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1 Fermat Pseudoprimes

A primality test is an algorithm which, given an integer n, decides whether n is
prime or not. The most naive algorithm, trial division, is hopelessly inefficient
when n is very large. Fortunately, there exist much more efficient algorithms for
determining whether n is prime. The most common such algorithms are prob-
abilistic; they give the correct answer with very high probability. All efficient
primality testing algorithms are based, in one way or another, on Fermat’s Little
Theorem.

Theorem 1.1 (Fermat). If pisprime, thenfor all b € {1,...,p — 1},
v~ = 1(modp).

Definition (Fermat pseudoprime). Letn > 2and b € {1,...,n — 1}. We
say that the number n passes the Fermat pseudoprime test at base b if b~ ! =
1(modn). A number n is called a Fermat pseudoprime if it passes the Fermat
pseudoprime test forall b € Z7.

By Fermat’s Little Theorem, every prime number is a Fermat pseudoprime. Un-
fortunately, the converse does not hold. There are Fermat pseudoprimes which
are not prime. Such numbers are called Carmichael numbers. The first few
Carmichael numbers are

561,1105,1729, ...

Nevertheless, the notion of a Fermat pseudoprime is a useful notion, not least
because there is a very efficient probabilistic algorithm for checking whether a
given number n is a Fermat pseudoprime.

Proposition 1.2. If n isnot a Fermat pseudoprime, then n fails the Fermat pseu-
doprimetest at base b for at least half of the elementsb € {1,...,n — 1}.

Proof. Suppose n is not a Fermat pseudoprime, and let

G={beZ, | "t =1(modn)} C Z.

Then G is a subgroup of Z}, thus |G| < |Z}|. Since n is not a Fermat pseudo-
prime, there exists some b € Z; with b ¢ G, thus |G| < |Z;|. It follows that
|G| < 3|Z;| < 251, Finally, whenever b € {1,...,n—1}and b ¢ G, then b
fails the test; there are at least "T‘l such elements.

Algorithm 1.3 (Fermat pseudoprime test).
Input: Integersn > 2and ¢ > 1.

Output: If n is prime, output “yes”. If n is not a Fermat pseudoprime, output “no”
with probability at least 1 — 1/2%, “yes” with probability at most 1/2°.

Algorithm: Pick ¢ independent, uniformly distributed random numbersbq,...,b; €
{1,...,n—1}. If b~ = 1(mod n) for all 4, output “yes”, else output “no”.

Proof. We prove that the output of the algorithm is as specified. If n is prime,
then the algorithm outputs “yes” by Fermat’s Little Theorem. If n is not a Fermat
pseudoprime, then by Proposition 1.2, n passes the test at base b; with probability
at most % Hence the probability that n passes all ¢ tests is at most 1/2°. O

Algorithm 1.3 can distinguish prime numbers from non-Fermat-pseudoprimes.
We did not specify its behavior if the input is a Carmichael number. As a matter of
fact, if the input is a Carmichael number, the algorithm will usually output “yes”,
but will output “no” with a small probability (namely, when n has a common
prime factor with one of the b;).

2 Carmichag numbers

Before describing an improved version of the primality testing algorithm, we
prove some useful properties of Carmichael numbers, i.e., non-prime Fermat pseu-
doprimes.

Lemma 2.1. Let p¢ be a prime power with e > 2. Then the group Z ;. has an
element of order p.

Proof. Consider G = {1+ p®~ 'z | 2 € Z,,}. Clearly G is a subgroup of Z.
with p elements. Since p is prime, each element g € G has order 1 or p. The only
element of G of order 1 is 1, hence e.g. g = 1 + p°¢~* has order p. d

Proposition 2.2. Let n bea Carmichael number. Thenn isodd, and we can factor
n = mymsz, Where my, mo > 3 and gcd(my, mq) = 1.



Proof. To show that n is odd, assume on the contrary that it is even. Then n >
4, since 2 is not a Carmichael number. Moveover, n — 1 is odd, so we have
(=1)"~1 = —1(modn). It follows that n fails the Fermat pseudoprime test at
base b = —1.

To show that n has the desired factorization, it suffices to show that two distinct
primes occur in the prime factorization of n. Since n is not itself prime, this is
equivalent to proving that n is not of the form p€, for some prime p and e > 2.
Suppose, for contradiction, that n = p€. Then, by Lemma 2.1, there is an element
x € 7% of order p. Since n is a Fermat pseudoprime, we also have z"~! =
1(mod n), hence p|n — 1. But this is impossible since p|n. O

3 Strong Pseudoprimes

Definition (Strong pseudoprime). Let n be odd and write n — 1 = 251, where [
is odd. Given b, compute the following elements of Z,,:

pl.oop2l pd o p2TTN 2l gl
We say that n passesthe strong pseudoprimetest at base b if either b! = 1(modn)
or b>"! = —1(modn) for some 0 < r < s.
Note that in the sequence b!, b2, b4, ... 52" 'L b2°L each element is the square

of the preceding element. Thus if one of these elements is 1 or —1, then all the
following elements are equal to 1.

Remark 3.1. If n passes the strong pseudoprime test at base b, then it also passes
the Fermat pseudoprime test at base b. In particular, any strong pseudoprime is
a Fermat pseudoprime. Proof: If n passes the strong pseudoprime test at b, then
gither o' = 1(modn) or b*"! = —1(modn) for some » < s. In either case,
b*>"! = 1(modn), and hence b" ! = 1(mod n).

Remark 3.2. Any prime is a strong pseudoprime. Proof: If n is prime, then Z,,
is a field. It follows that the polynomial =2 — 1 has at most two roots in Z,,.
These roots are +1. By Fermat’s Little Theorem, 2! = ! = 1(modn). If
b' # 1(modn), then let » be maximal such that b>"* # 1. Then (b*')? = 1
implies b2"! = —1, so n passes the test at b.

Proposition 3.3. If nisnot prime, then n failsthe strong pseudoprime test at base
b for at least half of the elementsb € {1,...,n — 1}.

Proof. Let n — 1 = 2°] as before. If n is not a Fermat pseudoprime, then the
result follows from Proposition 1.2 and Remark 3.1. So let us consider the case
where n is a Carmichael number. By Proposition 2.2, we can write n = m 1mo,
where my, my > 3 and gcd(my, mo) = 1. Since [ is odd, we have (—1)! #
1(modn). Let r be the maximal integer such that there exists some b € Z7, with
b2t # 1(modn). Note that 0 < r < s. Let

G={beZ: | v ==+1(modn)}.

Clearly, G is a subgroup of ZZ, hence |G| divides |Z|. We now show that G is
a strict subset of Z*. By definition of r, there exists some b € Z* with b>"! #
1(mod n). Then either b ¢ G, or else b>'! = —1(modn). In the latter case, use
the Chinese Remainder Theorem to define b’ € Z; such that b’ = b(modm;)
and ' = 1(mod mg). Then p?l = —1(modm;) and byl = 1(mod msy). This
implies 5’2" % +1(modn), hence b’ ¢ G. In either case, G # Z*. Thus,

|G| < |Z;|, hence |G| < 3|Z5| < %52

Finally, we claim that for all b € {1,...,n — 1} with b ¢ G, n fails the strong
pseudoprime test at base b. Indeed, either b is not a unit, in which case b1 #
1(mod n). Orelse, b2 "'! = 1(mod n) but b2"! # +1(mod n), causing the test to
fail. As there are at least 21 elementsin {1,...,n — 1} \ G, we aredone.  [J

As a result of Remark 3.2 and Proposition 3.3, we obtain an efficient probabilis-
tic algorithm for primality testing. This algorithm is known as the Miller-Rabin
algorithm. Notice that the algorithm is correct for all numbers; there is no equiv-
alent of Carmichael numbers with respect to strong pseudoprimes. A number is
a strong pseudoprime if and only if it is prime, which is the case if and only if it
passes (with probability as close to 1 as desired) the Miller-Rabin primality test.
We finish by summarizing the algorithm:

Algorithm 3.4 (Miller-Rabin primality test).
Input: Integersn > 2and ¢ > 1.

Output: If n is prime, output “yes”. If n is not prime, output “no” with probability
at least 1 — 1/2¢, and “yes” with probability at most 1/2°.

Algorithm: Let n — 1 = 251, where [ is odd. Pick ¢ independent, uniformly

distributed random numbers by, ...,b; € {1,...,n — 1}. For each i, check that

one of the following conditions hold: either b} = 1(modn) or b?"! = —1(mod n)

for some 0 < r < s. Ifthis is the case for all b;, output “yes”, else “no”. O
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