A2. MATRIX A MATRIX B MATRIX C
3 1 3 1 0 2 3
2 0 4 0
-4 1 2 2
a) MATRIX AC 15 14 -8 b) MATRIX BC 7
MATRIX CB 3 0 6 0 0 0 2 0 4
A = 3 0 2 -1 1 4
I = 1 0 0 1
1 0 0
I = 0 1 0
0 0 1
Since AB = I and BA = I then B is the inverse of A
AB = BA = I = 1 0 0 0 1 0 0 0 1
X has dimensions
X'X [X'X]-1 = I I = 1 0 0
0 1 0
0 0 1
MTB > read 10 x 3 m20 M20 = X X has dimensions 10 x 3
DATA> 1 -2 4
DATA> 1 -2 4
DATA> 1 -1 1
DATA> 1 -1 1
DATA> 1 0 0
DATA> 1 0 0
DATA> 1 1 1
DATA> 1 1 1
DATA> 1 2 4
DATA> 1 2 4
10 ROWS READ
MTB > trans m20 m21
MTB > print m21
MATRIX M21 M21 = X' X' has dimensions 3 x 10
1 1 1 1 1 1 1 1 1 1
-2 -2 -1 -1 0 0 1 1 2 2
4 4 1 1 0 0 1 1 4 4
MTB > mult m21 m20 m22
MTB > print m22
MATRIX M22 M22 = X'X X'X has dimensions 3 x 3
10 0 20
0 20 0
20 0 68
MTB > invert m22 m23
MTB > print m23
MATRIX M23 M23 = [X'X]-1 [X'X] -1 has dimensions 3x3
0.242857 0.000000 -0.071429
0.000000 0.050000 0.000000
-0.071429 0.000000 0.035714
MTB > read 10 x 1 m24 M24 = Y Y has dimensions 10 x 1
DATA> 1.1
DATA> 1.3
DATA> 2.0
DATA> 2.1
DATA> 2.7
DATA> 2.8
DATA> 3.4
DATA> 3.6
DATA> 4.1
DATA> 4.0
10 ROWS READ
MTB > mult m21 m24 m25
MTB > print m25
MATRIX M25 M25 = X'Y X'Y has dimensions 3 x 1
27.1
14.3
53.1
MTB > mult m23 m25 m26
MTB > print m26
MATRIX M26 M26 = [X'X]-1X'Y [X'X]-1X'Y has dimensions 3 x 1
The least squares equation is
MTB > mult m20 m26 m27 M20 = X M26= beta (hat) so M27 = Y(hat)
MTB > print m27
MATRIX M27
1.20143
1.20143
2.03429
2.03429
2.78857
2.78857
3.46429
3.46429
4.06143
4.06143
MTB > copy m24 c1 c1 = yi
MTB > copy m27 c2 c2 = yi(hat)
MTB > let c3 = c1 - c2 c3 = ei = residuals
MTB > let c4 = c3**2
MTB > sum c4
SUM = 0.061286 SSE = .061286
when x = 1
V22 = 0.357
t has 7 df
0.05 < p < 0.10
Reject the null hypothesis at
since the p-value is less than
.
The data indicates curvature.
MATRIX M30 M30 = l
1
1
1
MTB > trans m30 m31
MTB > mult m31 m23 m32
MTB > mult m32 m30 m33
ANSWER = 0.1857
MTB > copy m20 c10 c11 c12
MTB > print c10-c12
ROW C10 C11 C12
1 1 -2 4
2 1 -2 4
3 1 -1 1
4 1 -1 1
5 1 0 0
6 1 0 0
7 1 1 1
8 1 1 1
9 1 2 4
10 1 2 4
MTB > regress c1 on 2 in c11 c12;
SUBC> predict 1 1.
The regression equation is
C1 = 2.79 + 0.715 C11 - 0.0393 C12
Predictor Coef Stdev t-ratio p
Constant 2.78857 0.04611 60.48 0.000
C11 0.71500 0.02092 34.17 0.000
C12 -0.03929 0.01768 -2.22 0.062
s = 0.09357 R-sq = 99.4% R-sq(adj) = 99.2%
Analysis of Variance
SOURCE DF SS MS F p
Regression 2 10.2677 5.1339 586.39 0.000
Error 7 0.0613 0.0088
Total 9 10.3290
SOURCE DF SEQ SS
C11 1 10.2245
C12 1 0.0432
Fit Stdev.Fit 95% C.I. 95% P.I.
3.4643 0.0403 ( 3.3689, 3.5597) ( 3.2233, 3.7053)
The
confidence interval for E[y] when x=1,
,
s = 0.09357, and
l'(x'x)-1l = 0.1857.
t has 7 df, t=1.895
(3.36,3.51)
prediction interval for a new value of y when x=1
the same as in A.26
(3.27,3.66)
s = 1.1
l'(x'x)-1l = 0.1077
t has 22 df, t = 2.074
(8.60,10.10)
We are
confident that the mean number of items produced per hour per worker when the piece rate,
,
is between 8.6 and 10.10
items/hour/worker.
(6.945,11.747)
We are
confident that if a worker is paid a piecework rate of
per piece his productivity will be between 6,95 and 11.75.
of the valuability is explained by the regression model.
| STATISTICS 2080 HOMEPAGE |