(244@ dnd Tevne WO

1. Consider the following subsets of R%:
U={(z,y) €R? |2y =0}, V={(z,9) € R?|z >0,y >0}, and W = {(z,9) € R* | z+y = 0}.

Which of the following statements are true?

1. U is closed under multiplication by scalars.
II. U is closed under addition.
II1. V is closed under multiplication by scalars.
IV. V is closed under addition.
V. dimW =2
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2. Suppose X is a subspace of RS, that X # {0} and that X # R°. Which of the following
statements are true?

J. X has a spanning sct consisting of 6 vectors.
II. X has a linearly independent subset consisting of 6 vectors.
III. 1 <dimX <5.
IV. X has a basis that spans RS.
V. For all vectors u,v,w in X, au + bv + cw = 0 implies a = b = ¢ = 0.
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| 3. Let W={(a,a—b,a+b)]|abeR}.

~}") 2) By any method, show that W is a subspace of R3.
-’_/‘Q?‘ﬁ b) Find a basis of W and give the dimension of W.
6 ., ¢) Give a geometric description of W.
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4. Letv; = (-1,1,1,1),v3 = (1,-1,1,1),v3 = (1;1,—1,1), and let W be the subspace of R4
defined by .
W = span{vy, v2,v3}.

a) Show that {v1,v2,v3} is an orthogonal sct.

b) Find a basis of W and hence find dim W
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c) The vector u = (—4, 6,0, 2) belongs to W. Find ¢3,¢2,¢c3 € R such that u = clv1+ch2 +C3v3
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¢) Assuming that v4 = (1,0,0,0) does not belong to W (you do not have to check this), explain
why {v1,v9,v3,v4} is a basis of R%.
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5. In each case, give an explicit example of:

a) An inconsistent linear system of 2 equations in 2 unknowns. Sketch the graphs of the equa-
tions of your system to illustrate your example.

b) A linear system of 2 equations in 3 unknowns with at least 2 different solutions. Give two
different solutions.

c) A linear system of 4 equations in 4 unknowns with a unique solution. Give the unique
solution. . P
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