
Exercise 5. (a) Manually evaluate the lambda terms add 2 3 and mult 2 3.

(b) Prove that add n m →→β n + m, for all natural numbers n, m.

(c) Prove that mult nm →→β n · m, for all natural numbers n, m.

Definition. Suppose f : N
k → N is a k-ary function on the natural numbers, and

that M is a lambda term. We say that M (numeralwise) represents f if for all
n1, . . . , nk ∈ N,

M n1 . . . nk →→β f(n1, . . . , nk) .

This definition makes explicit what it means to be an “encoding”. We can say, for
instance, that the term add = λnmfx.nf(mfx) represents the addition func-
tion. The definition generalizes easily to boolean functions, or functions of other
datatypes.

Often handy is the function iszero from natural numbers to booleans, which is
defined by

iszero (0) = true
iszero (n) = false, if n 6= 0.

Convince yourself that the following term is a representation of this function:

iszero = λnxy.n(λz.y)x.

Exercise 6. Find lambda terms that represent each of the following functions:

(a) f(n) = (n + 3)2,

(b) f(n) =

{

true if n is even,
false if n is odd,

(c) exp (n, m) = nm,

(d) pred (n) = n − 1.

Note: part (d) is not easy. In fact, Church believed for a while that it was impos-
sible, until his student Kleene found a solution. (In fact, Kleene said he found
the solution while having his wisdom teeth pulled, so his trick for defining the
predecessor function is sometimes referred to as the “wisdom teeth trick”.)

We have seen how to encode some simple boolean and arithmetic functions. How-
ever, we do not yet have a systematic method of constructing such functions. What

17

we need is a mechanism for defining more complicated functions from simple
ones. Consider for example the factorial function, defined by:

0! = 1
n! = n · (n − 1)!, if n 6= 0.

The encoding of such functions in the lambda calculus is the subject of the next
section. It is related to the concept of a fixpoint.

3.3 Fixpoints and recursive functions

Suppose f is a function. We say that x is a fixpoint of f if f(x) = x. In arithmetic
and calculus, some functions have fixpoints, while others don’t. For instance,
f(x) = x2 has two fixpoints 0 and 1, whereas f(x) = x + 1 has no fixpoints.
Some functions have infinitely many fixpoints, notably f(x) = x.

We apply the notion of fixpoints to the lambda calculus. If F and N are lambda
terms, we say that N is a fixpoint of F if FN =β N . The lambda calculus
contrasts with arithmetic in that every lambda term has a fixpoint. This is perhaps
the first surprising fact about the lambda calculus we learn in this course.

Theorem 3.1. In the untyped lambda calculus, every term F has a fixpoint.

Proof. Let A = λxy.y(xxy), and define Θ = AA. Now suppose F is any lambda
term, and let N = ΘF . We claim that N is a fixpoint of F . This is shown by the
following calculation:

N = ΘF

= AAF

= (λxy.y(xxy))AF

→→β F (AAF )
= F (ΘF )
= FN.

�

The term Θ used in the proof is called Turing’s fixpoint combinator.

The importance of fixpoints lies in the fact that they allow us to solve equa-
tions. After all, finding a fixpoint for f is the same thing as solving the equation
x = f(x). This covers equations with an arbitrary right-hand side, whose left-
hand side is x. From the above theorem, we know that we can always solve such
equations in the lambda calculus.

18



To see how to apply this idea, consider the question from the last section, namely,
how to define the factorial function. The most natural definition of the factorial
function is recursive, and we can write it in the lambda calculus as follows:

fact n = if then else (iszero n)(1)(mult n(fact (pred n)))

Here we have used various abbreviations for lambda terms that were introduced in
the previous section. The evident problem with a recursive definition such as this
one is that the term to be defined, fact , appears both on the left- and the right-hand
side. In other words, to find fact requires solving an equation!

We now apply our newfound knowledge of how to solve fixpoint equations in the
lambda calculus. We start by rewriting the problem slightly:

fact = λn. if then else (iszero n)(1)(mult n(fact (pred n)))
fact = (λf.λn. if then else (iszero n)(1)(mult n(f(pred n)))) fact

Let us temporarily write F for the term

λf.λn. if then else (iszero n)(1)(mult n(f(pred n))).

Then the last equation becomes fact = F fact , which is a fixpoint equation. We
can solve it up to β-equivalence, by letting

fact = ΘF

= Θ(λf.λn. if then else (iszero n)(1)(mult n(f(pred n))))

Note that fact has disappeared from the right-hand side. The right-hand side is a
closed lambda term that represents the factorial function. (A lambda term is called
closed if it contains no free variables).

To see how this definition works in practice, let us evaluate fact 2. Recall from
the proof of Theorem 3.1 that ΘF →→β F (ΘF ), therefore fact →→β F fact .

fact 2 →→β F fact 2
→→β if then else (iszero 2)(1)(mult 2(fact (pred 2)))
→→β if then else (F)(1)(mult 2(fact (pred 2)))
→→β mult 2(fact (pred 2))
→→β mult 2(fact 1)
→→β mult 2(F fact 1)
→→β . . .

→→β mult 2(mult 1(fact 0))
→→β mult 2(mult 1(F fact 0))
→→β mult 2(mult 1(if then else (iszero 0)(1)(mult 2(fact (pred 2)))))
→→β mult 2(mult 1(if then else (T)(1)(mult 2(fact (pred 2)))))

19

→→β mult 2(mult 1 1)
→→β 2

Note that this calculation, while messy, is completely mechanical. You can easily
convince yourself that fact 3 reduces to mult 3(fact 2), and therefore, by the
above calculation, to mult 3 2, and finally to 6. It is now a matter of a simple
induction to prove that fact n →→β n!, for any n.

Exercise 7. Write a lambda term that represents the Fibonacci function, defined
by

f(0) = 1, f(1) = 1, f(n + 2) = f(n + 1) + f(n), for n > 2

Exercise 8. Write a lambda term that represents the characteristic function of the
prime numbers, i.e., f(n) = true if n is prime, and false otherwise.

Exercise 9. We have remarked at the beginning of this section that the number-
theoretic function f(x) = x + 1 does not have a fixpoint. On the other hand, the
lambda term F = λx. succ x, which represents the same function, does have a
fixpoint by Theorem 3.1. How can you reconcile the two statements?

Exercise 10. The first fixpoint combinator for the lambda calculus was discov-
ered by Curry. Curry’s fixpoint combinator, which is also called the paradoxical
fixpoint combinator, is the term Y = λf.(λx.f(xx))(λx.f(xx)).

(a) Prove that this is indeed a fixpoint combinator, i.e., that YF is a fixpoint of
F , for any term F .

(b) Turing’s fixpoint combinator not only satisfies ΘF =β F (ΘF ), but also
ΘF →→β F (ΘF ). We used this fact in evaluating fact 2. Does an analo-
gous property hold for Y? Does this affect the outcome of the evaluation of
fact 2?

(c) Can you find another fixpoint combinator, besides Curry’s and Turing’s?

3.4 Other datatypes: pairs, tuples, lists, trees, etc.

So far, we have discussed lambda terms that represented functions on booleans
and natural numbers. However, it is easily possible to encode more general data
structures in the untyped lambda calculus. Pairs and tuples are of interest to ev-
erybody. The examples of lists and trees are primarily interesting to people with

20


