MATH 582, INTRODUCTION TO SET THEORY, WINTER 1999

Mathematics is a dual activity. We think in terms of intuitions and visualizations, but we prove things from
axioms and definitions via logical reasoning. But what exactly are proofs? How do we know our reasoning
is logical? Proofs can be defined very precisely and in a formal way; this is done in a logic course. In this
set theory course, we have been precise about what formulas are, but we will be somewhat more informal
about proofs. Still, there are certain patterns that occur over and over in mathematical proofs; for instance,
to prove a statement of the form Vz.P(x), we take an arbitrary z and then prove P(z). To prove P = @,
we assume P and then prove (). The following table summarizes some expressions that are commonly used

What is a proof?

in proofs. The parts in [brackets] must be filled in.

To prove: you might do the following:
P=qQ Assume P. [Prove @Q)]. Since we assumed P, this proves P = Q.
Or: Assume —(). [Prove =P]. We have proved =@ = —P, which, by taking the
contrapositive, implies P = ).
PAQ [Prove P]. [Prove @]. Therefore P A Q.
Vz.P(z) Consider an arbitrary z. [Prove P(z)]. Since z was arbitrary, this proves
V.P(x).
-P Assume P. [Derive a contradiction]. The assumption P led to a contradic-
tion, therefore we have shown —P.
dz.P(z) [Construct an object a). [Prove P(a)]. We have shown P(a), hence 3z.P(x).
PvQ@Q [Prove P]. Therefore we have PV Q.
Or: [Prove Q]. Therefore we have PV Q.
Or: Case distinction: If P, we are done proving PV (). Assume that, on the

P (by contradiction)
P (by case distinction)

(to divide a long proof)

contrary, ~P. [Prove @Q]. In either case, we have shown PV Q).

Assume —P. [Derive a contradiction]. The assumption —P led to a contra-
diction, thus we have proved P.

(Here, @ is some formula). We distinguish two cases. Case 1: @ holds.
[Prove P]. Case 2: =@ holds. [Prove P]. In either case, we have proved P.
We will first show P. [Show P]. We have shown P. (etc.)

Another question is how you can use assumptions, hypotheses, and axioms, as well as statements that you

have previously proved:

The statement:

can be used as follows:

P=qQ
PAQ
Vx.P(x)
-P
dz.P(z)
PvQ

a=b

If you know P, you may conclude Q.

You may conclude P. You may also conclude Q.

You may conclude P(a), for any a of your choosing,.

If you also know P, you may derive a contradiction.

You may introduce a new name b for some set that satisfies P(b).

You may prove any formula C by a case distinction as follows: Assume P.
[Prove C]. Now assume . [Prove C]. In either case, we have proved C.
If you know P(a), you may conclude P(b).

The only primitive concepts in set theory are that of set and element. All other concepts are defined, i.e.
they have been introduced as abbreviations. If you are proving something about such a defined concept,

then you have to use the definition. For instance:

To prove: you have to show:

aChb Ve(z € a =z €D).

a = b (for sets) Ve(z € a =z €b) and Vz(z € b = z € a) (by extensionality).
xr€anb z €aand x €D.

zeJA Jz(x € 2Nz € A).

x € PA z C A.

and so on. Of course, you may also use any lemmas that you have previously proved, that have been proved



in class, etc.

Notice the difference between (1) a hypothetical assumption, and (2) using something that you already know.
For example, if you want to prove z € A = x € B, then you assume z € A and proceed to show z € B. At
this point, you do not need to be concerned about whether such an x € A actually exists; you are simply
proving something about a hypothetical x € A. On the other hand, suppose you already know (or you have
previously assumed) that a certain set A is non-empty. In this case, you are allowed to pick some b € A
and use that element b in your further proof. Here, the assumption that b € A is not hypothetical; you are
simply giving the name “b” to something that you already know exists. But to be allowed to do this, you
need to know ahead of time that A is non-empty.

As an example, let us consider a proof of the simple statement
VAVZ(r € A=z C UA)
If you want to be extremely verbose, you could write the following proof.

We want to show VAVz(z € A=z CJA).
Consider an arbitrary A.

* We will prove Vz(z € A= 2 CJA).
Consider an arbitrary z.

* We will prove z € A=z C |J A.
Assume z € A.

* We will prove z C |J A.

* By definition of C, we have to show Vz(z € © = z € |J 4).
Consider an arbitrary z.

*) We will prove z € z = z € |J A.
Assume z € z.

* We will prove z € | A.

*) By definition of |J A, we have to show 3b(z € bAb € A).
We know that z € z and z € A.

* Thus, taking b = z, we have proved 3b(z € bA b € A).
Thus, we have proved z € | A.

* Since we assumed z € z, we have proved z € x = z € [J A.

Since z was arbitrary, (*) we have proved Vz(z € z = z € J A).
This shows 2 C |J A.

* Since we have assumed z € A, we have proved x € A = 2 C |J A.
* Since z was arbitrary, this proves Vz(x € A = z C |J A).
* Since A was arbitrary, this proves YAVz(z € A = z C |J A).

So we are done.

Obviously, this proof is very redundant and tedious. Since your proofs will probably be read by people, and
not by computers, you can leave some things implicit. For instance, if we omit all the parts marked (*), we
get a much more readable proof.

We want to show VAVz(z € A=z C|JA).

Consider arbitrary A and z such that z € A.

Consider an arbitrary z € z.

We know that z € z and z € A.

Thus, by definition of | J A, we have proved z € | A.

Since z was arbitrary, this shows z C |J A, by definition of C.
We are done.

Usually, one will be even more concise and write, for instance:

We want to show VAVz(z € A=z C|JA). Solet x € A. Then for any z € z, by definition
of union, we have z € | J A. Thus, by definition of subset, z C |J A, and we are done.

For another discussion of logic and proofs, see the Appendix in Enderton (p.263ff).



