Solutions To Assignment 1

1. Colour the squares black and white, like in a chessboard. Since James and John stand
on diagonally opposite corner squares, they start on squares of the same colour. Say
they both start on a black square. With every move, each of them moves to a square
of the opposite colour. So James moves to a white square, then John moves to a white
square, and the whole process repeats. Whenever it is James’s turn to move, both
James and John are on the same colour square, so James will always be moving to a
square of the opposite colour to the square that John is on. Hence regardless of how
long this chase continues, James will never be able to move to the square John is on,
and hence will never be able to catch John.

2. Since there were 2001 people, everyone shook hands with at least 0 people, and at most
2000 people (you can’t shake hands with yourself). Suppose that no two people shook
the same number of hands. The only way this could possibly happen is if each of the
2001 people shook a different number of hands from 0 to 2000. However, if someone
shook 2000 hands, then she shook hands with everybody else at the party. So everyone
at the party shook at least one hand. That contradicts the fact that someone at the
party shook 0 hands. Thus, there must have been two people who shook the same
number of hands.

Alternative solution: We'll prove this statement for all n. If everyone shook at least
one hand, then the possible number of handshakes for each person must have been
between 1 and n — 1. Otherwise, at least one person did not shake a hand, and so
nobody at the party could have shaken all n — 1 hands. Thus, in this scenario, the
possible number of handshakes for each person must have been between 0 and n — 2.
In each case, we have n people and n — 1 possible numbers of handshakes for each
person, and so by the Pigeonhole Principle, at least two people must have shaken the
same number of hands.

3. For each ¢ from 0 to n — 1, we define the function f(i) as follows: rotate the table i
positions to the right. Define f(7) to be the number of people who match up with their
entrees after rotating the table in this manner.

So originally, we have f(0) = 0, since no one matches up with their entrees. Now,
we must have f(1)+ f(2) 4+ ...+ f(n — 1) = n, since for each of the n people, you
can rotate the table exactly one way to match that person up with the correct entree.
From here, we can proceed in two ways:

Method 1: By definition, f(i) represents the number of people that are matched up
with their correct entrees when you rotate the table ¢ positions to the right. So each
of the n people must be matched up with the correct entree in exactly one of the n — 1
possible rotations. We can describe this as follows: write down the numbers 1,2, ..., n,
with one number for each of the n people. We also have n—1 slots, labelled Slot 1 Slot
2, up to Slot n — 1. Then we take each of our n numbers, and throw them into one of
n — 1 slots, depending on how many table positions you have to rotate to match that
number up with his correct entree. For example, if person 7 is matched up with his
correct entree by moving the table 4 positions to the right, then we throw the number
7 into Slot 4. So we have n numbers, and n — 1 slots. By the Pigeonhole Principle, one



of these slots will contain two numbers. And so f(i) > 2 for some 4. This proves that
if we rotate the table i positions to the right, then at least two people will be matched
up with their correct entrees.

Method 2: Suppose that the conclusion is false, that f(i) < 1foreachi=1,2,...,n—1.
Thenn = f(1)+ f(2)+...+ f(n—1) < 1+1+...4+1=mn—1, a contradiction. Hence,
we must have f(i) > 2 for some i, and we are done.

. Let S be the number of odd numbers on the board. So at the beginning, S = 5, because
the numbers 1, 3, 5, 7, and 9 are on the board. We shall show that the parity of S
remains invariant throughout the problem. In every step, Riham removes two numbers
a and b and replaces them by |a — b|. If @ and b are both odd, |a — b| will be even,
so S decreases by 2. If a and b are both even, |a — b| will be even, so S stays the
same. Finally, if a is odd and b is even (or vice-versa), |a — b| will be odd, and so S
stays the same. Thus, in every case, S decreases by 2 or stays the same, and hence the
parity of S will remain invariant, i.e. the parity of S never changes. Since S =5 at
the beginning, S can never go down to 0. So the final number on the board cannot be
even, and so it must be odd.

Alternative solution: Let T be the sum of the numbers on the board. So at the
beginning, T'=1+2+ 3+ ...+ 10 = 55. We shall show that the parity of T' remains
invariant throughout the problem. In every step, Riham removes two numbers a and b
(assume a > b) and replaces them by |a — b| = a —b. Hence we reduce 17" by a + b and
increase it by a — b. Thus, T" decreases by 2b in each step, and so 1" always decreases
by an even number, so the parity of T' remains invariant. So at the end, the value of
T will be the final number left on the board, since T is the sum of the numbers left on
the board. Since T is odd, we conclude that this final number must be odd.

. Look at the first row. There are seven squares, coloured with one of two colours. By
the Pigeonhole Principle, four of these squares must have the same colour. Suppose
that this colour is indigo. So we have (at least) four columns whose top square is
coloured indigo. Just consider these columns, and ignore the other columns of the
board. So we are now looking at a 3 by 4 chessboard.

In this smaller chessboard, every square in the first row is coloured indigo. If there are
at least two squares on the second row that are coloured indigo, then we will have a
rectangle whose four corner squares are all indigo, then we will be done. So at most
one square on the second row is coloured indigo, i.e., at least three squares on the
second row are coloured teal. So there must be three columns, all of which have the
top square being indigo and the middle square being teal. Just consider these columns.
So now we are looking at a 3 by 3 chessboard.

So in this reduced chessboard, the first row is all indigo, and the second row is all teal.
The third row contains three squares, and so by the Pigeonhole Principle, at least two
of these squares must have the same colour. If two of the squares are indigo, we have
a rectangle (with the first row), and if two of the squares are teal, we have a rectangle
(with the second row). Regardless of the situation, we must have a rectangle whose
four corner squares are all the same colour.



If the chessboard is 3 by 6, the result does not hold. There are several counterexamples.
For example, colour the first row IIITTT where I is indigo and T is teal. Colour the
second row ITTIIT and the third row TITITI. Then this board will not contain a

rectangle whose four corner squares are all the same colour.

Alternative Solution: Some of you came up with this clever solution. Rather than
look at three rows of seven squares, flip the diagram clockwise and look at the seven
rows, each row having three squares. Fach row can be one of the following eight types:
TTT, TTI, TIT, ITT, IT'T, ITI, TTI, TII. Now, if any two rows are the same, then we
immediately have a rectangle where all four corner squares are the same colour. (For
example, if we have rows 3 and 6 being ITI, then we have a rectangle where all four
corner squares are indigo). So in our seven rows, we cannot have the same row-type
appear twice.

Suppose TTT appears in one of our seven rows. Then, we cannot have TTI, TIT, or
ITT appear anywhere, or else we will have a rectangle where all four corner squares are
teal. That leaves six rows that we need to fill with four row-types (II'T, ITI, TII, and
III). But by the Pigeonhole Principle, at least one row-type will be duplicated twice,
and so we will have a rectangle where all four corner squares are the same colour.
Hence, TTT cannot appear in any of the rows. By symmetry, I1I cannot appear in any
of the rows either.

So now we have only six possible row-types: TTI, TIT, ITT, IIT, ITI, and TII. But we
have seven rows. By the Pigeonhole Principle, at least one row-type will be duplicated
twice, and so we will have a rectangle where all four corner squares are the same colour.
That clears all the cases, so we are done.

This argument does not hold for a rectangle with six rows and three columns. Just
have the six rows being T'TI, TIT, ITT, IIT, ITI, and TII. Then there is no rectangle
where all four corner squares are the same colour.

. Here is a winning strategy for Eve: she should start by placing a black checker in
the middle. Then for whatever move Oddie makes, Eve should counter by placing a
checker of the opposite colour in the diametrically opposite square. For example, if
Oddie puts a black checker in the top right corner, then Eve’s next move should be a
white checker in the bottom left corner.

Now we justify why this is a winning strategy for Eve. First of all, by Eve’s strategy,
she guarantees herself four points because every row, column, or diagonal that goes
through the centre will have exactly two black checkers. So now we have four points
accounted for. All we need to do is prove that Eve must win one more point somewhere
among the outside two rows or outside two columns. We'll show that she actually wins
exactly two more points.

Look at the top row and the bottom row. If the top row has x black checkers, then
the bottom row has @ white checkers (i.e., 3 — z black checkers), due to Eve’s reverse-
copying strategy. Exactly one of x and 3 — x will be even, and hence Eve will get one
point from either the top row or bottom row. By the same argument, Eve will get
exactly one point from the two columns, so this strategy guarantees that she will win
by a score of 6 to 2.



7. a) We shall prove that Alison can always win the game by moving clockwise on each
of her moves. Notice that whoever enters the centre ring first will lose, because there
are eight regions and the second player will occupy the eighth and final region in the
centre ring, causing the first player to lose. So neither player wants to enter the centre
ring first, and so each player wants to force the other to enter the centre ring to force a
victory. If a player (say lan) enters the third ring first, the other player will just move
clockwise until either Ian has moven into the centre ring or is forced into the centre ring
because Alison moves into the final unoccupied region in that ring. Similarly, neither
player wants to enter the second ring first. So the person who can win the game is the
person who can force the opponent into the second ring. Since Alison moves first, if
she moves clockwise on every move, either Ian will go into the second ring or be forced
into the second ring (since there are eight regions in the ring). Then Alison can wait
until Tan moves into the third and centre rings, and she will win the game. So her
strategy is to never move towards the centre, and always move clockwise in each move,
and she is guaranteed to win.

b) We shall prove that lan can always win. To analyze this game, let’s work backwards.
Whoever enters the centre ring first will win, because there are nine regions, and the
person who moves into the first region in the centre ring will also move into the ninth
and final region, causing that player to win. So each player wants to enter the centre
ring first. Thus both players want to avoid moving into the fourth ring, because then
the opponent will jump immediately into the centre ring, guaranteeing victory. Hence
the winner will be able to force the opponent to move into the fourth ring. Whoever
enters the third ring first will be able to occupy the final region in that ring (by
continually moving clockwise), and so the opponent will be forced to move into the
fourth ring. So the strategy is to get to the third ring first. Thus, both players want to
avoid entering the second ring, because the opponent will immediately move into the
third ring. So the winning strategy is to force your opponent to move to the second
ring. Since there are nine regions, if both Alison and Ian move clockwise (since they
both want to avoid moving to the second ring), Alison will be forced into the second
ring (or she will move there voluntarily). Then Ian immediately moves to the third
ring, and Alison will be forced into the fourth ring (or move there voluntarily). Finally,
Tan jumps into the centre ring, and will occupy the ninth and final region of the ring
and will win the game. Therefore, Ian has the winning strategy. Another way to say
this is that Tan’s winning strategy is to copy exactly what Alison does (see how this is
the same strategy as the one outlined above?), and by doing that, lan is guaranteed
to win.

8. Notice that the situation for any table is the same as any other table whose sides are
in the same ratio. For example, a 6 by 10 table will give the same pocket and the same
number of reflections as a 3 by 5 table. Hence instead of looking at an m by n table, we
can look at a table whose dimensions are z by y, where x = Lmn) and y = —2

ged(m, ged(m,n)
Since x < y, the width of the table is x and the length of the table is y.

So we have our z by y pool table, and let us produce infinitely many copies of this pool
table by reflecting the sides about the lines BC and C'D. Draw a straight line from A
at a 45 degree angle until it hits a vertex of one of our “reflected” pool tables. If we
let A have coordinates (0,0), the other endpoint (i.e. pocket) of this straight line must



be (zy, zy), because = and y are relatively prime (i.e., ged(z,y) = 1). In other words,
to get to the pocket that the ball goes into, the ball must go across x tables and up y
tables.

By the symmetry of the problem, the number of reflections of the ball is identical to
the number of intersections of the straight line with our set of pool tables. Notice that
we go across x tables and up y tables. So our line makes x — 1 vertical intersections
and y — 1 horizontal intersections (we don’t include the endpoint (zy, zy) in our count
because that is a pocket). Notice that no vertical intersection point coincides with a
horizontal intersection point because the straight line ends as soon as it hits a pocket
of our pool table, and the straight line ends at (zy, zy).

So there are a total of (x —1)+ (y—1) = 2 +y—2 reflections. To determine the pocket
the ball goes into, there are four cases to consider:

(1) if z and y are both odd, the ball goes into pocket C.
(2) if x is odd and y is even, the ball goes into pocket D.
(3) if x is even and y is odd, the ball goes into pocket B.
(4)

4) if x and y are both even, the ball goes into pocket A.

However, we must reject the final case because ged(z,y) = 1, and so « and y cannot
possibly both be even. So the ball never goes into pocket A.

Finally, let’s check the case m = 210 and n = 357. Since ged(210,357) = 21, we have
x =10 and y = 17. So the ball makes 10+ 17 — 2 = 25 reflections. Since x is even and
y is odd, we conclude that the ball will go into pocket B.



