Mat \ >4 Mid—Tem 989 Colubimna

1. If the vector v = (2,—1,0) is written as v = ¢yv; + covs + c3v3, where {v1,v2,v3} is
the orthonormal basis with
2 2
vy = —~2\C(1,0, 1), w2=1(0,1,0), and w3 = %(1,0,—1),

then (c1,co,c3) is

A (~1,v2,V3)

@) (v2.-1,v2)

C. (—v2,1,v/2)

D. (1,—v2,v/2)

E. (v2,1,v2)
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Please record your answer on the title page.
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2. Each statement below is True or False.

e Every system of 2 equations in 2 unknowns has a unique solution. FD/@& 68 K—i_\bj =0
¢ The set of solutions of the system consisting of the single equation A z't‘ = ©
2r -3y =0
in the three variables z,y and z is a subspace of R3. Truw ! +eu_s b o p\tlue WAW&L« Q.

¢ There is a linear system in 2 variables which is inconsistent. True toa XF ::r = O
.q . -
Choose the correct sequence from the possibilities below. X+ 4 |

A. True, True, False.
B. True, False, True.
. True, False, False.
False, True, True.

E. False, False, True.
F. False, True, False.




3. Let wg = (1,0,1) and define
U={(z,y,2) e R* |z +2=0}.

i) Show that v = (x,y, 2) belongs to U if and only if v is orthogonal to vp.

ii) Show that u; = (1,0,0) — proj,,(1,0,0) and u; = (0,1,0) — projy, (0, 1, 0} are orthog-
onal and belong to U.

iii) Give a geometric description of U and show that {u,,u;} is a basis of U.

iv) If W = span{uj,us, vo}, what is diimW? Is W = R3 ?
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4.
Consider the vector space F[1,2] = {f | f is a real-valued function defined on [1,2]}

and recall that the zero of F{1,2] is the function that has the value 0 for all 2 < 11, 2].
Suppose f(z) = L and g(z) = ;,lg and let W = span{f. g}.
4 i) Show that {f.g} is linearly independent. What is dim W?
| i) If h{z) = 2252 show that h € W.

©_ iii) What is the dimension of span{ f, g, h}?
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5. Suppose B = {u,v,w} is a basis of a vector space V.
1.5 1) State the two properties of B that make it a basis of V. What is dim V7
< ii} Show that C = {u + 2v,4 + 3w, v + w} is linearly independent.

- 1i1) Is € a basis of V7 You must justify your answer, as usual.
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