- 1. Each statement below is True or False.
- The set of solutions of the system consisting of the single equation

2x - 3y = 0

in the three variables x, y and z is a subspace of \mathbb{R}^3 .

- Every system of 2 equations in 2 unknowns has a unique solution.
- There is a linear system in 2 variables which is inconsistent.

Choose the correct sequence from the possibilities below.

- A. True, True, False.
- B. False, False, True.
- C. True, False, False.
- D. False, True, True.
- E. True, False, True.
- F. False, True, False.

Please record your answer on the title page.

2. If the vector v = (2, -1, 0) is written as $v = c_1v_1 + c_2v_2 + c_3v_3$, where $\{v_1, v_2, v_3\}$ is the orthonormal basis with

$$v_1 = \frac{\sqrt{2}}{2}(1,0,1), \quad v_2 = (0,1,0), \text{ and } v_3 = \frac{\sqrt{2}}{2}(1,0,-1),$$

then (c_1, c_2, c_3) is

A.
$$(\sqrt{2}, 1, \sqrt{2})$$

B. $(1, -\sqrt{2}, -\sqrt{2})$
C. $(-\sqrt{2}, 1, \sqrt{2})$
D. $(1, -\sqrt{2}, \sqrt{2})$
E. $(-1, \sqrt{2}, \sqrt{2})$
F. $(\sqrt{2}, -1, \sqrt{2})$

Please record your answer on the title page.

3. Let $v_0 = (1, 0, 1)$ and define

$$U = \{ (x, y, z) \in \mathbf{R}^3 \mid x + z = 0 \}.$$

- i) Show that v = (x, y, z) belongs to U if and only if v is orthogonal to v_0 .
- ii) Show that $u_1 = (1, 0, 0) \text{proj}_{v_0}(1, 0, 0)$ and $u_2 = (0, 1, 0) \text{proj}_{v_0}(0, 1, 0)$ are orthogonal and belong to U.
- iii) Give a geometric description of U and show that $\{u_1, u_2\}$ is a basis of U.
- iv) If $W = \operatorname{span}\{u_1, u_2, v_0\}$, what is dim W? Is $W = \mathbb{R}^3$?

4.

Consider the vector space $\mathbf{F}[1,2] = \{f \mid f \text{ is a real-valued function defined on } [1,2]\}$ and recall that the zero of $\mathbf{F}[1,2]$ is the function that has the value 0 for all $x \in [1,2]$.

Suppose $f(x) = \frac{1}{x}$ and $g(x) = \frac{1}{x^2}$ and let $W = \operatorname{span}\{f, g\}$.

- i) Show that $\{f, g\}$ is linearly independent. What is dim W?
- ii) If $h(x) = \frac{2x-3}{x^2}$, show that $h \in W$.
- iii) What is the dimension of $\operatorname{span}\{f,g,h\}?$

- 5. Suppose $\mathcal{B} = \{u, v, w\}$ is a basis of a vector space V.
 - i) State the two properties of \mathcal{B} that make it a basis of V. What is dim V?
- ii) Show that $C = \{u + 2v, u + 3w, v + w\}$ is linearly independent.
- iii) Is C a basis of V? You must justify your answer, as usual.