
Math 2400 - Numerical Analysis

Homework #2 Solutions

1. Implement a bisection root finding method. Your program should accept two endpoints, a
tolerance limit and a function for input. It should then output the final approximation and the
number of iterations. Make sure that the program checks that the initial interval is acceptable
for this method.
Here is my code with comments:

function [y,iter]=bisec(f,a,b,tol)

if feval(f,a)*feval(f,b)>0

% Check if we meet conditon for bisection method

error(’Need f(a)f(b)<0’);

end

if(abs(b-a)<=tol)

% Are we starting with a solution ?

error(’Interval too small for give tolerance’)

end

%Note: for the bisection method, we cannot get

% stuck in an infinite loop. So don’t really

% need a maximum number of iterations. Ok if we

% have one though.

iter=1; % we count the iterations for comparison

while(abs(b-a)>tol)

c=(a+b)/2; % The midpoint

% Which inteval has the root?

if (feval(f,a)*feval(f,c)<=0)

b=c;

else

a=c;

end

iter=iter+1;

end

y=c; % return the best guess.

return

2. Implement a Newton’s method root finding method. Your program should accept an initial
guess, a tolerance(for the relative difference between successive approximations), a function
and it’s derivative for input. It should then output the final approximation and the number
of iterations. Make sure that your program can’t be stuck in an infinite loop or divide by 0.
Here is my code:

function [y,iter]=newton(f,fp,x0,tol)

max=100; % The maximum permited number of iterations

iter=1; % We start on the first interation

if (feval(fp,x0)==0)

1

% Check to see before we get div by 0 erro

error(’Derivative of function is 0’)

end

x1=x0-feval(f,x0)/feval(fp,x0); % The first Newton step

while(abs((x1-x0)/x0)>tol)

x0=x1; % update the guess

if (feval(fp,x0)==0)

% Check to see before we get div by 0 erro

error(’Derivative of function is 0’)

end

x1=x0-feval(f,x0)/feval(fp,x0); % next iteration

iter=iter+1;

if (iter>=max)

error(’Maximum iterations exceeded’)

end

end

y=x1; % return solution

return

3. Use the programs you have written to find roots for the following:

Function Newton’s Method guess Bisection Method Interval

tan(x) − 2x 1.4 a = 1, b = 1.4
65x4

− 72x3
− 1.5x2 + 16.5x − 1 1 a = 0, b = 1

x3
− 6x2 + 12x − 8 3 a = 1, b = 3

Use 10−4 as your tolerance for both methods.
Discuss the appropriateness of the methods and initial guess to the above problems.
I had to write the m-files to provide the functions. Here is a listing of the 6 m=files. The
files f1.m f2.m f3.m are for the function values. The files f1p.m, f2p.m and f3p.m are for the
derivatives.

function y=f1(x)

y=tan(x)-2*x;

return

function y=f1p(x)

y=sec(x)^2-2;

return

function y=f2(x)

y=65*x^4-72*x^3-1.5*x^2+16.5*x-1;

return

2

function y=f2p(x)

y=260*x^3-216*x^2-3*x+16.5;

return

function y=f3(x)

y=x^3-6*x^2+12*x-8;

return

function y=f3p(x)

y=3*x^2-12*x+12;

return

Here is the Matlab output for this question:

octave:2> [y n]=newton(’f1’,’f1p’,1.4,0.0001)

y = 1.1656

n = 6

octave:3> [y n]=bisec(’f1’,1,1.4,0.0001)

y = 1.1655

n = 13

octave:4> [y n]=newton(’f2’,’f2p’,1,0.0001)

y = 0.061933

n = 15

octave:5> [y n]=bisec(’f2’,0,1,0.0001)

y = 0.061951

n = 24

octave:6> [y n]=newton(’f3’,’f3p’,3,0.0001)

y = 2.0003

n = 20

octave:7> [y n]=bisec(’f3’,1,3,0.0001)

y = 1.9999

n = 16

octave:8> quit

The results for the first function are more or less what we would expect. Newton’s method
converges must faster then the bisection method. For the second function the performance
of the two methods seems comparable. If we take a look at the second function, we can see
what is happening.

3

4

0

6

2

x

10 0.80.4 0.60.2

By guessing 1, we are getting stuck around the minimum located near 0.7. If we where to use
any initial guess less than 0.3, we would get very rapid convergence. As well if we where to
decrease the tolerance, Newton’s method would start to appear much better.
For the third equation, Newton’s method also appears to be worse than the bisection method.
The actual root is at exactly 2, so not only did Newton’s method take longer to converge, but
the answer is less accurate. Again we look at a graph of the function to see what is happening.

4

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 1.6 1.8 2 2.2 2.4

As you can see from the graph, the function is very flat near its root at x = 2. This means
that the derivative will become very small as we approach the root. For this example we also
note that the bisection method should do much better than my implementation. The very
first guess with these values is the actual root. If I had considered the possibility of one of the
guesses being the exact root, my program would have converged after one iteration. Since I
didn’t consider this possibility, I continue on for an additional 15 iterations and at some point
some roundoff error enters the picture. Thus the 16th guess is not as good as the first.

4. In this question, we will find interpolating polynomials of degree at most 6 for the function
f(x) = e−2x using equally spaced points and using the Chebyshev roots.
To solve for this problem, I wrote code to find the divided difference table and plot the
resulting polynomial. Since this is part of the current assignment I will not include the code,
but the derivation of the table can follow the examples in the notes for lab2 and lab3.
Here is a listing of the function I used to plot an interpolating polynomial given its divided
difference table and the x values.

function [xi,y]=divdifplot(x,F)

len=length(x);

xi=linspace(x(1),x(len),50)’;

y=zeros(50,1);

for i=1:len

p=ones(50,1);

for j=1:(i-1)

p=p.*(xi-x(j));

end

y=y+F(i,i).*p;

end

5

end

(a) Construct (use the computer or do it by hand) a polynomial of degree at most five, P5(x),
interpolating f(x) at the points xk = 0.4(k − 1), k = 1, . . . , 7 (you should have equally
spaced points between 0 and 2). Plot P5(x) with a solid line and plot the points f(xk)
with a + for 0 < x < 2.
I made a typo a mistake here the .4 should be 1

3
, or we should be considering a polynomial

of degree at most 5. The way the statement now reads, the last point wil l be 2.4. People
can do it either way and I won’t take of marks. Sorry for the confusion.
Here is the MATLAB session to generate the polynomial and the graph.

octave:2> x=linspace(0,2,6)’

x =

0.00000

0.40000

0.80000

1.20000

1.60000

2.00000

octave:3> y=exp(-2.*x)

y =

1.000000

0.449329

0.201897

0.090718

0.040762

0.018316

octave:4> F=divdif(x,y)

F =

1.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.44933 -1.37668 0.00000 0.00000 0.00000 0.00000

0.20190 -0.61858 0.94762 0.00000 0.00000 0.00000

0.09072 -0.27795 0.42579 -0.43486 0.00000 0.00000

0.04076 -0.12489 0.19132 -0.19539 0.14966 0.00000

0.01832 -0.05612 0.08597 -0.08780 0.06725 -0.04121

octave:5> [x1,y1]=divdifplot(x,F);

octave:6> plot(x1,y1)

octave:7> hold on

octave:8> plot(x,y,’+’)

octave:9> print("hw3q4a.eps")

6

octave:10> diary off

Here is the graph from that session.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

(b) Use a linear transformation to move the zeros of the degree 6 Chebyshev polynomial to
the interval [0, 2].
We can plug in the formula for the translated Chebyshev roots

xi =
b + a

2
+

b − a

2
cos

(

(2i − 1)π

2n

)

to find the interpolation points. As this goes with then next question, I will find these
point and the interpolating polynomial in the MATLAB session posted after the next
question.

(c) Construct a polynomial of degree at most six, P̄6(x), interpolating f(x) at the points
found in 4b. Plot P̄6(x) with a solid line and plot the points f(xk) with a + on the
interval 0 < x < 2.
Here is the MATLAB session I used to answer the previous two questions:

octave:1> x=zeros(6,1)

x =

0

0

0

0

0

0

octave:2> for i=1:6

> x(i)=1+cos((2*i-1)*pi/12);

7

> end

octave:3> x

x =

1.965926

1.707107

1.258819

0.741181

0.292893

0.034074

octave:4> y=exp(-2.*x)

y =

0.019607

0.032902

0.080650

0.227101

0.556668

0.934122

octave:5> F=divdif(x,y)

F =

0.01961 0.00000 0.00000 0.00000 0.00000 0.00000

0.03290 -0.05137 0.00000 0.00000 0.00000 0.00000

0.08065 -0.10651 0.07798 0.00000 0.00000 0.00000

0.22710 -0.28292 0.18263 -0.08545 0.00000 0.00000

0.55667 -0.73517 0.46820 -0.20193 0.06962 0.00000

0.93412 -1.45837 1.02276 -0.45280 0.14995 -0.04158

octave:6> [xxx,yyy]=divdifplot(x,F);

octave:7> plot(xxx,yyy)

octave:8> hold on

octave:9> plot(x,y,’x’)

octave:10> print("hw3q4c.eps")

Here is the graph resulting from the above MATLAB session:

8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2

(d) Plot f(x) − P5(x) and f(x) − P̄5(x) on the same graph for 0 < x < 2. Explain why one
of the polynomials has a lower maximum error. Here is the tail end of the MATLAB
session I used to generate the final graphs

octave:12> plot(x1,exp(-2.*x1)-y1,’b’)

octave:13> plot(xxx,exp(-2.*xxx)-yyy,’r’)

octave:14> hold on

octave:15> plot(x1,exp(-2.*x1)-y1,’b’)

octave:16> print("hw3q4d.eps")

Here is the graph generated.

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0 0.5 1 1.5 2

The error for P5 is graphed with the dotted cure. As you can see from the graph both

9

polynomials provide a good approximation in the middle, but near the endpoints, P̄5

gives a much better approximation. Actually in the interior, P5 is slightly better than
P̄5, but using the Chebyshev roots as interpolation points spreads the error more evenly
over the interval, so the global error bound we have for P̄5 is much lower.

10

