Math 2400 – Practice Term Test

Note: In the real mid term test there will also be a short answer section with approximately 4 question. Each question will be a fill in the blank, true/false or multiple choice question.

1. The two roots of the quadratic $ax^2 + bx + c$ are given by,

$$x_{\pm} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \,. \tag{1}$$

Here, x_+ corresponds to the root with the plus sign in front of the square root and x_- the other root.

- (a) Explain in one or two sentences what problems could result from using this equation when 4ac is very small compared to b^2 .
- (b) These problems can be solved by calculating one of the roots using (1) and the other using,

$$x_{-}x_{+} = \frac{c}{a} \,. \tag{2}$$

Which root should be calculated by equation (1) and why?

2. The graph of the function

$$f(x) = x^3 - 8x^2 + 17x - 10$$

is given by:

- (a) If the points used for the bisection method are given by a = 0 and b = 6, what are the next two iterations of the bisection method?
- (b) How many iterations are needed to ensure an error of less then 0.001?
- (c) If an initial guess of $x_0 = 6$ is used, what is the first iteration of Newton's method?
- 3. To calculate any value of $\cos(x)$ we only need to be able to find $\cos(x)$ for $0 \le x \le \frac{\pi}{2}$ and use then use symmetry. We have the following exact values for the function $\cos(x)$ (and the decimal approximations) in this interval:

x	$\cos(x)$	
0	1	
$\frac{\pi}{6} \approx 0.52360$	$\frac{\sqrt{3}}{2} \approx 0.86603$	
$\frac{\ddot{\pi}}{4} \approx 0.78540$	$\frac{1}{\sqrt{2}} \approx 0.70711$	
$\frac{p_i}{2} \approx 1.04720$	$\frac{\sqrt{2}}{\frac{1}{2}}$	
$\frac{\ddot{\pi}}{2} \approx 1.57080$	$\overset{2}{0}$	

- (a) Use divided differences to find the unique polynomial of degree at most 4 which interpolates these points.
- (b) Find a bound on the maximum error of this approximation. Note for this bound, you may use $|x x_i| \leq \frac{\pi}{2}$ even though this gives a very rough estimate.
- (c) What interpolation points would we use to minimize the global error?
- 4. Circle the apprpriate descriptions below: The function defined by:

$$S(x) = \begin{cases} 10 - 5x + 2x^2 + x^3 & 0 \le x < 1\\ 8 + 2(x - 1) + 5(x - 1)^2 + 10(x - 1)^3 & 1 \le x \le 2 \end{cases}$$

Free Cubic Spline Clamped Cubic Spline

Not a cubic spline

(b)

$$S(x) = \begin{cases} 10 - 5x + x^3 & 0 \le x < 1\\ 6 - 2(x - 1) + 3(x - 1)^2 - (x - 1)^3 & 1 \le x \le 2 \end{cases}$$

Free Cubic Spline Clamped Cubic Spline

Not a cubic spline

(c)

$$S(x) = \begin{cases} 10 - 5x + x^3 & 0 \le x < 1\\ 7 + 2(x - 1) + 3(x - 1)^2 - (x - 1)^3 & 1 \le x \le 2 \end{cases}$$

Free Cubic Spline Clamped Cubic Spline

Not a cubic spline

5. Construct a parametric interpolating polynomial which passes through the following points:

i	1	2	3	4
x_i	-1	0	1	0
y_i	0	1	0.5	0