
Math 4680, Topics in Logic and Computation, Winter 2012

Lecture Notes 3: The Language of First-Order Logic

Peter Selinger

1 The language of first-order logic

1.1 Signatures

Definition. A first-order signatureconsists of two disjoint setsF andP of func-
tion symbols, respectively,predicate symbols, together with anarity function
ar : F ∪ P → N. If f ∈ F and ar(f) = n, then we callf ann-ary function
symbol. If P ∈ P and ar(P) = n, then we callP ann-ary predicate symbol.
We also use the words “nullary”, “unary”, “binary”, etc., for 0-ary, 1-ary, 2-ary
and so on. A nullary function symbol is also called aconstant symbol. A nullary
predicate symbol is sometimes called asentence symbol.

Example 1. Thesignature of elementary arithmetichas a constant symbol “0”,
a unary function symbol “S”, binary function symbols “+”, “ ·”, and “E”, and a
binary predicate symbol “<”. The intended interpretations of these symbols are
respectively zero, the successor function, addition, multiplication, exponentiation,
and the less than relation.

Example 2. The signature of set theoryhas at least a binary predicate symbol
“∈”. Sometimes one also adds a constant symbol “∅”, binary function symbols
“∪” and “∩”, and so forth.

1.2 Alphabet

First-order terms and formulas will be defined relative to a given signature. Given
a signature, thealphabetof first-order logic consists of the elements ofF andP ,
plus the following symbols (which we assume are not inF andP):

¬ ∧ ∨ → ⊤ ⊥ ∀ ∃ (connectives)
≈ (equality)
() , (auxiliary symbols)
x1 x2 x3 . . . (variables)

Notice that there is a countable supply of variables. We denote the set of variables
byV , and we often use lower-case roman letters such asx, y, z to denote variables.

1

Notice that when we discussed sentential logic, we includedthe connective “↔”
as a primitive connective of our language. We have dropped this connective now,
since it constituted an unnecessary luxury, and it did not mesh well with natural
deduction. However, we do not go as far as Enderton, who dropsall connectives
except for “→”, “ ¬”, and “∀”.

Let A∗ denote the set of finite strings over the alphabetA. If α andβ are strings,
then we denote their concatenation byαβ.

1.3 Well-formed terms

Definition 3. The setT ⊆ A∗ of well-formed terms(or simply terms) over a
given first-order signature is the smallest subset ofA∗ such that

1. If x is a variable, thenx ∈ T .

2. If c is a constant symbol, thenc ∈ T .

3. If f is ann-ary function symbol, wheren > 1, and if t1, . . . , tn ∈ T , then
f(t1, . . . , tn) ∈ T .

Example 4. Relative to the signature of elementary arithmetic, the following are
well-formed terms:

+(x, y) S(S(S(0))) ·(S(S(0)),+(E(x, 0), S(0)))

We will soon start using a more readable, informal syntax forterms, writing, for
instancex+ y, 3, and2 ·(x0+1) for the above three terms. However, the formal
syntax, while cumbersome, has technical advantages because it guarantees us a
unique readability result similar to that proved for well-formed formulas of sen-
tential logic. When we use the informal syntax, it will always be understood that
we actually mean the corresponding well-formed terms of theformal language.

1.4 Well-formed formulas

Definition 5. The setW ⊆ A∗ of well-formed formulas (wff’s)over a given
first-order signature is the smallest subset ofA∗ such that

1. If Q is a nullary predicate symbol, thenQ ∈ W .

2

2. If P is ann-ary predicate symbol, wheren > 1, and if t1, . . . , tn are well-
formed terms, thenP(t1, . . . , tn) ∈ W .

3. If t1 andt2 are well-formed terms, then≈(t1, t2) ∈ W .

4. ⊤,⊥ ∈ W .

5. If α ∈ W then(¬α) ∈ W .

6. If α, β ∈ W then(α∧ β) ∈ W , (α∨ β) ∈ W , and(α→ β) ∈ W ,

7. If α ∈ W andx is a variable, then(∀xα) ∈ W and(∃xα) ∈ W .

The formulas build by rules 1–4 are calledatomic formulas. All other well-
formed formulas are calledcomposite formulas.

The sets of terms and formulas that arise from a given signature are also called the
languageof that signature. For instance, we speak of the language of elementary
arithmetic, or the language of set theory, etc.

Remark. In Definitions 3 and 5, we speak of the “smallest” set of strings satisfying
certain conditions. In order for this to be well-defined, we must prove in each case
that such a smallest set actually exists. The proof is very similar to the case of
sentential logic, and we omit it here.

Notice that equality symbol≈ is automatically included in every first-order lan-
guage. We regard≈ as a logical symbol with a fixed interpretation, namely equal-
ity. In this, it differs from the other predicate symbols, which are non-logical
symbols whose meaning depends on the context. The symbol≈ is not part of the
signature of a language, since the signature only fixes the non-logical symbols.
However, we do occasionally refer to≈ as a binary predicate symbol.

1.5 Examples

Relative to the signature of elementary arithmetic, the following are well-formed
formulas:

1. ≈(x, S(0)).

2. (∀x(∃y (¬≈(x, y)))).

3. (∀x(∀y (∀z ((<(x, y)∧<(y, z))→<(x, z))))).

3

Relative to the signature of set theory, the following are well-formed formulas:

4. ∈(x, y).

5. (∃x(∀y (¬∈(y, x)))).

6. (∀x(∀y
((∀z ((∈(z, x)→∈(z, y))∧(∈(z, y)→∈(z, x))))→≈(x, y)))).

1.6 Backus-Naur Form

In computer science, where one needs to define languages all the time, a useful
notation has emerged for defining sets of strings. The notation is called BNF (for
Backus-Naur Form). The BNF notation is nothing but a succinct way of stating the
content of Definitions 3 and 5, and other such similar definitions. The following
is the BNF for well-formed terms and formulas of first-order logic:

Terms: t ::= x c f(t1, . . . , tn)

Formulas: α ::= Q P(t1, . . . , tn) ≈(t1, t2) ⊤ ⊥

(¬α) (α1 ∧ α2) (α1 ∨ α2) (α1 → α2)

(∀xα) (∃xα)

Here, the symbolst, andα are meta-variables that range over terms and formulas,
respectively. Moreover,x ranges over variables,c ranges over constant symbols,
f ranges overn-ary function symbols withn > 1,Q ranges over nullary predicate
symbols, andP ranges overn-ary predicate symbols withn > 1.

Each clause of the BNF defines a syntactic class, such as terms, formulas, etc. The
vertical lines in each clause separate the different alternative forms that a string in
that syntactic class can have. The meaning of a BNF is that it defines the smallest
set(s) of strings closed under certain operations. Thus, itis really just a short-hand
notation for the inductive clauses spelled out in Definitions 3 and 5.

1.7 Induction, recursion, and unique readability

As in the case of sentential logic, there are induction and recursion principles for
terms and formulas of first-order logic. Also, a unique readability result holds.

4

Since the proofs are very similar to those of sentential logic, we omit them here,
and we will henceforth use induction and recursion without further ado.

1.8 Informal syntax

We will also adopt a more liberal syntax for writing terms andformulas informally.
For the sentential connectives, we adopt the same precedence rules as before. We
also write∀xα or ∀x.α instead of(∀xα), and similar for∃. The convention is
that when we use a dot, as in∀x.α, then the scope of the quantifier extends as far
as possible, so that∀x.α ∧ β means∀x(α∧ β) and not(∀xα) ∧ β.

For terms, we use the usual infix notation where appropriate.For instance, we
write x + y · z instead of+(x, ·(y, z)). We do the same for certain binary
predicates, for instance we writex < y, x ∈ y, andx ≈ y instead of<(x, y),
∈(x, y), and≈(x, y), respectively.

If P is a predicate symbol of arityn = 0, then we will sometimes also write
P (t1, . . . , tn) to denoteP itself. This convention allows us to handle the cases
n = 0 andn > 1 uniformly in case distinctions. With this convention, the atomic
formulas are precisely the formulas of the formP (t1, . . . , tn), t1 ≈ t2, ⊤, or⊥.

We also adopt certain other conventions, such as writingx 6< y instead of¬x < y,
andα↔ β instead of(α→ β) ∧ (β → α). The following are the well-formed
formulas from Section 1.5 written in the informal syntax.

1. x ≈ S(0).

2. ∀x∃y x 6∈ y.

3. ∀x∀y∀z. x < y ∧ y < z→ x < z.

4. x ∈ y.

5. ∃x∀y y 6∈ x.

6. ∀x∀y ((∀z. z ∈ x↔ z ∈ y)→ x ≈ y).

5

1.9 Free variables

Definition. The set FV(t) of free variables of a termt, and the set FV(α) of free
variables of a formulaα, are recursively defined as follows:

Terms: FV(x) = {x}
FV(f(t1, . . . , tn)) = FV(t1) ∪ . . . ∪ FV(tn) (n > 0)

Formulas: FV(P (t1, . . . , tn)) = FV(t1) ∪ . . . ∪ FV(tn) (n > 0)
FV(t1 ≈ t2) = FV(t1) ∪ FV(t2)
FV(⊤) = ∅
FV(⊥) = ∅
FV((¬α)) = FV(α)
FV((α1 � α2)) = FV(α) ∪ FV(β)
FV((∀xα)) = FV(α)− {x}
FV((∃xα)) = FV(α)− {x}

We say a variablex is free in α if x ∈ FV(α). This is the case ifx occurs
somewhere inα, but not in the scope of a quantifier. A formulaα is called a
sentenceif FV(α) = ∅. We sometimes denote sentences by the lettersσ andτ .

2 Truth and Models

2.1 Structures

To interpret the formulas of first-order logic, we need to know three things: first,
we need to know in which set to interpret the variables. Second, we need to know
how to interpret the basic constant and function symbols. Third, we need to know
how to interpret the basic predicate symbols.

Definition. Fix a first-order signature〈F ,P , ar〉. A structureA for the signature
consists of the following data:

1. A non-empty set|A|, called thecarrier of A. The elements of|A| are also
calledobjectsor individuals.

2. For eachn-ary function symbolf in F , a function

fA : |A|n → |A|,

called theinterpretationof f .

6

3. For eachn-ary predicate symbolP in P , a relation

PA ⊆ |A|n,

called theinterpretationof P .

Note that we require the carrier to be non-empty. Also note that the interpretation
of each function symbol is a total function, i.e., it is everywhere defined. We do
not allow function symbols to denote partial functions. So for instance, if we were
to interpret the language of fields, we would be forced to interpret the inversion
operation(−)−1 by a total function. We handle this situation by interpreting 0−1

by some dummy value, for instance, we could let0−1 = 0.

2.2 Examples

The standard modelfor the language of elementary arithmetic is the following
structure:

|A| = N = {0, 1, 2, . . .}
<A = {〈x, y〉 ∈ N | x < y}
0A = 0
SA(x) = x+ 1, for all x ∈ N

+A(x, y) = x+ y, for all x, y ∈ N

·A(x, y) = x · y, for all x, y ∈ N

EA(x, y) = xy, for all x, y ∈ N

The following defines another structure for the language of elementary arithmetic:

|B| = {0, 1, 2, 3, 4}
<B = {〈x, y〉 ∈ N | y = x+ 1 (mod 5)}
0B = 0
SB(x) = x+ 1 (mod 5), for all x ∈ N

+B(x, y) = x+ y (mod 5), for all x, y ∈ N

·B(x, y) = x · y (mod 5), for all x, y ∈ N

EB(x, y) = xy (mod 5), for all x, y ∈ N

The structureA satisfies different sentences than the structureB. For example,
the following sentences hold inB, but not inA:

∀x∃y(x ≈ S(y)).

7

S(S(S(S(S(0))))) ≈ 0.

The following sentences hold inA, but not inB:

∀x∀y∀z(x < y ∧ y < z→ x < z).

∀x∀y(x+ y ≈ 0→ x ≈ 0∧ y ≈ 0).

In particular, not every structure of elementary arithmetic makes all the sentences
true that would be true of the natural numbers. If a structuresatisfies, say, the
axioms of number theory, then we call it amodelof number theory. Notice the
difference in the usage of the words “structure” and “model”: we speak of astruc-
ture for a language, but of amodel of the axioms. But we are getting ahead of
ourselves: axioms and models are discussed in Section 2.5 below.

2.3 The interpretation of terms and formulas

In the previous section, we have given some examples of structures, and we have
informally spoken of a structure “satisfying” certain sentences but not others. We
now need to define formally what we mean by a structure satisfying a sentence.
To this end, we need to be able to interpret terms and formulasin a given structure.
We first need to define the concept of a valuation of variables.Throughout the rest
of this section, fix a language. Recall that we wroteV for the set of variables and
T for the set of terms of a language.

Definition. A valuation in a structureA is a maps : V → |A| which assigns an
element of the carrier to each variable of the language. Ifs is a valuation,x ∈ V

a variable, anda ∈ |A| is an individual, then we denote bys(x|a) the valuations′

that behaves likes, except that it assignsa to x:

s′(z) =

{

a if z = x,
s(z) if z 6= x.

Any valuations : V → |A| can be recursively extended to an interpretations̄ :
T → |A| of arbitrary terms as follows:

s̄(x) = s(x)
s̄(f(t1, . . . , tn)) = fA(s̄(t1), . . . , s̄(tn)) (n > 0)

8

If A is a structure,s : V → |A| a valuation, andϕ a formula, then we define
whether|A| satisfiesϕ under the valuations, in symbols|=A ϕ [s], by the fol-
lowing recursive clauses:

|=A P (t1, . . . , tn) [s] iff 〈s̄(t1), . . . , s̄(tn)〉 ∈ PA

|=A t1 ≈ t2 [s] iff s̄(t1) = s̄(t2)
|=A ⊤ [s] always
|=A ⊥ [s] never
|=A (¬ϕ) [s] iff not |=A ϕ [s]
|=A (ϕ1 ∧ ϕ2) [s] iff |=A ϕ [s] and|=A ψ [s]
|=A (ϕ1 ∨ ϕ2) [s] iff |=A ϕ [s] or |=A ψ [s]
|=A (ϕ1 → ϕ2) [s] iff |=A ϕ [s] implies|=A ψ [s]
|=A (∀xϕ) [s] iff for all a ∈ |A|, |=A ϕ [s(x|a)]
|=A (∃xϕ) [s] iff there existsa ∈ |A| such that|=A ϕ [s(x|a)]

Remark. Strictly speaking, the above definition does not fit into the schema of
our recusion principle, because we are definition a predicate by recursion, and
not a function. More formally, one would first define, by recursion, a function
modelsA which assigns a truth value modelsA(ϕ, s) ∈ {T, F} to each pair of a
well-formed formulaϕ and a valuations. One would then define|=A ϕ [s] if and
only if modelsA(ϕ, s) = T .

2.4 Logical entailment

Definition. LetΓ be a set of well-formed formulas, andϕ a well-formed formula.
We say thatΓ logically implies (or entails) ϕ, in symbolsΓ |= ϕ, if for every
structureA and every valuations in A: if |=A ψ [s] holds for everyψ ∈ Γ, then
|=A ϕ [s].

As before in the case of sentential logic, we use certain shorthand notations. Thus
we writeψ1, . . . , ψn |= ϕ instead of{ψ1, . . . , ψn} |= ϕ, and |= ϕ instead of
∅ |= ϕ. Thus,|= ϕ means that every structure and every valuation satisfiesϕ. In
this case, we say that the formulaϕ is valid. We say that two formulasϕ andψ
logically equivalentif ϕ |= ψ andψ |= ϕ. In this case, we also writeϕ |==| ψ.

Notice that, as compared to our terminology in sentential logic, we have dropped
the “tauto” from “tautological entailment” and “tautological equivalence”. One
usually speaks of tautologies only in the case of sententiallogic.

Example. Prove that∀x.Qx |= Qy. Take an arbitrary structureA and an arbitrary
valuations such that|=A ∀x.Qx [s]. Then, by the interpretation of the universal

9

quantifier, for alla ∈ A, we have|=AQx [s(x|a)], and thus, for alla ∈ A, a ∈
QA. In particular,s(y) ∈ QA, and thus|=AQy [s]. SinceA ands were arbitrary,
this shows∀x.Qx |= Qy.

Example. Prove thatQy 6|= ∀x.Qx. It suffices to give a particular structure and
a valuation such that the left-hand side is satisfied and the right-hand side is not.
So let|A| = {0, 1}, and letQA = {0}. Let s be a valuation such thats(y) = 0.
Then|=AQy [s], but not|=A ∀x.Qx [s].

Notice that the situation is similar to doing proofs with truth tables: To prove
that a logical entailment holds, we need to considerall structures and valuations,
whereas to prove that a logical entailment doesn’t hold, it suffices to give a single
counterexample. The difference is that structures, unliketruth tables, need not
be finite, and thus there is no obvious mechanical method for deciding whether
a given logical entailment holds or not. (In fact, one can prove that there isn’t a
non-obvious method either).

2.5 Theories and models

We first observe that the interpretation of a sentence does not depend on the valu-
ations.

Lemma 6. 1. If s, s′ are valuations which agree on the free variables of a
term t, then s̄(t) = s̄′(t).

2. If s, s′ are valuations which agree on the free variables of a formula ϕ, then
|=A ϕ [s] if and only if |=A ϕ [s′].

Proof. Exercise. �

Corollary 7. If σ is a sentence and A is a structure, then |=A σ [s] is independent
of the valuation s (i.e., either it holds for all valuations, or for no valuation). �

We say thatA is a modelof σ if |=A σ [s] for somes. Since this notion does
not depend ons (by the previous corollary), we simply write|=A σ in this case.
Similarly, if Σ is a set of sentences, then we say thatA is amodelof Σ, in symbols
|=A Σ, if |=A σ for all σ ∈ Σ.

Let A be a structure. The set of all sentences that are satisfied inA is called the
theoryof A. It is also denoted Th(A). More generally, ifC is a class of structures,

10

the set of those sentences that are satisfied inevery structureA ∈ C is called the
theoryof C , and written Th(C).

We can also take the opposite point of view: starting from a set Σ of sentences,
we can ask for the class of structures which satisfyΣ. This class is denoted by
Mod(Σ). In this context, the sentences inΣ are often calledaxioms, and we say
that the class Mod(Σ) is axiomatizedbyΣ.

Definition. We say thatC is axiomatizableif C = Mod(Σ) for some setΣ of
sentences. We say that a classC of structures isfinitely axiomatizableif C =
Mod(σ) for some sentenceσ.

A finitely axiomatizable class is also called anelementary class. A general ax-
iomatizable class is also called anelementary class in the wider sense.

Remark. Since Mod(σ1, . . . , σn) = Mod(σ1 ∧ . . .∧σn), any class that is axiom-
atizable by finitely many sentences is already axiomatizable by a single sentence.
Thus, no generality is lost in the previous definition by defining an elementary
class to be a class axiomatized by a single sentence.

Notice that for any structureA and any sentenceσ, the following holds:

σ ∈ Th(A) ⇐⇒ |=A σ ⇐⇒ A ∈ Mod(σ).

Proposition 8. The following hold, for any class C of structures and any set Σ of
sentences:

1. Σ ⊆ Th(C) if and only if C ⊆ Mod(Σ).

2. C ⊆ Mod(Th(C)).

3. Σ ⊆ Th(Mod(Σ)).

4. Th(C) = Th(Mod(Th(C))).

5. Mod(Σ) = Mod(Th(Mod(Σ))).

6. Mod(Σ) =
⋂

σ∈Σ
Mod(σ).

7. Th(C) =
⋂

A∈C
Th(A).

Proof. Exercise. �

11

