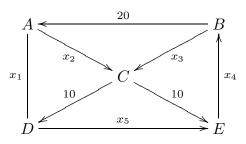
7. Consider the linear system

- a) If $[A \mid 0]$ is the augmented matrix of the system above, find rank A and rank $[A \mid 0]$ for all values of k.
- b) Find all k so that this system has
 - i) a unique solution,
 - ii) infinitely many solutions, and
 - iii) no solutions.
- c) In case (ii) above, give a complete geometric description of the set of solutions.

8. Consider the closed network of streets and intersections below. The arrows indicate the direction of traffic flow along the one-way streets, and the numbers are the flows observed during one minute. Each x_i denotes the unknown number of cars which passed along the indicated streets during the same period.



- a) Using Kirchoff's law, write down the linear system which describes the the traffic flow, together with all the constraints on the variables x_i , i = 1, ..., 5. (Do not perform any operations on your equations: this is done for you in (b)!)
- b) The reduced row-echelon form of the augmented matrix from part (a) is

-1	0	0	0	-1	-10 T
0	1	0	0	1	30
0	0	1	0	-1	-10
0	0	0	1	-1	10
$\lfloor 0 \rfloor$	0	0	0	$-1 \\ 1 \\ -1 \\ -1 \\ 0$	

Give the general solution. (Ignore the constraints at this point.)

- c) Using (b) and the constraints from (a), find all possible traffic flows. (You do not need to list them all individually: simply give the possible vales of parameter(s).). How many different network flows are there?
- d) Are there any network flows with both AD and BC closed for roadwork? What are the possible flows on the other streets in this case?

9. Let $W = \text{span}\{(-1, 1, 0), (1, 1, -2)\}$ and $L = \text{span}\{(1, 1, 1)\}$.

For $v \in \mathbf{R}^3$, let $\operatorname{proj}_W(v)$ and $\operatorname{proj}_L(v)$ denote the orthogonal projections of v onto W and L respectively.

- a) Give complete geometric descriptions of W and L.
- b) Find a basis of $W^{\perp} = \{ v \in \mathbf{R}^3 \mid v \cdot w = 0 \text{ for all } w \in W \}$ and use this to show that $L = W^{\perp}$.
- c) If $(x, y, z) \in \mathbf{R}^3$, find a formula for $\operatorname{proj}_W(x, y, z)$.
- d) If $(x, y, z) \in \mathbf{R}^3$, show that $\operatorname{proj}_L(x, y, z) = (\frac{x+y+z}{3}, \frac{x+y+z}{3}, \frac{x+y+z}{3}).$
- e) Use (c) and (d) to show that $v = \operatorname{proj}_{W}(v) + \operatorname{proj}_{L}(v)$ for all $v \in \mathbb{R}^{3}$.

10. Let
$$A = \frac{1}{6} \begin{bmatrix} 5 & -1 & 2 \\ -1 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$
 and $v_1 = (1, 1, 1)$ and $v_2 = (1, -1, 0)$ be two vectors in \mathbb{R}^3 .

- a) Show that $Av_1 = v_1$ and $Av_2 = v_2$, and hence show that $\{v_1, v_2\} \subseteq \operatorname{col}(A)$, where $\operatorname{col}(A)$ denotes the column space of P.
- b) Show that rank A = 2, and use this to deduce that dim col (A) < 3.
- c) Use (a) and (b) to show that $\{v_1, v_2\}$ is a basis of col(A), and give a complete geometric description of col(A).
- d) Show that ker $A = \operatorname{span}\{v_1 \times v_2\}.$

11. Let
$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
.

- a) Show that the eigenvalues of A are 0 and 3.
- b) Find a basis B_0 of $E_0 = \{x \in \mathbf{R}^3 \mid Ax = 0\}.$
- c) Find a basis of $E_3 = \{x \in \mathbf{R}^3 \mid (A 3I)x = 0\}.$
- d) Show that the set consisting of all vectors from the bases for E_0 and E_3 is a basis for \mathbf{R}^3 .
- e) If possible, find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

12. a) Let A be a real $n \times n$ matrix. Give 3 different statements which are equivalent to:

The columns of A are linearly dependent.

- b) State whether the following are always true or could be false. If true, explain why, if false, give a numerical example to illustrate.
 - (i) Suppose an $n \times n$ matrix A satisfies $A^2 = A$. If v is an eigenvector of A with eigenvalue λ , then $\lambda = 0$ or $\lambda = 1$.
 - (ii) If an $n \times n$ matrix A satisfies $A^2 = 0$, then A = 0.
 - (iii) Let $\mathbf{F}[0,1] = \{f \mid f : [0,1] \to \mathbf{R}\}$ be the vector space of real-valued functions defined on [0,1]. If f, g and h are any three different functions in $\mathbf{F}[0,1]$, then $\{f,g,h\}$ must be linearly independent.