MATH 582, INTRODUCTION TO SET THEORY, WINTER 1999

Answers to Problem Set 3 (Revised)

Problem 3.8 Consider any set A. Then

$$\begin{array}{lll} x\in \mathrm{dom}\bigcup\mathcal{A}& \Longleftrightarrow & (\exists y)\langle x,y\rangle\in \bigcup\mathcal{A} & (\mathrm{by\ definition\ of\ dom})\\ \Leftrightarrow & (\exists y)(\exists R\in\mathcal{A})\langle x,y\rangle\in R & (\mathrm{by\ definition\ of\ union})\\ \Leftrightarrow & (\exists R\in\mathcal{A})(\exists y)\langle x,y\rangle\in R & \\ \Leftrightarrow & (\exists R\in\mathcal{A})x\in\mathrm{dom\ }R & (\mathrm{by\ definition\ of\ dom})\\ \Leftrightarrow & x\in \bigcup\{\mathrm{dom\ }R\mid R\in\mathcal{A}\} & (\mathrm{by\ definition\ of\ union}) \end{array}$$

The proof for "ran" is similar.

Problem 3.9 If we replace the union operation by intersection in the previous problem (assuming that \mathcal{A} is nonempty), the corresponding result is not true. For a simple example, let $\mathcal{A} = \{\{\langle a, b \rangle\}, \{\langle a, c \rangle\}\}$, where $b \neq c$. Then dom $\bigcap \mathcal{A} = \operatorname{dom} \emptyset = \emptyset$, whereas $\bigcap \{\operatorname{dom} R \mid R \in \mathcal{A}\} = \bigcap \{\{a\}\} = \{a\}$. However, the inclusion from left to right is still valid, namely dom $\bigcap \mathcal{A} \subseteq \bigcap \{\operatorname{dom} R \mid R \in \mathcal{A}\}$. Compare the proof to that of Problem 3.8:

$x \in \operatorname{dom} \bigcap \mathcal{A}$	\Leftrightarrow	$(\exists y)\langle x,y angle\in\bigcap\mathcal{A}$	(by definition of dom)
	\Leftrightarrow	$(\exists y)(\forall R \in \mathcal{A})\langle x, y \rangle \in R$	(by definition of intersection)
	\Rightarrow	$(\forall R \in \mathcal{A})(\exists y) \langle x, y \rangle \in R$	(*)
	\Leftrightarrow	$(\forall R \in \mathcal{A})x \in \operatorname{dom} R$	(by definition of dom)
	\iff	$x \in \bigcap \{ \operatorname{dom} R \mid R \in \mathcal{A} \}$	(by definition of intersection)

Notice that in the step marked (*), the converse implication does not hold: $\exists y \forall R \dots$ implies $\forall R \exists y \dots$, but not the other way around.

Problem 3.11 Assume that F and G are functions with dom F = dom G. Assume that F(x) = G(x) for all x in the common domain. We claim that F = G. We will show this by proving $F \subseteq G$ and $G \subseteq F$ (recall that functions are sets, namely certain sets of ordered pairs). So suppose $z \in F$. Then, since F is a function, z is an ordered pair, i.e., $z = \langle x, y \rangle$ for some x, y. By definition of F(x), we have F(x) = y. Since x is in the domain of F, we have G(x) = F(x) by hypothesis, and thus G(x) = y. This implies $z = \langle x, y \rangle \in G$ by definition of G(x). This proves $F \subseteq G$; the converse follows by a similar argument.

Problem 3.15 Let \mathcal{A} be a set of functions such that for any $f, g \in \mathcal{A}$, either $f \subseteq g$ or $g \subseteq f$. We claim that $\bigcup \mathcal{A}$ is a function. First, notice that each element of $\bigcup \mathcal{A}$ is an ordered pair, and thus $\bigcup \mathcal{A}$ is a relation. To prove that it is a function, consider any $\langle x, y \rangle$ and $\langle x, y' \rangle$ in $\bigcup \mathcal{A}$. We have to show that y = y'. First, by definition of union, we know that $\langle x, y \rangle \in f$ and $\langle x, y' \rangle \in g$ for some $f, g \in \mathcal{A}$. By hypothesis, we know that either $f \subseteq g$ or $g \subseteq f$. We do a case distinction: if $f \subseteq g$, then $\langle x, y \rangle \in g$, which implies y = y', since g is a function. Similarly, if $g \subseteq f$, then $\langle x, y' \rangle \in f$, which again implies y = y', since f is a function. In either case, y = y', and we are done.

Problem 3.29 Given $f : A \to B$, define $G : B \to \mathscr{P}A$ by $G(b) = \{x \in A \mid f(x) = b\}$. Assuming that f is onto B, we want to show that G is one-to-one. So consider $b, b' \in B$ with G(b) = G(b'). We have to show b = b'. Since f is onto, we know that there is some $a \in A$ with f(a) = b. It follows, by definition of G, that $a \in G(b)$, and thus, $a \in G(b')$ by hypothesis. Using the definition of G again, this in turns implies f(a) = b', and thus b = f(a) = b'; we are done.

The converse does not in general hold. In other words, it is possible for G to be one-to-one even if f is not onto. To be precise: if there is at most one element of B that is not in the range of f, then G will still be one-to-one. Proof: Assume that there is at most one element of B that is not in the range of f. Suppose G(b) = G(b'). If b is in the range of f, then b = b' follows as above; similarly if b' is in the range of f. The only case left is if neither b nor b' is in the range of f; in this case, b = b' by hypothesis.

However, if there are at least two different elements of *B* that are not in the range of *f*, then *G* will not be one-to-one: Let *b*, *b'* be such different elements, then $G(b) = G(b') = \emptyset$ but $b \neq b'$, and hence *G* is not one-to-one. **Problem 3.30** Let $F : \mathscr{P}A \to \mathscr{P}A$ have the monotonicity property $X \subseteq Y \in \mathscr{P}A \Rightarrow F(X) \subseteq F(Y)$. Define

$$B = \bigcap \{ X \subseteq A \mid F(X) \subseteq X \} \quad \text{and} \quad C = \bigcup \{ X \subseteq A \mid X \subseteq F(X) \}.$$

Note that $F(A) \subseteq A$, and thus the set $\{X \subseteq A \mid F(X) \subseteq X\}$ is non-empty, making the above intersection well-defined.

- (a) Let \mathscr{B} be the set $\{X \subseteq A \mid F(X) \subseteq X\}$, so that $B = \bigcap \mathscr{B}$. We claim that F(B) = B.
 - First, we claim that $F(B) \subseteq B$. So take any $z \in F(B)$. To show that $z \in B$, consider an arbitrary $X \in \mathscr{B}$; we have to show that $z \in X$. By definition of B, we know that $B \subseteq X$, and hence by monotonicity, $F(B) \subseteq F(X)$, which implies $z \in F(X)$. On the other hand, since $X \in \mathscr{B}$, we know that $F(X) \subseteq X$, and thus $z \in X$. Since $X \in \mathscr{B}$ was arbitrary, this proves $z \in B$, and we have $F(B) \subseteq B$ as desired.
 - To prove the converse, B ⊆ F(B), we use the fact that we already know F(B) ⊆ B. By monotonicity, this implies F(F(B)) ⊆ F(B), and hence, we have F(B) ∈ ℬ. It follows that B = ∩ ℬ ⊆ F(B).

Now, let \mathscr{C} be the set $\{X \subseteq A \mid X \subseteq F(X)\}$, so that $C = \bigcup \mathscr{C}$. We claim that C = F(C).

- First, we claim that $C \subseteq F(C)$. So take any $z \in C$. Then there exists some $X \in \mathcal{C}$ such that $z \in X$. By definition of \mathcal{C} , we know that $X \subseteq F(X)$, and thus $z \in F(X)$. Also, since $C = \bigcup \mathcal{C}$, we know that $X \subseteq C$, and hence by monotonicity, $F(X) \subseteq F(C)$. It follows that $z \in F(C)$, as desired.
- To prove the converse, $F(C) \subseteq C$, we use the fact that we already know $C \subseteq F(C)$. By monotonicity, this implies $F(C) \subseteq F(F(C))$, and hence, we have $F(C) \in \mathscr{C}$. It follows that $F(C) \subseteq \bigcup \mathscr{C} = C$.
- (b) Suppose F(X) = X. Then $X \in \mathcal{B}$, and hence $B = \bigcap \mathcal{B} \subseteq X$. Similarly, $X \in \mathcal{C}$, and hence $X \subseteq \bigcup \mathcal{C} = C$.

Homework for Feb. 5:

1. We gave two definitions of linear order in class, one in terms of \leq and one in terms of \leq . Show that they are equivalent, i.e., show that if $\langle A, \leq \rangle$ is a linear order in the first sense, and if one defines

$$x \leqslant y : \Longleftrightarrow x < y \lor x = y,$$

then $\langle A, \leq \rangle$ is a linear order in the second sense; and if $\langle A, \leq \rangle$ is a linear order in the second sense, and if one defines

$$x < y : \Longleftrightarrow x \leqslant y \land x \neq y,$$

then $\langle A, \langle \rangle$ is a linear order in the first sense.

2. Prove that a relation E on A is an equivalence relation if and only if, for all $x, y \in A$,

$$xEy \iff \forall z \in A(xEz \Rightarrow yEz).$$

3. Suppose R and Q are equivalence relations on sets A and B respectively, and $f : A \to B$ is a function. Prove that there exists a function $g : A/R \to B/Q$ satisfying $g([x]_R) = [f(x)]_Q$ for all $x \in A$, if and only if xRy implies f(x) Q f(y), for all $x, y \in A$.

Chapter 3, Problems 34, 36, 41, 44, 45. Chapter 6, Problem 22 [or 18]. Chapter 7, Problem 1.