
Math 2400 - Numerical Analysis
Homework # 4 Solutions

In this assignment, we will examine nonlinear and linear least squares. You will need some data to test your program
with, so go to the course web-page and download the data file hw4data. Once you have the file in your directory,
you can type load -mat hw4data at the Matlab command prompt. This will load two variables t and y. We will
assume that y = cekt for some c and k. The data contains errors, so we use least-squares to find the best c and k.

1. Use linear least squares to find the best fit quadratic y = c1 + c2t+ c3t
2 for the given data.

We use the three basis functions φ1 = 1, φ2 = t and φ3 = t2 to find the best fit quadratic. To find the ci’s we
will solve A~c = b. The components are given by (A)ij =

∑m
k=1 φi(tk)φj(tk) and bi =

∑m
k=1 ykφi(tk). Here is

the session I used to find the c′is.

octave:2> load -m hw4data

octave:3> A=zeros(3)

A =

0 0 0

0 0 0

0 0 0

octave:4> A(1,1)=lenght(t)

error: ‘lenght’ undefined near line 4 column 8

error: evaluating assignment expression near line 4, column 7

octave:4> A(1,1)=length(t)

A =

100 0 0

0 0 0

0 0 0

octave:5> for i=1:100

> A(1,2)=A(1,2)+t(i);

> A(1,3)=A(1,3)+t(i)^2;

> A(2,3)=A(2,3)+t(i)^3;

> A(3,3)=A(3,3)+t(i)^4;

> end

octave:6> A

A =

100.00000 50.00000 33.50168

0.00000 0.00000 25.25253

0.00000 0.00000 20.30337

octave:7> A(2,1)=A(1,2);

octave:8> A(2,2)=A(1,3);

octave:9> A(3,1)=A(1,3);

octave:10> A(3,2)=A(2,3);

octave:11> A

A =

100.000 50.000 33.502

50.000 33.502 25.253

33.502 25.253 20.303

octave:12> b=zeros(3,1)

b =

1

0

0

0

octave:13> for i=1:100

> b(1)=b(1)+y(i);

> b(2)=b(2)+y(i)*t(i);

> b(3)=b(3)+y(i)*t(i)^2;

> end

octave:14> b

b =

461.54

316.63

247.19

octave:15> c=inv(A)*b

c =

1.4809

-1.5084

11.6076

octave:16> plot(t,c(1)+c(2).*t+c(3).*t.^2)

octave:17> hold on

octave:18> plot(t,y,’x’)

octave:19> gset output "hw4071a.eps"

octave:20> gset term postscript eps

octave:21> replot

Below is the graph produced by the session.

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

line 1
line 2

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

line 1
line 2

2. Use non-linear least squares to find a c and k which minimizes
∑m
i=0(yi − cekti)2. You may use Gauss-Newton

2

iterations in your non-linear solver. Plot the exponential cure and the data on the same graph. Mark the data
points with an x.

First we need subroutines to evaluate the vector r of errors and its Jacobian with respect to c and k. They are
given by

r =

y0 − cekt0
...

ym − cektm

 , Dr =

−ekt0 −ct0ekt0

...
...

−ektm −ctmektm

 .

Here are the Matlab routines I used to evaluate these expressions.

function x=r(t,y,c,k)

m=length(y);

x=zeros(m,1);

for i=1:m

x(i)=(y(i)-c*exp(k*t(i)));

end

function J=Dr(t,y,c,k)

m=length(y);

J=zeros(m,2);

n=2;

for i=1:m

J(i,1)=-exp(k*t(i));

J(i,2)=-c*t(i)*exp(k*t(i));

end

Here is the Matlab session

octave:2> load hw4data

octave:3> m=length(t)

m = 100

octave:4> c0=[1;1]

c0 =

1

1

octave:5> for i=1:50

> delc=-inv(Dr(t,y,c0(1),c0(2))’*Dr(t,y,c0(1),c0(2)))*Dr(t,y,c0(1),c0(2))’*r(t,y,c0(1),c0(2));

> c0(1)=c0(1)+delc(1);

> c0(2)=c0(2)+delc(2);

> end

octave:6> c0(1)

ans = 1.1068

octave:7> c0(2)

ans = 2.3915

octave:8> plot(t,y,’x’)

octave:9> hold on

octave:10> plot(t,c0(1).*exp(c0(2).*t))

octave:11> gset output "hw4061.eps"

octave:12> gset terminal postscript eps

octave:13> diary off

3

Here is the graph the session produced.

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

line 1
line 2

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

line 1
line 2

3. In this section we will use linear least squares on transformed data.

(a) Transform the data with the log(x) function to an appropriate form for linear least squares.

If we take the logarithm of the model, we get

ln(y) = ln(cekt) ,

ln(y) = ln(c) + ln(ekt) ,

ln(y) = ln(c) + kt .

So for this model, we only need to take the logarithm of the data and not the times. This is one of the
key differences between this exponential model and the previous power law model. Here is the Matlab
session I used to find the line of best fit going through (t, ln(y)).

(b) Use linear least squares to determine a straight line which best approximates the transformed data.

Here is the Matlab session to determine the line of best fit.

octave:32> y1=log(y);

octave:33> A=zeros(2)

A =

0 0

0 0

octave:34> A(1,1)=length(t)

A =

100 0

0 0

octave:35> for i=1:100

> A(1,2)=A(1,2)+t(i);

> A(2,2)=A(2,2)+t(i)^2;

4

> end

octave:36> A(2,1)=A(1,2)

A =

100.000 50.000

50.000 33.502

octave:37> b=zeros(2,1)

b =

0

0

octave:38> for i=1:100

> b(1)=b(1)+y1(i);

> b(2)=b(2)+y1(i)*t(i);

> end

octave:39> newcs=inv(A)*b

newcs =

0.096756

2.396874

octave:40> plot(t,y1,’x’)

octave:41> hold on

octave:42> plot(t,newcs(1)+newcs(2).*t)

So the best line of best fit for the modified data is given by

ln(y) = 0.096756 + 2.396874t

Here is a graph of the line of best fit with the transformed data

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

line 1
line 2

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

line 1
line 2

(c) Use your result to find c and k

We can see from the transformed model, the slope of the line of best fit is our rate constant. To find the
initial concentration, we must invert the logarithm.

5

octave:40> c1=exp(newcs(1))

c1 = 1.1016

octave:41> k1=newcs(2);

octave:42> plot(t,y,’x’)

octave:43> hold on

octave:44> plot(t,c1.*exp(k1.*t))

octave:45> gset output "hw4-2b.eps"

octave:46> gset terminal postscript eps

octave:46> diary off

So the best fit exponential we get is
y = 1.1016e2.396847t.

Not very different from the nonlinear least squares result.

(d) plot the resulting curve and the data points on the same graph. Mark the data points with an x.

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

line 1
line 2

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

line 1
line 2

4. Compare the accuracy of the two methods by calculating

m∑

i=0

(yi − cekti)2

for both cases and compare the results. Give a possible explanation for any differences found.

Here is the Matlab session to calculate the sum of the errors. Sum1 will be for the nonlinear least squares
calculation and sum2 will be for the linear least squares calculation.

octave:111> sum1=0

sum1 = 0

octave:112> sum2=0

sum2 = 0

octave:113> for i=1:100

> sum1=sum1+(y(i)-c(1)+c(2)*t(i)+c(3)*t(i)^2)^2;

> sum2=sum2+(y(i)-c0(1)*exp(c0(2)*t(i)))^2;

> sum3=sum3+(y(i)-c1*exp(k1*t(i)))^2;

> end

octave:114> sum1

sum1 = 5.0011

6

octave:115> sum2

sum1 = 2.1428

octave:116> sum3

sum2 = 2.1464

octave:117> diary off

It is clear that the quadratic gives the poorest result. The reason is that the underlying data follows an
exponential relationship and a quadratic can not be expected to approximate the cures as well as an exponential.
However, if you look at the graph, you can see that we get a reasonable result. So if you are not going to use
the quadratic for long-time interpolation and are not too concerned with accuracy then the quadratic would
be a suitable approximation.

So you can see that the other two approaches result in a similar error, but the nonlinear squares method has
a slightly lower error. Since both are minimizing the error, we would expect them to both to have the same
error. Why are they different.

The answer is that the logarithmic transform affects the error. Consider the error at time ti,

yi = cekti + εi .

Now we take the transform of both sides,

ln(yi) = ln(cekti + εi) .

Now we expect the error to be small relative to the data, so we expand the transform as a first order Taylor
polynomial about εi = 0 to get the following relation.

ln(yi) = ln(cekti) +
1

cekti
εi

or

ln(yi) = ln(c) + kti +
1

cekti
εi

So instead of minimizing
∑m

i=0 ε
2
i , we are minimizing

∑m
i=0

(
1

cekti
εi
)2

. If we assume k is positive, then this
transform places more weight on data for small t. If you look at the graph of the transformed data, it is clear
that errors for small time data are greatly exaggerated. If k < 0 then more weight is placed on large t data.

Finally I note that in theory the nonlinear least squares should always give a better result for errors which are
additive, but one also has to consider the error introduced by Newton’s method. In this case both solutions
where very close, however there are times using a transform on data to allow the use of a linear least squares
method can be disastrous.

Hint: To see the effect of the transform to a linear system, consider the effect of the transform on the error of
the ith step.

yi = cekti + εi

We take the transform and we get
ln(yi) = ln(cekti + εi)

To see what is happening use a tayor expansion about ε = 0

7

