MAT 3343, APPLIED ALGEBRA, FALL 2002

Prof. P. Selinger

Problem 1 (10 points). For any integer $a \in \mathbb{Z}$, define $a\mathbb{Z} = \{ax | x \in \mathbb{Z}\}$. Prove: for all $a, b \in \mathbb{Z}$, b|a if and only if $a\mathbb{Z} \subseteq b\mathbb{Z}$.

Problem 2. (a) (5 points) Find all solutions of 30x = 15 in \mathbb{Z}_{55} . How many different solutions are there?

(b) (10 points) For given integers $a, b, n \in \mathbb{Z}$, prove that the equation ax = b has a solution in \mathbb{Z}_n if and only if $\gcd(a, n)|b$.

Problem 3 (10 points). Find the general solution of the following system of equations in \mathbb{Z}_7 :

$$\left(\begin{array}{c} 2x + 3y + 4z = 5\\ 3x + 4y + 6z = 0 \end{array}\right)$$

Problem 4 (10 points). Let R be a Euclidean ring. Suppose $a,b,c \in R$ and gcd(a,b)=1. Prove that a|bc implies a|c.

Problem 5 (10 points). Find the greatest common divisor of the following two polynomials in $\mathbb{Z}_3[x]$:

$$p(x) = x^5 + x^4 + 2x^3 + 2$$

$$q(x) = x^5 + x^3 + x^2 + x + 2$$

Problem 6 (10 points). Consider the (7,4)-Hamming code with the following generator matrix G and parity check matrix H:

$$G = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad H = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

- (a) Encode the message 0011, 1101, 1111 using this code.
- (b) Decode the message 1101010, 0110111, 0111101, correcting all single-bit errors.

Problem 7 (10 points). Recall that the factorial of n is defined as $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1)$.

Show that if p is prime, then $(p-1)! \equiv -1 \pmod{p}$. (Hint: (p-1)! is the product of all the units in \mathbb{Z}_p).

Problem 8. Let R be a Euclidean ring, and let $a \in R$ be an element. On R, define a relation \sim by $x \sim y \iff a | (x - y)$.

- (a) (5 points) Prove that \sim is an equivalence relation.
- (b) (5 points) Prove that addition and multiplication are well-defined on R/\sim by $[x]_{\sim}+[y]_{\sim}=[x+y]_{\sim}$ and $[x]_{\sim}[y]_{\sim}=[xy]_{\sim}$.
- (c) (5 points) Prove that if a is irreducible, then R/\sim is a field.