Math 4680, Topics in Logic and Computation, Winter 2012 Answers to Homework 3

Problem 2.1 #2 "There is no greatest interesting number."

Problem 2.2 #1 (a) " \Rightarrow ": Suppose that $\Gamma; \alpha \models \varphi$. We want to show that $\Gamma \models (\alpha \rightarrow \varphi)$. To that end, consider any structure \mathfrak{A} and any interpretation s, and assume $\models_{\mathfrak{A}} \Gamma[s]$. We must prove $\models_{\mathfrak{A}} (\alpha \rightarrow \varphi)[s]$. There are two cases: Case 1: $\models_{\mathfrak{A}} \alpha[s]$. In this case, using the assumption $\Gamma; \alpha \models \varphi$, it follows that $\models_{\mathfrak{A}} \varphi[s]$, and therefore also $\models_{\mathfrak{A}} (\alpha \rightarrow \varphi)[s]$ by definition of the interpretation of " \rightarrow " in a structure. Case 2: $\not\models_{\mathfrak{A}} \alpha[s]$. In this case, $\models_{\mathfrak{A}} (\alpha \rightarrow \varphi)[s]$ by definition of the interpretation of " \rightarrow " in a structure. In both cases, we are done.

" \Leftarrow ": Suppose that $\Gamma \models (\alpha \rightarrow \varphi)$. We want to show that $\Gamma; \alpha \models \varphi$. So consider any structure \mathfrak{A} and any interpretation s, and assume $\models_{\mathfrak{A}} \Gamma[s]$ and $\models_{\mathfrak{A}} \alpha[s]$. We must prove $\models_{\mathfrak{A}} \varphi[s]$. From the assumption $\Gamma \models (\alpha \rightarrow \varphi)$, it follows that $\models_{\mathfrak{A}} (\alpha \rightarrow \varphi)[s]$, and with $\models_{\mathfrak{A}} \alpha[s]$, it follows that $\models_{\mathfrak{A}} \varphi[s]$, as desired.

(b) " \Rightarrow ": Suppose that $\varphi \models \exists \psi$. We want to show that $\models (\varphi \leftrightarrow \psi)$. So consider any structure \mathfrak{A} and any interpretation *s*. There are two cases: Case 1: $\models_{\mathfrak{A}} \varphi[s]$ and $\models_{\mathfrak{A}} \psi[s]$, in which case $\models_{\mathfrak{A}} (\varphi \leftrightarrow \psi)[s]$. Case 2: $\not\models_{\mathfrak{A}} \varphi[s]$ and $\not\models_{\mathfrak{A}} \psi[s]$, in which case $\models_{\mathfrak{A}} (\varphi \leftrightarrow \psi)[s]$. In either case, we are done.

" \Leftarrow ": Suppose that $\models (\varphi \leftrightarrow \psi)$. We want to show that $\varphi \models = \mid \psi$. So consider any structure \mathfrak{A} and any interpretation s. We must show that $\models_{\mathfrak{A}} \varphi[s]$ iff $\models_{\mathfrak{A}} \psi[s]$. By assumption, $\models (\varphi \leftrightarrow \psi)$, so either $\models_{\mathfrak{A}} \varphi[s]$ and $\models_{\mathfrak{A}} \psi[s]$, in which case we are done, or $\not\models_{\mathfrak{A}} \varphi[s]$ and $\not\models_{\mathfrak{A}} \psi[s]$, in which case we are also done.

Problem 2.2 #9 (a)
$$\exists x \exists y (x \neq y \land \forall z.z = x \lor z = y)$$
.
(b) $\forall x \exists y (P(x, y) \land \forall z (P(x, z) \rightarrow z = y))$.
(c) $\forall x \exists y (P(x, y) \land \forall z (P(x, z) \rightarrow z = y)) \land \forall y \exists x. P(x, y)$.

Problem 2.2 #14 (a) The only susets of the real line that are definable in $(\mathbb{R}; <)$ are \emptyset and \mathbb{R} .

Proof: suppose that A is some definable subset, i.e., there is some formula φ such that $x \in A$ iff $\models_{\mathbb{R}} \varphi(x)$. Suppose that A is not \emptyset or \mathbb{R} . Then there are $x, y \in \mathbb{R}$ such that $x \in A$ and $y \notin A$. Let $f : \mathbb{R} \to \mathbb{R}$ be some monotone function such that f(x) = y (Such a function always exists, for example, the function f(z) = z + y - x). Since f is an automorphism, we have by the homomorphism theorem that $\models_{\mathbb{R}} \varphi(x)$ iff $\models_{\mathbb{R}} \varphi(f(x))$ iff $\models_{\mathbb{R}} \varphi(y)$, so $x \in A$ iff $y \in A$, a contradiction. It follows that A is \emptyset or \mathbb{R} .

(b) Consider the following subsets of $\mathbb{R} \times \mathbb{R}$:

$$\begin{aligned} X &= \{(x,y) \mid x < y\} \\ Y &= \{(x,y) \mid x = y\} \\ Z &= \{(x,y) \mid x > y\} \end{aligned}$$

Clearly, X, Y, and Z are definable (by the formulas x < y, x = y, and x > y, respectively; or if equality is not in the language, we can write $\neg x < y \land \neg y < x$ instead of x = y). We get the following 8 definable subsets:

 $\emptyset, \quad X, \quad Y, \quad Z, \quad X \cup Y, \quad X \cup Z, \quad Y \cup Z, \quad X \cup Y \cup Z = \mathbb{R} \times \mathbb{R}.$

And these are in fact the only 8 definable subsets. Proof: Let $\varphi(x, y)$ be any formula defining a subset $A \subseteq \mathbb{R} \times \mathbb{R}$. Consider $(x, y) \in X$ and $(x', y') \in X$. We claim that $\varphi(x, y)$ iff $\varphi(x', y')$. Indeed, because we have x < y and x' < y', we can find a monotone function f such that f(x) = x'and f(y) = y'. By the homomorphism theorem, it follows that $\varphi(x, y)$ iff $\varphi(f(x), f(y))$ iff $\varphi(x', y')$. Therefore, A either contains all elements of Xor no elements of X.

Similarly, we prove that A either contains all or no elements of Y, and A either contains all or no elements of Z. It follows that A is of one of the 8 forms above.