
MAT 3343, APPLIED ALGEBRA, FALL 2003

Handout 4: The Miller-Rabin Primality Test

Peter Selinger

1 Fermat Pseudoprimes

A primality test is an algorithm which, given an integer n, decides whether n is
prime or not. The most naive algorithm, trial division, is hopelessly inefficient
when n is very large. Fortunately, there exist much more efficient algorithms for
determining whether n is prime. The most common such algorithms are prob-
abilistic; they give the correct answer with very high probability. All efficient
primality testing algorithms are based, in one way or another, on Fermat’s Little
Theorem.

Theorem 1.1 (Fermat). If p is prime, then for all b ∈ {1, . . . , p − 1},

bp−1 ≡ 1(mod p).

Definition (Fermat pseudoprime). Let n > 2 and b ∈ {1, . . . , n − 1}. We
say that the number n passes the Fermat pseudoprime test at base b if bn−1 ≡
1(mod n). A number n is called a Fermat pseudoprime if it passes the Fermat
pseudoprime test for all b ∈ Z

∗

n.

By Fermat’s Little Theorem, every prime number is a Fermat pseudoprime. Un-
fortunately, the converse does not hold. There are Fermat pseudoprimes which
are not prime. Such numbers are called Carmichael numbers. The first few
Carmichael numbers are

561, 1105, 1729, . . .

Nevertheless, the notion of a Fermat pseudoprime is a useful notion, not least
because there is a very efficient probabilistic algorithm for checking whether a
given number n is a Fermat pseudoprime.

Proposition 1.2. If n is not a Fermat pseudoprime, then n fails the Fermat pseu-
doprime test at base b for at least half of the elements b ∈ {1, . . . , n − 1}.

Proof. Suppose n is not a Fermat pseudoprime, and let

G = {b ∈ Zn | bn−1 ≡ 1(mod n)} ⊆ Z
∗

n.

1

Then G is a subgroup of Z
∗

n, thus |G| 6 |Z∗

n|. Since n is not a Fermat pseudo-
prime, there exists some b ∈ Z

∗

n with b 6∈ G, thus |G| < |Z∗

n|. It follows that
|G| 6 1

2
|Z∗

n| 6 n−1

2
. Finally, whenever b ∈ {1, . . . , n − 1} and b 6∈ G, then b

fails the test; there are at least n−1

2
such elements.

Algorithm 1.3 (Fermat pseudoprime test).

Input: Integers n > 2 and t > 1.

Output: If n is prime, output “yes”. If n is not a Fermat pseudoprime, output “no”
with probability at least 1 − 1/2t, “yes” with probability at most 1/2t.

Algorithm: Pick t independent, uniformly distributed random numbers b 1, . . . , bt ∈
{1, . . . , n − 1}. If bn−1

i ≡ 1(mod n) for all i, output “yes”, else output “no”.

Proof. We prove that the output of the algorithm is as specified. If n is prime,
then the algorithm outputs “yes” by Fermat’s Little Theorem. If n is not a Fermat
pseudoprime, then by Proposition 1.2, n passes the test at base b i with probability
at most 1

2
. Hence the probability that n passes all t tests is at most 1/2t. �

Algorithm 1.3 can distinguish prime numbers from non-Fermat-pseudoprimes.
We did not specify its behavior if the input is a Carmichael number. As a matter of
fact, if the input is a Carmichael number, the algorithm will usually output “yes”,
but will output “no” with a small probability (namely, when n has a common
prime factor with one of the bi).

2 Carmichael numbers

Before describing an improved version of the primality testing algorithm, we
prove some useful properties of Carmichael numbers, i.e., non-prime Fermat pseu-
doprimes.

Lemma 2.1. Let pe be a prime power with e > 2. Then the group Z
∗

pe has an
element of order p.

Proof. Consider G = {1 + pe−1x | x ∈ Zpe
}. Clearly G is a subgroup of Z

∗

pe

with p elements. Since p is prime, each element g ∈ G has order 1 or p. The only
element of G of order 1 is 1, hence e.g. g = 1 + p e−1 has order p. �

Proposition 2.2. Let n be a Carmichael number. Then n is odd, and we can factor
n = m1m2, where m1, m2 > 3 and gcd(m1, m2) = 1.

2

Proof. To show that n is odd, assume on the contrary that it is even. Then n >

4, since 2 is not a Carmichael number. Moveover, n − 1 is odd, so we have
(−1)n−1 ≡ −1(modn). It follows that n fails the Fermat pseudoprime test at
base b = −1.

To show that n has the desired factorization, it suffices to show that two distinct
primes occur in the prime factorization of n. Since n is not itself prime, this is
equivalent to proving that n is not of the form p e, for some prime p and e > 2.
Suppose, for contradiction, that n = pe. Then, by Lemma 2.1, there is an element
x ∈ Z

∗

n of order p. Since n is a Fermat pseudoprime, we also have xn−1 ≡
1(mod n), hence p|n − 1. But this is impossible since p|n. �

3 Strong Pseudoprimes

Definition (Strong pseudoprime). Let n be odd and write n − 1 = 2sl, where l
is odd. Given b, compute the following elements of Zn:

bl, b2l, b4l, . . . , b2
s−1l, b2

sl = bn−1.

We say that n passes the strong pseudoprime test at base b if either b l ≡ 1(mod n)
or b2

rl ≡ −1(mod n) for some 0 6 r < s.

Note that in the sequence bl, b2l, b4l, . . . , b2
s−1l, b2

sl, each element is the square
of the preceding element. Thus if one of these elements is 1 or −1, then all the
following elements are equal to 1.

Remark 3.1. If n passes the strong pseudoprime test at base b, then it also passes
the Fermat pseudoprime test at base b. In particular, any strong pseudoprime is
a Fermat pseudoprime. Proof: If n passes the strong pseudoprime test at b, then
either bl ≡ 1(mod n) or b2

rl ≡ −1(modn) for some r < s. In either case,
b2

sl ≡ 1(mod n), and hence bn−1 ≡ 1(mod n).

Remark 3.2. Any prime is a strong pseudoprime. Proof: If n is prime, then Z n

is a field. It follows that the polynomial x2 − 1 has at most two roots in Zn.
These roots are ±1. By Fermat’s Little Theorem, b2

sl = bn−1 = 1(mod n). If
bl 6= 1(mod n), then let r be maximal such that b2

rl 6= 1. Then (b2
rl)2 = 1

implies b2
rl = −1, so n passes the test at b.

Proposition 3.3. If n is not prime, then n fails the strong pseudoprime test at base
b for at least half of the elements b ∈ {1, . . . , n − 1}.

3

Proof. Let n − 1 = 2sl as before. If n is not a Fermat pseudoprime, then the
result follows from Proposition 1.2 and Remark 3.1. So let us consider the case
where n is a Carmichael number. By Proposition 2.2, we can write n = m 1m2,
where m1, m2 > 3 and gcd(m1, m2) = 1. Since l is odd, we have (−1)l 6≡
1(mod n). Let r be the maximal integer such that there exists some b ∈ Z

∗

n with
b2

rl 6≡ 1(mod n). Note that 0 6 r < s. Let

G = {b ∈ Z
∗

n | b2
r

l ≡ ±1(mod n)}.

Clearly, G is a subgroup of Z
∗

n, hence |G| divides |Z∗

n|. We now show that G is
a strict subset of Z

∗

n. By definition of r, there exists some b ∈ Z
∗

n with b2
rl 6≡

1(mod n). Then either b 6∈ G, or else b2
rl ≡ −1(modn). In the latter case, use

the Chinese Remainder Theorem to define b ′ ∈ Z
∗

n such that b′ ≡ b(mod m1)

and b′ ≡ 1(mod m2). Then b′
2

rl
≡ −1(modm1) and b′

2
rl

≡ 1(mod m2). This
implies b′

2
rl

6≡ ±1(mod n), hence b′ 6∈ G. In either case, G 6= Z
∗

n. Thus,
|G| < |Z∗

n|, hence |G| 6 1

2
|Z∗

n| 6 n−1

2
.

Finally, we claim that for all b ∈ {1, . . . , n − 1} with b 6∈ G, n fails the strong
pseudoprime test at base b. Indeed, either b is not a unit, in which case bn−1 6≡

1(mod n). Or else, b2
r+1l ≡ 1(mod n) but b2

rl 6≡ ±1(modn), causing the test to
fail. As there are at least n−1

2
elements in {1, . . . , n − 1} \ G, we are done. �

As a result of Remark 3.2 and Proposition 3.3, we obtain an efficient probabilis-
tic algorithm for primality testing. This algorithm is known as the Miller-Rabin
algorithm. Notice that the algorithm is correct for all numbers; there is no equiv-
alent of Carmichael numbers with respect to strong pseudoprimes. A number is
a strong pseudoprime if and only if it is prime, which is the case if and only if it
passes (with probability as close to 1 as desired) the Miller-Rabin primality test.
We finish by summarizing the algorithm:

Algorithm 3.4 (Miller-Rabin primality test).

Input: Integers n > 2 and t > 1.

Output: If n is prime, output “yes”. If n is not prime, output “no” with probability
at least 1 − 1/2t, and “yes” with probability at most 1/2t.

Algorithm: Let n − 1 = 2sl, where l is odd. Pick t independent, uniformly
distributed random numbers b1, . . . , bt ∈ {1, . . . , n − 1}. For each i, check that
one of the following conditions hold: either b l

i ≡ 1(modn) or b2
rl

i ≡ −1(modn)
for some 0 6 r < s. If this is the case for all bi, output “yes”, else “no”. �

4

