MAT 3343, APPLIED ALGEBRA, FALL 2003

Answers to the Midterm

Problem 1. Let $m, n \in \mathbb{Z}$ and $m \ge 0$. Prove that m | n iff gcd(m, n) = m.

Answer: " \Rightarrow ": Suppose m|n. But also m|m, so m is a common divisor of m, n. To show that it is a greatest common divisor, assume k is another common divisor. But then k|m, hence m is a greatest common divisor. Thus $m = \pm \operatorname{gcd}(m, n)$. Since $m \ge 0$, it follows that $m = \operatorname{gcd}(m, n)$.

" \Leftarrow ": Suppose gcd(m, n) = m. Then m is a common divisor of m, n, hence m|n.

Problem 2. How many solutions does the equation $x^2 = 9$ have in \mathbb{Z}_{77} ? Find all solutions.

Answer: Since $77 = 7 \cdot 11$, and 7, 11 are relatively prime, we know by the Chinese Remainder Theorem that $x^2 \equiv 9 \pmod{77}$ if and only if

(1)
$$x^2 \equiv 9 \pmod{7}$$
 and
(2) $x^2 \equiv 9 \pmod{11}$.

Since 7 and 11 are prime, \mathbb{Z}_7 and \mathbb{Z}_{11} are fields, and hence we know that (1) and (2) each have precisely two solutions modulo 7 and 11, respectively: $x = \pm 3$ in each case. Again by the Chinese Remainder Theorem, we get four solutions x_1, \ldots, x_4 of the original equation, satisfying

$$\begin{array}{ll} x_1 \equiv +3 \pmod{7} & x_1 \equiv +3 \pmod{11} \\ x_2 \equiv +3 \pmod{7} & x_2 \equiv -3 \pmod{11} \\ x_3 \equiv -3 \pmod{7} & x_3 \equiv +3 \pmod{11} \\ x_4 \equiv -3 \pmod{7} & x_4 \equiv -3 \pmod{11} \end{array}$$

Thus, we clearly have $x_1 = 3$ and $x_4 = -3$. To determine x_2 , we first use Euclid's algorithm to find $1 = 2 \cdot 11 - 3 \cdot 7$; thus,

 $22 \equiv 1 \pmod{7}$ and $22 \equiv 0 \pmod{11}$, and $-21 \equiv 0 \pmod{7}$ and $-21 \equiv 1 \pmod{11}$. It follows that $x_2 = 3 \cdot 22 - 3 \cdot (-21) = 129 \equiv 52 \in \mathbb{Z}_{77}$, and $x_3 = -52$. Thus, the four solutions are:

 $\{\pm 3, \pm 52\}.$

Problem 3. My RSA public key is given by N = 35, e = 5.

(a) Encrypt the message [3, 31, 2].

Answer: For each $M \in \{3, 18, 2\}$, we have to calculate the element $M^{e} \pmod{N}$. We have $3^{5} = 243 \equiv 33 \pmod{35}$, $31^{5} \equiv (-4)^{5} = -1024 \equiv 26 \pmod{35}$, and $2^{5} = 32$. So the encrypted message is [33, 26, 32].

(b) What is my secret decryption key d?

Answer: e and d must satisfy $ed \equiv 1 \pmod{\varphi(N)}$. In this case, N = pq with p = 5 and q = 7, thus $\varphi(N) = (p-1)(q-1) = 24$. We use Euclid's algorithm to find the inverse of 5 in \mathbb{Z}_{24} , which happens to be d = 5.

Problem 4. Consider the following (n, k)-code over the alphabet $A = \mathbb{Z}_2$:

 $C = \{000000, 100011, 010101, 110110, 001110, 101101, 011011, 111000\}.$

(a) Is this a linear code? If yes, give a generator matrix for it.

Answer: Yes, because C is a subspace of \mathbb{Z}_2^6 . A possible generator matrix is

(b) What are n and k?

•

Answer: n = 6 and k = 3.

(c) What is the minimal Hamming distance of this code?

Answer: Since C is a linear code, its minimal Hamming distance is equal to its minimal Hamming weight, which is 3.

(d) How many single-bit errors does this code detect? How many can it correct?

Answer: Since the Hamming distance is 3, this code detects 2 single-bit errors, and it corrects 1

(e) Suppose that the following message is received on a noisy channel: 001000, 001100, 110110, 010011. What message was most likely sent?

Answer: We use the nearest neighbor method, looking in each case for a neighbor of Hamming distance 0 or 1. We find 000000, 001110, 110110, 011011.

Problem 5. Find the general solution of the following system of equations in \mathbb{Z}_2 :

(x			+	z	+	u					=	0
	x	+	y			+	u	+	v			=	0
	x	+	y	+	z					+	w	=	0 /

Answer: We use row operations to obtain a row-reduced form.

We find that x, y, z are pivot variables and u, v, w are free variables. We let u = a, v = b, w = c, and we find x = b + c, y = a + c, and z = a + b + c. Thus, the most general solution is

$$(x, y, z, u, v, w) = (b + c, a + c, a + b + c, a, b, c),$$

or

$$(x, y, z, u, v, w) = a(0, 1, 1, 1, 0, 0) + b(1, 0, 1, 0, 1, 0) + c(1, 1, 1, 0, 0, 1) + b(1, 0, 1, 0, 1, 0) + c(1, 1, 1, 0, 0, 1) + b(1, 0, 1, 0, 1, 0) + c(1, 1, 1, 0, 0, 1) + c(1, 1, 1, 0, 0) + c(1, 1, 1$$

Problem 6. In a commutative ring, assume that $a \neq b$, $a^3 = b^3$, and $a^2b = ab^2$. Prove that $a^2 + b^2$ is not invertible.

Answer: Note that $(a - b)(a^2 + b^2) = a^3 - a^2b - b^3 + ab^2 = 0$. Thus, if $a^2 + b^2$ were invertible, we would have $a - b = (a - b)(a^2 + b^2)(a^2 + b^2)^{-1} = 0$, contradicting $a \neq b$. Problem 7. Prove: every finite integral domain is a field.

Answer: Let R be a finite integral domain. This means R is a commutative ring with |R| > 1 and with no zero divisors. Let $x \in R$ with $x \neq 0$. We want to show that x is invertible. Consider the function $f : R \to R$ defined by f(y) = xy. It is one-to-one by the cancelation property, i.e., if f(y) = f(y'), then xy = xy', thus x(y - y') = 0, thus y - y' = 0 (since x is not a zero divisor). Since f is a function between finite sets of equal cardinality, it follows that f is also onto. Therefore, there exists some y with f(y) = 1. But then xy = 1, so y is the desired inverse.