A2. MATRIX A MATRIX B MATRIX C 3 1 3 1 0 2 3 2 0 4 0 -4 1 2 2
a) MATRIX AC 15 14 -8 b) MATRIX BC 7
MATRIX CB 3 0 6 0 0 0 2 0 4
A = 3 0 2 -1 1 4
I = 1 0 0 1
1 0 0 I = 0 1 0 0 0 1
Since AB = I and BA = I then B is the inverse of A
AB = BA = I = 1 0 0 0 1 0 0 0 1
X has dimensions
X'X [X'X]-1 = I I = 1 0 0 0 1 0 0 0 1
MTB > read 10 x 3 m20 M20 = X X has dimensions 10 x 3 DATA> 1 -2 4 DATA> 1 -2 4 DATA> 1 -1 1 DATA> 1 -1 1 DATA> 1 0 0 DATA> 1 0 0 DATA> 1 1 1 DATA> 1 1 1 DATA> 1 2 4 DATA> 1 2 4 10 ROWS READ MTB > trans m20 m21 MTB > print m21 MATRIX M21 M21 = X' X' has dimensions 3 x 10 1 1 1 1 1 1 1 1 1 1 -2 -2 -1 -1 0 0 1 1 2 2 4 4 1 1 0 0 1 1 4 4 MTB > mult m21 m20 m22 MTB > print m22 MATRIX M22 M22 = X'X X'X has dimensions 3 x 3 10 0 20 0 20 0 20 0 68 MTB > invert m22 m23 MTB > print m23 MATRIX M23 M23 = [X'X]-1 [X'X] -1 has dimensions 3x3 0.242857 0.000000 -0.071429 0.000000 0.050000 0.000000 -0.071429 0.000000 0.035714 MTB > read 10 x 1 m24 M24 = Y Y has dimensions 10 x 1 DATA> 1.1 DATA> 1.3 DATA> 2.0 DATA> 2.1 DATA> 2.7 DATA> 2.8 DATA> 3.4 DATA> 3.6 DATA> 4.1 DATA> 4.0 10 ROWS READ MTB > mult m21 m24 m25 MTB > print m25 MATRIX M25 M25 = X'Y X'Y has dimensions 3 x 1 27.1 14.3 53.1 MTB > mult m23 m25 m26 MTB > print m26 MATRIX M26 M26 = [X'X]-1X'Y [X'X]-1X'Y has dimensions 3 x 1
The least squares equation is
MTB > mult m20 m26 m27 M20 = X M26= beta (hat) so M27 = Y(hat) MTB > print m27 MATRIX M27 1.20143 1.20143 2.03429 2.03429 2.78857 2.78857 3.46429 3.46429 4.06143 4.06143 MTB > copy m24 c1 c1 = yi MTB > copy m27 c2 c2 = yi(hat) MTB > let c3 = c1 - c2 c3 = ei = residuals MTB > let c4 = c3**2 MTB > sum c4 SUM = 0.061286 SSE = .061286
when x = 1
V22 = 0.357
t has 7 df
0.05 < p < 0.10
Reject the null hypothesis at
since the p-value is less than
.
The data indicates curvature.
MATRIX M30 M30 = l 1 1 1 MTB > trans m30 m31 MTB > mult m31 m23 m32 MTB > mult m32 m30 m33 ANSWER = 0.1857 MTB > copy m20 c10 c11 c12 MTB > print c10-c12 ROW C10 C11 C12 1 1 -2 4 2 1 -2 4 3 1 -1 1 4 1 -1 1 5 1 0 0 6 1 0 0 7 1 1 1 8 1 1 1 9 1 2 4 10 1 2 4 MTB > regress c1 on 2 in c11 c12; SUBC> predict 1 1. The regression equation is C1 = 2.79 + 0.715 C11 - 0.0393 C12 Predictor Coef Stdev t-ratio p Constant 2.78857 0.04611 60.48 0.000 C11 0.71500 0.02092 34.17 0.000 C12 -0.03929 0.01768 -2.22 0.062 s = 0.09357 R-sq = 99.4% R-sq(adj) = 99.2% Analysis of Variance SOURCE DF SS MS F p Regression 2 10.2677 5.1339 586.39 0.000 Error 7 0.0613 0.0088 Total 9 10.3290 SOURCE DF SEQ SS C11 1 10.2245 C12 1 0.0432 Fit Stdev.Fit 95% C.I. 95% P.I. 3.4643 0.0403 ( 3.3689, 3.5597) ( 3.2233, 3.7053)
The
confidence interval for E[y] when x=1,
,
s = 0.09357, and
l'(x'x)-1l = 0.1857.
t has 7 df, t=1.895
(3.36,3.51)
prediction interval for a new value of y when x=1
the same as in A.26
(3.27,3.66)
s = 1.1
l'(x'x)-1l = 0.1077
t has 22 df, t = 2.074
(8.60,10.10)
We are
confident that the mean number of items produced per hour per worker when the piece rate,
,
is between 8.6 and 10.10
items/hour/worker.
(6.945,11.747)
We are
confident that if a worker is paid a piecework rate of
per piece his productivity will be between 6,95 and 11.75.
of the valuability is explained by the regression model.
STATISTICS 2080 HOMEPAGE |