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1. Which one of the following spans the subspace {(z, ¥, z) € R*| 2z —y + 3z =0} of R® ?
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2.  Which two of the following are not subspaces of R*?
V={(@ b c d|c=a+2b d=a—-3}
S={(a, b, ¢, d)] a=0, b=0}
T={(a, b, ¢, d)]a—b=2, c=d}
U= {(abc, d)|a>0 b>0}

v wir ‘\/: (o, ,c.dd= ol oq)n)«l—(oCo 1,2,-2)
g:ﬁgg \ N \/:‘S?Ml/%(,,oﬁl.;l)’(o)l_"g\ ,“3)35.0&3;8

D V and S.

foms S=Spoflo,0,1,0),000,0,1)] 0 subsfece
T3 C0>030303§T 5 W“Sﬂ/és%a/&
U8 C1s0,0,00€T  bub —(l,0,0 o>g

?w#o\s«/éymfcg.




3. Which of the followmg statements are tr ue'7

I. A set {u,v,w} of vectors is hnearly mdependent iff for scalars a,b,c € R, au+bv +cw =0
impliesa =b=c=0.
II. A set {u,v,w} of vectors is hneally 1ndependent 1ﬁ for scalars a,b,c € R, au+bv + cw =0
whena=b=c=0.
ITT. A set {u,v,w} of vectors is linearly independent iff u is not a linear combination of v and w.
IV. {(1,0),(1,1)} spans R2. '
V. {(1,0,1),(1,1,1),(2,1,2)} spans R®.
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5. WthhOfU::{(CL' ,:c~y)|a: 'yGR} V = {(z, y,m+y)|m yER}and
W= {(z, y, av) | z, yER} are subspaces of R3?
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6. Letu=(1,0,—1), and W = {w € R? | proj,W= 0}

]-%/a Is W a subspace of R3?

)
| b) Show that {(1,0,1), (0, 1,0} spans W.
[lic) Give a geometric description of W.
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Q d) f L={veR3|v-w=0, for all w € W}, give a a geometric description of L. Is L a subspace

of R3?
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7. Let U =span{(1,0,0,1)} and V = span{(0, 1,1, —1)} beé subspaces of R*, and let

W={u+veR*|uecUandveV}
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)

b) Is (2,3,3,~ in W ?
) Is the intersection UNV = {a € R*|a €U and a € V} a subspace of R*?
)

2 Show that W is a subspace of R*.
/ d) Is the union UUV = {a € R*| @ € U or a € V} a subspace of R*?

9 Dewsti U= (1990) ast G (0,001). Fhn,
) = %/M(Jrf /A t el}

QESWM{U(J,%} ) ond §o & o~ 42«/%);04&0‘) //7

e
P

(of i ake He Wjﬁ,@ )

= ,/L
a)()é(/(a\/,w/ww Oecd and 0V /ﬁfal,wéb(n(/jé;w
w+w, € U (because wy s € U, and U ‘*Wé‘jf‘w) and LY ty
(for Simila easo). lnce, ey € Ua V. Qweunzémii(/dus
pel®, tim Rwell (¥ o weland Ui addypee) ! wr
(Simdar veatn || 52 B e Ual @M@W% 1/ Ll és /;J
W « fZY (0fs weUUaV < W:X%:é‘ZO gwm;vdjz; 4
kom%‘ WMJ 1, and o not @ mulbpl o @ /2)
2. W=0. 52 nl/ﬂ (0,0,0,0)} RY/ N3/ @M%aag .
4{)/\/0 Simee C/dé(/(u\/ and 1, clloV ud Y+ ¢ 7 ond S dux
de ¢V s Uo*‘}*?ﬁuul/jy‘«&u, UUI/M ﬂbf@éo;&{ww(af




