MAT 3343, APPLIED ALGEBRA, FALL 2003

Handout 2: Ideals of Integers

(Supplement to Chapter 1.2)

Peter Selinger

1 Ideals of Integers

Recall that $\mathbb{Z}=\{0,-1,1,-2,2,-3,3,\ldots\}$ is the set of integers. If $n\in\mathbb{Z}$ is any integer, we write $n\mathbb{Z}$ for the set

$$n\mathbb{Z} = \{ nx \mid x \in \mathbb{Z} \}.$$

So for example, $2\mathbb{Z}$ is the set of even numbers, $3\mathbb{Z}$ is the set of multiples of 3, and $0\mathbb{Z}$ is the one-element set $\{0\}$. Notice that $a \in n\mathbb{Z}$ if and only if n divides a. In particular, we have $n \in n\mathbb{Z}$ and $0 \in n\mathbb{Z}$, for all n.

Remark 1.1. If $n\mathbb{Z} = m\mathbb{Z}$, then n = m or n = -m. To prove this, first notice that in this situation, $n \in m\mathbb{Z}$ and $m \in n\mathbb{Z}$. Thus m|n and n|m. This implies that n = m or n = -m.

Notice that, as shown in examples in class, the intersection of two sets $n\mathbb{Z}$ and $m\mathbb{Z}$ is again of the form $k\mathbb{Z}$, for some k. For example:

$$4\mathbb{Z} \cap 6\mathbb{Z} = 12\mathbb{Z}$$

$$4\mathbb{Z} \cap 5\mathbb{Z} = 20\mathbb{Z}$$

$$0\mathbb{Z} \cap 5\mathbb{Z} = 0\mathbb{Z}.$$

Also, if A and B are sets of integers, let us write A + B for the set

$$A + B = \{a + b \mid a \in A \text{ and } b \in B\}.$$

So, for example, $4\mathbb{Z}+6\mathbb{Z}$ is the set of all integers of the form 4x+6y, where $x,y\in\mathbb{Z}$. This happens to cover precisely the even integers, so we find that $4\mathbb{Z}+6\mathbb{Z}=2\mathbb{Z}$. Again, trying different examples, we find that the sum of two sets $n\mathbb{Z}$ and $m\mathbb{Z}$ always seems to be of the form $d\mathbb{Z}$, for some integer d. For example:

$$4\mathbb{Z} + 6\mathbb{Z} = 2\mathbb{Z}$$

$$4\mathbb{Z} + 5\mathbb{Z} = 1\mathbb{Z}$$

$$0\mathbb{Z} + 5\mathbb{Z} = 5\mathbb{Z}.$$

Our goal is to show that this always works. It will be useful to characterize the sets of the form $n\mathbb{Z}$ a little more abstractly.

Definition. A subset $I \subseteq \mathbb{Z}$ is called an *ideal* if it satisfies the following three conditions:

- (1) If $a, b \in I$, then $a + b \in I$.
- (2) If $a \in I$ and $k \in \mathbb{Z}$, then $ak \in I$.
- (3) $0 \in I$.

The point is that, as we will show now, the ideals in \mathbb{Z} are exactly the subsets of the form $n\mathbb{Z}$. In other words, the sets of the form $n\mathbb{Z}$ are *characterized* by the three properties (1)–(3) in the definition. This is proved by the combination of Lemmas 1.2 and 1.3 below.

Lemma 1.2. Any set of the form $n\mathbb{Z}$ is an ideal.

Proof. Let $I = n\mathbb{Z}$. We have to show I satisfies the three properties in the definition of an ideal.

- (1) Take arbitrary elements $a, b \in I$. We have to show that $a + b \in I$. Because $a \in n\mathbb{Z}$, we know that a = nx for some $x \in \mathbb{Z}$. Because $b \in n\mathbb{Z}$, we know that b = ny for some $y \in \mathbb{Z}$. Then $a + b = nx + ny = n(x + y) \in n\mathbb{Z} = I$.
- (2) Take arbitrary elements $a \in I$ and $k \in \mathbb{Z}$. We have to show that $ak \in I$. But $a \in n\mathbb{Z}$, hence we know that a = nx for some $x \in \mathbb{Z}$. It follows that $ak = (nx)k = n(xk) \in n\mathbb{Z} = I$.
- (3) We have to show that $0 \in I$. But clearly, 0 = 0n, so it follows that $0 \in n\mathbb{Z} = I$.

Lemma 1.3. Any ideal I of integers is of the form $n\mathbb{Z}$, for some $n \in \mathbb{Z}$.

The idea of the proof is simple: let n be the smallest positive element in I, and then prove (using the three properties of I) that $I = n\mathbb{Z}$.

The reason the real proof is a bit longer is that we have to worry about a number of details: for instance, we have to worry about what happens if there are no positive elements in I (in this case we can't let n be such an element!).

The proof makes use of the following principle, which says that if there is a positive integer with a certain property, then there is a *smallest* such integer.

Principle 1.4 (Well-foundedness principle). If A is a non-empty set of positive integers, then A has a smallest element.

Proof of Lemma 1.3: We know, from property (3), that $0 \in I$. In case $I = \{0\}$, we are done, because $I = 0\mathbb{Z}$ is of the desired form. Otherwise, there must be some non-zero element $k \in I$. Let $A = \{x \in I \mid x > 0\}$. Note that A is non-empty, because from property (2), $-k \in I$, and hence either k or -k is in A. By the well-foundedness principle, A has a smallest element. Let n be the smallest element in A.

Next, we want to show that $I = n\mathbb{Z}$. We do this by first showing than $n\mathbb{Z} \subseteq I$, then that $I \subseteq n\mathbb{Z}$.

To show that $n\mathbb{Z}\subseteq I$, take an arbitrary element $a\in n\mathbb{Z}$. By definition of $n\mathbb{Z}$, we know that a=nx, for some $x\in \mathbb{Z}$. Then from $n\in I$ and $x\in \mathbb{Z}$, it follows by property (2) that $nx\in I$, thus $a\in I$. Since a was arbitrary, this shows that $n\mathbb{Z}\subseteq I$.

To show that $I\subseteq n\mathbb{Z}$, we use the method of contradiction. Thus, assume that $I\not\subseteq n\mathbb{Z}$. Then there exists some $k\in I$ such that $k\not\in n\mathbb{Z}$. Note that $k\not\in n\mathbb{Z}$ implies $k\neq 0$. Let $B=\{x\in I\mid x>0 \text{ and } x\not\in n\mathbb{Z}\}$. From property (2), we know that $-k\in I$ and $-k\not\in n\mathbb{Z}$, so either $k\in B$ or $-k\in B$. Thus, B is non-empty, and by the well-foundedness principle, it has a least element, say a.

We distinguish three cases:

Case 1: Suppose a>n. Then a-n is positive. Also, from $a\in I$ and $n\in I$, it follows by property (2) that $-n\in I$ and by property (1) that $a-n\in I$. Also, since $a\not\in n\mathbb{Z}$, it follows that $a-n\not\in n\mathbb{Z}$. So $a-n\in B$, contradicting the fact that a is the *smallest* element of B.

Case 2: Suppose a = n. This contradicts the fact that $a \notin n\mathbb{Z}$.

Case 3: Suppose a < n. But $a \in I$, therefore $a \in A$, contradicting the fact that n was the smallest element in A.

All three cases lead to a contradiction, which implies that our assumption that $I \not\subseteq n\mathbb{Z}$ was false. Therefore $I \subseteq n\mathbb{Z}$. Together with $n\mathbb{Z} \subseteq I$, this implies that $I = n\mathbb{Z}$, which finishes the proof of the lemma.

Now that we know that an ideal is exactly the same thing as a set of the form $n\mathbb{Z}$, we want to show that the intersection of two ideals is again an ideal, and similarly for sums.

Lemma 1.5. (a) If I and J are ideals, then so is $I \cap J$.

(b) If I and J are ideals, then so is I + J.

In the following proof, only one of the six cases is given. The remaining cases are left as homework.

Proof. (a) Suppose I and J are ideals. To show that $I \cap J$ is an ideal, we must show that it satisfies the three properties in the definition of an ideal. We prove each property in turn.

- (1) Suppose $a,b \in I \cap J$. We want to show that $a+b \in I \cap J$. By assumption, we know that $a \in I$ and $a \in J$ and $b \in I$ and $b \in J$. By property (1) of I, we have $a+b \in I$. By property (1) of J, we have $a+b \in J$. It follows that $a+b \in I+J$.
- (2) ...
- (3) ...
- (b) Suppose I and J are ideals. We need to show that I + J is an ideal.
 - (1) ...
 - (2) ...
 - (3) ...

We have now proved what we stated in the beginning: any intersection or sum of two sets of the form $n\mathbb{Z}$ and $m\mathbb{Z}$ is again of the form $k\mathbb{Z}$. We summarize this result in the following theorem:

Theorem 1.6. If $n, m \in \mathbb{Z}$, then there exist integers k and d such that

$$n\mathbb{Z} \cap m\mathbb{Z} = k\mathbb{Z},$$

$$n\mathbb{Z} + m\mathbb{Z} = d\mathbb{Z}.$$

Proof. By Lemma 1.2, we know that $n\mathbb{Z}$ and $m\mathbb{Z}$ are ideals. By Lemma 1.5, we know that $n\mathbb{Z} \cap m\mathbb{Z}$ and $n\mathbb{Z} + m\mathbb{Z}$ are also ideals. By Lemma 1.3, we know that they are of the form $k\mathbb{Z}$ and $d\mathbb{Z}$, respectively.

Also note that, by Remark 1.1, the numbers k and d in Theorem 1.6 are essentially unique: they are determined up to a sign.

2 Least common multiple, greatest common divisor

Let us compute some instances of Theorem 1.6. We compute k and d for various different values of n and m.

$4\mathbb{Z} \cap 6\mathbb{Z}$	=	$12\mathbb{Z}$	$4\mathbb{Z} + 6\mathbb{Z}$	=	$2\mathbb{Z}$
$6\mathbb{Z} \cap 6\mathbb{Z}$	=	$6\mathbb{Z}$	$6\mathbb{Z} + 6\mathbb{Z}$	=	$6\mathbb{Z}$
$8\mathbb{Z} \cap 5\mathbb{Z}$	=	$40\mathbb{Z}$	$8\mathbb{Z} + 5\mathbb{Z}$	=	$1\mathbb{Z}$
$9\mathbb{Z} \cap 6\mathbb{Z}$	=	$18\mathbb{Z}$	$9\mathbb{Z} + 6\mathbb{Z}$	=	$3\mathbb{Z}$
$3\mathbb{Z} \cap 5\mathbb{Z}$	=	$15\mathbb{Z}$	$3\mathbb{Z} + 5\mathbb{Z}$	=	$1\mathbb{Z}$

We observe that the numbers in the first column appear to be greatest common divisors, and the number in the right column appear to be least common multiples.

Definition. A common divisor of two integers n and m is an integer d such that d|n and d|m. Further, d is called a greatest common divisor if, whenever e is another common divisor of n and m, then e|d.

Definition. A common multiple of two integers n and m is an integer k such that n|k and m|k. Further, k is called a *least common multiple* if, whenever e is another common multiple of n and m, then k|e.

The following lemma shows that the numbers d and k in Theorem 1.6 are indeed a greatest common divisor and a least common multiple.

Lemma 2.1. (a) $a\mathbb{Z} \subseteq b\mathbb{Z}$ if and only if b|a.

- (b) If $n\mathbb{Z} + m\mathbb{Z} = d\mathbb{Z}$, then d is a greatest common divisor of n and m.
- (c) If $n\mathbb{Z} \cap m\mathbb{Z} = k\mathbb{Z}$, then k is a least common multiple of n and m.

Proof. (a) Exercise.

(b) Suppose that $n\mathbb{Z}+m\mathbb{Z}=d\mathbb{Z}$. First, we need to show that d is a common divisor of n and m. But we have $n\mathbb{Z}\subseteq d\mathbb{Z}$ and $m\mathbb{Z}\subseteq d\mathbb{Z}$. It follows from part (a) that d|n and d|m, hence d is a common divisor. Next, we need to show that it is a least common divisor. So suppose that e is another common divisor, i.e., that e|n and e|m. By part (a), we have $n\mathbb{Z}\subseteq e\mathbb{Z}$ and $m\mathbb{Z}\subseteq e\mathbb{Z}$. Since $e\mathbb{Z}$ is closed under addition, it follows that $n\mathbb{Z}+m\mathbb{Z}\subseteq e\mathbb{Z}$, and therefore $d\mathbb{Z}\subseteq e\mathbb{Z}$. Finally, by part (a) again, it follows that e|d. Thus, e|d is a greatest common divisor.

(c) Suppose that $n\mathbb{Z}\cap m\mathbb{Z}=k\mathbb{Z}$. First, we show that k is a common multiple of n and m. But we have $k\mathbb{Z}\subseteq n\mathbb{Z}$ and $k\mathbb{Z}\subseteq m\mathbb{Z}$. It follows from part (a) that n|k and m|k, so k is a common multiple. Now, suppose that e is another common multiple of n and m. then n|e and m|e. By part (a), we have $e\mathbb{Z}\subseteq n\mathbb{Z}$ and $e\mathbb{Z}\subseteq m\mathbb{Z}$. It follows from set theory that $e\mathbb{Z}\subseteq n\mathbb{Z}\cap m\mathbb{Z}=k\mathbb{Z}$, hence, again by part (a), we have k|e. Thus, k is a least common multiple.

Corollary 2.2. Any pair of integers n, m have a greatest common divisor and a least common multiple.

Proof. Theorem 1.6 and Lemma 2.1.

Greatest common divisors and least common multiples are unique up to a sign. For instance, if d and d' are both greatest common divisors of n and m, then we must have d|d' and d'|d, which implies d=d' or d=-d'. When we speak of the greatest common divisor, we always mean the one that is not negative. It is also denoted as $\gcd(n,m)$. The situation is similar for least common multiples, and the unique non-negative least common multiple of n and m is often written as $\operatorname{lcm}(n,m)$.

Remark. In our definition of the greatest common divisor d of n and m, we have not actually required that d is greater than any other common divisor, but only that it is a multiple of any other common divisor. In this way, we do not have to make special arrangements in the case where n and/or m are 0. For instance, any integer is a common divisor of 0 and 0, but $\gcd(0,0)=0$. The name "greatest" common divisor is actually bad terminology, but it is nevertheless standard. A similar remark applies to least common multiples.

Theorem 2.3. If $d = \gcd(n, m)$, then there exists integers a and b such that d = an + bm.

Proof. This follows directly from the fact that $n\mathbb{Z} + m\mathbb{Z} = d\mathbb{Z}$. Namely, we have $d \in n\mathbb{Z} + m\mathbb{Z}$, and thus, d = an + bm, for some $a, b \in \mathbb{Z}$.

In general, finding a and b such that d=an+bm is not as easy as it looks. For instance, we have $\gcd(89,144)=1$. Therefore, there exist integers a and b such that 89a+144b. Try to find them yourself! This can be quite a lot of work. We will later learn a method for finding a and b efficiently.

3 Exercises

Problem 1 Finish the proof of Lemma 1.5. Try to imitate the style used in the first part.

Problem 2 Prove that n|m and m|p implies n|p.

Problem 3 Prove Lemma 2.1(a). There are two directions to prove: $a\mathbb{Z} \subseteq b\mathbb{Z} \Rightarrow b|a$, and $b|a \Rightarrow a\mathbb{Z} \subseteq b\mathbb{Z}$.

Problem 4 Consider Principle 1.4, the well-foundedness principle. It states that any non-empty subset of positive integers has a least element. Answer the following questions. In each case, if the answer is "no", give a counterexample (i.e., a set which does not have a least element).

- (a) Is the principle still true if we drop the word "non-empty"?
- (b) Is the principle still true if we drop the word "positive"?
- (c) Is the principle still true if we replace the word "integer" by "rational number"?
- (d) Is the principle still true if we replace the word "positive" by "non-negative"? Recall that a number x is positive if x > 0, and non-negative if $x \geqslant 0$.