- 1. Short Answer
- 2. We have the following information about a funcition f(x).
 - f(1) = 2
 - The first order divided difference $f[x_1, x_2] = 2$ for all values $x_1 \neq x_2$.

What can you say about this function.

3. Determine the missing entries in the following divided difference table.

$x_0 = 0.0$	$f[x_0] =$		
$x_1 = 0.4$	$f[x_1] =$	$f[x_0, x_1] =$	
$x_2 = 0.7$	$f[x_2] = 6$	$f[x_1, x_2] = 10$	$f[x_0, x_1, x_2] = \frac{50}{7}$

- 4. We wish to find an interpolating cubic polynomial for a function on the interval [0,3]. If we wish to minimize the global error bound for $x \in [0,3]$, what points should we choose for interpolation.
- 5. We are given the data set $\{(x_i, y_i)\}_{i=0}^n$ and wish to construct a **quadratic** spline to interpolate the data. Assume the spline is of the form,

$$S(x) = \begin{cases} S_0(x) & x_0 \le x \le x_1 \\ S_1(x) & x_1 < x \le x_2 \\ \vdots & \vdots \\ S_{n-1}(x) & x_{n-1} < x \le x_n \end{cases}$$
(1)

where

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2.$$
(2)

- (a) Write down, but do not solve, equations which will make S(x)
 - i. Interpolate the given data set.
 - ii. Continuous.
 - iii. Smooth (have a continuous derivative).
- (b) If all the above conditions are met, how many more conditions will be needed to completely specify S(x) (There are a total of 3n unknowns in (1)).
- 6. Assume we have the data set $\{(x_i, y_i)\}_{i=0}^n$. We wish to determine the constants C_1 and C_2 which minimize the sum of the square of the error for the model $y = \frac{C_1}{x+C_2}$.
 - (a) Give the nonlinear least squares equations which must be satisfied for optimal values C_1 and C_2 . Note: Just give the equations which C_1 and C_2 must satisfy. You do not need to consider any iterative method for finding the values.

- (b) Use $\frac{1}{y} = \frac{x}{C_1} + \frac{C_2}{C_1}$ to find a transform of the data which will allows the use of linear least squares.
- (c) Find the normal equations need to solve for C_1 and C_2 which minimizes the error for the transformed data using linear least squares.
- (d) If the error of the i^{th} data is has the form $y = \frac{C_1}{x+C_2} + \epsilon_i$, use an order one Taylor series about $\epsilon_i = 0$ to show how the transform modifies the error. What effect will this have on the resulting approximation.
- 7. Numerical differentiation Find an $O(h^2)$ approximation to $y'(x_0)$ using the values $y(x_0)$, $y(x_0 + h)$ and $y(x_0 + 2h)$. Find the error term as well.
- 8. Use three point Gaussian quadrature to approximate,

$$\int_0^1 e^{-x^2} \, dx$$

You may use the table below. You do not need to simplify your answer.

Points	Weighting	Function
	Factors	Arguments
2	c1 = 1.000000000	x1 = -0.577350269
	c2 = 1.000000000	x2 = 0.577350269
3	c1 = 0.555555556	x1 = -0.774596669
	c2 = 0.888888889	x2 = 0.000000000
	c3 = 0.55555556	x3 = 0.774596669
4	c1 = 0.347854845	x1 = -0.861136312
	c2 = 0.652145155	x2 = -0.339981044
	c3 = 0.652145155	x3 = 0.339981044
	c4 = 0.347854845	x4 = 0.861136312

What is the highest order polynomial that this 3 point formula will provide an exact answer for?

9. Find c_1 , c_2 and c_3 such that the rule

$$\int_0^1 f(x) \, dx = c_1 f(0) + c_2 f(0.5) + c_3 f(1)$$

is exact for all polynomials for degree 2 or less.

10. Develop a first order method for approximating f''(x) that uses the data f(x-h), f(x) and f(x+3h) only. Find the error term.