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1. For the following system of 2 equations in the 3 unknowns X, y and z,
X + 5y = 6
z = 1

The system is inconsistent.
(0, 0, Q) is a solution.
(6s-5, s, 1) is a solution for any value of s.

A
B
C
D (6, g, 1) is a solution.

@ (6-5s, s, 1) is a solution for any value of s.
F. (6, 1, 0) is a solution.
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2. The vector v = (1,0,-1) can be written as v = c,v,+ ¢,V,+ CyVa, where
{Vy Vo Vot is the orthonormal basis with
3 6 2
v1:-\/3~.———(1,1,1), V2=%(1,1,—2), and vszn\*/;w(1,-—1,0),
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3. Consider the vector space

F[0,2%] == {f | f is a real-valued function defined on [0, 2]}

Recall that the zero of F[0, 27] is the function that has the value 0 for all z € [0, 2]
)} Show that {1, cos2z,sin2z} is linearly independent in F|0, 2x]

b) If z = cosz-+isinz, use a well-known trigonometric identity to show that || = 1
¢) Use (b) and De Moivre’s theorem, i.e., (cosz + isinz)™ = cosnz + isinnz, to
show that cos2z = 2cos?z — 1

d) Deduce from (c) that cos® z € span{1, cos 2z, sin 2z}

) Is {cos%:c, 1, cos 2x,sin 2z} linearly independent in F[0, 27}?7 Explain
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4.- Let W = {(z,y,z) e R* |z + 2z =0}

a) Give a complete geometric description of W.
b) Is W a subspace of R*? Give reasons for your answer.

¢) Find a basis for W (you must check at least one of the two conditions to be
satisfied)} and hence find the dimension of W. o
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d} Is your chosen basis orthogonal? Justify your answer.
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5. In each case, give an explicit example of:
7L a) a linear system of 2 equations in 2 unknowns with no solutions , with a .S(C€,!*1fj-A

1 b) a linear system of 2 equations in 3 unknowns with at least 2 different solutions.

(You must explicity give two different solutions.)
By c¢) any linear system with a unique solution, _%l' VeAn .
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