vecðCTÞ

ðA33Þ

Equation (A33) is one of the KP equations necessary to

estimate the loadings of C. The rest of the equations are

obtained as the right and left parts of this equation are

multiplied by the vectorized Epk matrix. Since these terms

are completely independent on both sides of the equation,

the process can be carried out in a straightforward manner

using matrices E1 formed as [vec(E11) vec(E21) . . .vec(EKP)].

A closer look at these matrices shows that E1 is the identity

matrix of order PK, providing Equation (A 34) to estimate the

loadings of C:

vecðCTÞ ¼
XP
m¼1

XJ
n¼1

ðTmn � ST
nmÞ

 !�1

�
XJ
m¼1

XJ
n¼1

ðLT
mn � RnmÞ

 !
vecðIKÞ

ðA34Þ

trace

11L 	 	 	 1JL

..

. . .
. ..

.

J1L 	 	 	 JJL

2
64

3
75

Ekp

Ekp

Ekp

2
64

3
75

11R 	 	 	 1JR

..

. . .
. ..

.

J1R 	 	 	 JJR

2
64

3
75

0
B@

1
CA

¼ trace ðIJ � CÞ

11S 	 	 	 1PS

..

. . .
. ..

.

J1S 	 	 	 JPS

2
64

3
75

Epk

Epk

Epk

2
64

3
75

11T 	 	 	 1JT

..

. . .
. ..

.

P1T 	 	 	 PJT

2
64

3
75

0
B@

1
CA

ðA32Þ
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Case 1D
This scenario is structurally similar to the previous case, but

more complex since the error covariance matrix changes from

row to row. Therefore, the estimation process cannot be

carried out in one step, but rather as a sequence of I indepen-

dent problems solved by minimizing Equation (A 35):

f ¼
XI
i¼1

ixa � i~aaðC� B
� �TÞiW�1

a
ixa � i~aaðC� BÞT
� �T

ðA35Þ

As mentioned before, the only difference in the minimization

process between Equation (A35) and Equation (A12) is the

sequential manner in which the former is solved. This

situation leads to estimation equations that are similar to

the previous case, but solved in a sequential manner. Math-

ematically, this is carried out by solving row by row in mode

A and solving over a sequence of I summations for mode B

and C as shown next:

ia ¼ ixa
iW�1

a ZT
a Za

iW�1
a ZT

a

� ��1 ðA36Þ

vecðBTÞ ¼
XI
i¼1

XK
m¼1

XK
n¼1

iW�T
nm � iLmn

� � !�1

�
XI
i¼1

XK
m¼1

XK
n¼1

iW�T
nm � iRmn

� � !
vecðIJÞ

ðA37Þ

where

iR ¼ ðC� IPÞi~aaTixa ðA38Þ

L ¼ ðC� IPÞi~aaTi~aaðC� IpÞT ðA39Þ

and

vecðCTÞ ¼
XI
i¼1

XP
m¼1

XJ
n¼1

iTmn � iST
nm

� � !�1

�
XI
i¼1

XJ
m¼1

XJ
n¼1

iLT
mn � iRnm

� � !
vecðIKÞ

ðA40Þ

iL ¼ iW�1
a KKJ ðA41Þ

iR ¼ ðB� IPÞi~aaTixa ðA42Þ

iS ¼ ðB� IPÞi~aaTi~aa ðA43Þ

iT ¼ ðBT � IKÞKJK
iW�1

a KKJ ðA44Þ
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