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1 Substitution

We write t1[t/x] for the result of substituting the termt for the variablex in the
term t1, andϕ[t/x] for the result of substitutingt for x in the formulaϕ. Here,
only freeoccurrences ofx are substituted. More precisely, substitution is defined
recursively as follows. On terms:

x[t/x] = t
y[t/x] = y if x, y are different variables
f(t1, . . . , tn)[t/x] = f(t1[t/x], . . . , tn[t/x])

On formulas:

1. P (t1, . . . , tn)[t/x] = P (t1[t/x], . . . , tn[t/x])
(t1 ≈ t2)[t/x] = t1[t/x] ≈ t2[t/x]

2. (¬ϕ)[t/x] = ¬(ϕ[t/x])
(ϕ � ψ)[t/x] = (ϕ[t/x]) � (ψ[t/x])

3. (∀x.ϕ)[t/x] = ∀x.ϕ
(∀y.ϕ)[t/x] = ∀y.(ϕ[t/x]) if x, y are different variables
(∃x.ϕ)[t/x] = ∃x.ϕ
(∃y.ϕ)[t/x] = ∃y.(ϕ[t/x]) if x, y are different variables

Substitution is a more subtle notion than meets the eye. In particular, one has to
be careful thatt does not contain any free variables which get captured whent is
substituted into some formula. Consider the formula∃y.x 6≈ y. In a structure
with two or more elements, this statement is true for anyx. On the other hand, if
we substitutey for x, we obtain∃y.y 6≈ y, which is false! We want to rule out
situations like this.

We say thatt is substitutable forx in ϕ if we can substitutet for x in ϕ without
worrying about free variables oft intruding the scope of quantifiers inϕ. More
precisely, this concept is defined by recursion onϕ:

1. If ϕ is atomic, thent is always substitutable forx in ϕ.
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2. t is substitutable forx in ¬ϕ iff t is substitutable forx in ϕ.

t is substitutable forx in ϕ � ψ iff t is substitutable forx in ϕ and t is
substitutable forx in ψ.

3. t is substitutable forx in ∀y.ϕ iff either

(a) x is not free in∀y.ϕ or

(b) y is not free int andt is substitutable forx in ϕ.

t is substitutable forx in ∃y.ϕ iff either

(a) x is not free in∃y.ϕ or

(b) y is not free int andt is substitutable forx in ϕ.

Convention. From now on, whenever we writeϕ[t/x], it is always implicitly
assumed thatt is substitutable forx in ϕ. If t is not substitutable forx in ϕ, then
we implicitly rename the bound variables inϕ so thatt becomes substitutable for
x in ϕ.

In the proofs of soundness and completeness, we often need torelate substitutions
to the interpretation of the involved terms in a structure. The following lemma
provides the necessary facts.

Lemma 1 (Substitution Lemma). SupposeA is a structure ands is a valuation.
Supposet a term,x a variable, and̄s(t) = a. Lets′ = s(a|x). Then

1. s̄(t1[t/x]) = s̄′(t1) for all termst1.

2. |=A ϕ[t/x] [s] iff |=A ϕ [s′], for all formulasϕ such thatt is substitutable
for x in ϕ.

Proof. By induction on terms and formulas. �

2 Natural Deduction

The natural deduction rules for first-order logic are those for sentential logic, plus
the rules given below. Note that since we are already using lower-case roman
letters for variables, we are now using numbers to identify canceled hypotheses.
Also, in the rules for quantifiers, whenever we writeϕ[t/x], it is always implicitly
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assumed thatt is substitutable forx in ϕ. Note the side conditions in the(∀I)
and (∃E ) rules. These conditions ensure that we have not made any unwarranted
assumptions about the variablea.

Rules for quantifiers:

Γ
...

ϕ[a/x]
∀x.ϕ

(∀I) if a is a variable not free inΓ orϕ

Γ
...

∀x.ϕ
ϕ[t/x]

(∀E ) if t is a term

Γ
...
ϕ

ϕ[t/x]
(∃I) if t is a term

Γ
...

∃x.ϕ

Γ, [ϕ[a/x]]1
...
ψ

ψ
1 (∃E ) if a is a variable not free inΓ, ϕ, orψ

Rules for equality:

t ≈ t (refl) s ≈ t
t ≈ s (symm) r ≈ s s ≈ t

r ≈ t (trans)

s ≈ s′

t[s/x] ≈ t[s′/x]
(cong

1
)

s ≈ s′ ϕ[s/x]
ϕ[s′/x]

(cong
2
)

As before, we writeΓ ⊢ ϕ if there is a natural deduction derivation, all of whose
uncanceled hypotheses are inΓ, and whose conclusion isϕ.
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3 Soundness and Completeness

Theorem 2 (Soundness and Completeness). If Γ is a set of formulas, andϕ is a
formula, then

Γ ⊢ ϕ iff Γ |= ϕ.

The left-to-right implication is calledsoundness, and the right-to-left implication
is calledcompleteness.

Proof. Soundness is proved by induction on the size of derivations,and by a case
distinction on what the last rule in the derivation is. The substitution lemma is
needed in the cases of the quantifier rules.

For the proof of completeness, see e.g. van Dalen’s book [?]. �

4 Compactness and consequences

The following theorem is a trivial consequence of the soundness and completeness
theorem, but it has many interesting and surprising applications. Recall that a set
of formulas is calledsatisfiableif there exists a structure and a valuation that
makes all formulas in the set true.

Theorem 3(Compactness). LetΓ be a set of formulas. If every finite subset ofΓ
is satisfiable, thenΓ is satisfiable.

Proof. We prove the contrapositive. SupposeΓ is not satisfiable. ThenΓ |= ⊥.
By completeness,Γ ⊢ ⊥. But natural deductions are finite, hence any deduction
can only use finitely many hypotheses. It follows thatΓ′ ⊢ ⊥ for some finite
Γ′ ⊆ Γ. By soundness,Γ′ |= ⊥, and thusΓ′ is not satisfiable, as desired. �

Several applications of the compactness theorem are demonstrated in the exercises
of Problem Set 9. Here are some more examples of such applications:

Theorem 4. SupposeΣ is a set of sentences. IfΣ has arbitrarily large finite
models, then it has an infinite model.

Proof. SupposeΣ has arbitrarily large finite models. For everyn ∈ N, let λn
be the sentence that states “there are at leastn distinct object”. Notice thatλn is
first-order definable, for instance

λ3 = ∃x∃y∃z(x 6≈ y ∧ x 6≈ z ∧ y 6≈ z).
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Consider the set of sentencesΦ = Σ ∪ {λn | n ∈ N}. SinceΣ has arbitrarily
large finite models, every finite subset ofΦ has a model. By compactness,Φ has
a model. But any model ofΦ is infinite, and it is also a model ofΣ. Thus,Σ has
an infinite model. �

Recall that a classK of structures is calledaxiomatizableif K = Mod(Σ),
for some set of sentencesΣ. Also, K is calledfinitely axiomatizableif K =
Mod(σ1, . . . , σn) for finitely many sentencesσ1, . . . , σn.

Theorem 5. The class of all infinite structures is axiomatizable, but not finitely
axiomatizable.

Proof. LetK be the class of infinite structures. The set{λn | n ∈ N} axiomatizes
K. Suppose, on the other hand, thatK was finitely axiomatizable. Then there
exist sentencesσ1, . . . , σn such thatK = Mod(σ1, . . . , σn). Letσ = σ1 ∧ . . .∧
σn, thenK = Mod(σ). Thus, a structureA is infinite iff |=A σ. Equivalently, a
structureA is finite iff |=A ¬σ. But then the class of finite structures would be
axiomatizable, contradicting Theorem 4. �

The following theorem is often useful in proving that a certain class of structures
is notfinitely axiomatizable:

Theorem 6. If K is a finitely axiomatizable class of structures, and ifK =
Mod(Σ), then there exists a finite subsetΣ′ ⊆ Σ such thatK = Mod(Σ′).

Proof. By assumption,K is finitely axiomatizable. Letτ1, . . . , τn be sentences
such thatK = Mod(τ1, . . . , τn). ThenK = Mod(τ), whereτ = τ1 ∧ . . . ∧ τn.
Now every model ofΣ is in the classK, and hence satisfiesτ . It follows that the
setΣ∪{¬ τ} is unsatisfiable. By compactness, there exists a finite subset Σ′ ⊆ Σ
such thatΣ′ ∪ {¬ τ} is unsatisfiable. This means that every model ofΣ′ is not a
model of¬ τ , or in other words, every model ofΣ′ is a model ofτ . Also, every
model ofΣ is certainly a model ofΣ′. We thus haveK = Mod(Σ) ⊆ Mod(Σ′) ⊆
Mod(τ) = K. It follows thatK = Mod(Σ′) as desired. �

If K is a class of structures, let us writeKc for the complement of the class. That
is, a structureA is inKc iff it is not in K.

Theorem 7. A classK of structures is finitely axiomatizable if and only if both
K andKc are axiomatizable.
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Proof. “⇒”: SupposeK is finitely axiomatizable. Then surelyK is axioma-
tizable. To show thatKc is axiomatizable, letK = Mod(σ1, . . . , σn). Let
σ = σ1 ∧ . . .∧ σn. ThenA ∈ K iff |=A σ. ConsequentlyA ∈ Kc iff 6|=A σ, iff
|=A ¬σ. Thus,Kc = Mod(¬ σ).

“⇐”: Suppose bothK andKc are axiomatizable. LetK = Mod(Σ) andKc =
Mod(Γ). Since no structure is inK andKc, the setΣ ∪ Γ is unsatisfiable. By
compactness, there exists a finite subsetΣ′ ∪ Γ′ which is unsatisfiable. Clearly
every model ofΣ is a model ofΣ′. Conversely, letA be a model ofΣ′. ThenA
does not satisfyΓ′, and hence notΓ. ThusA 6∈ Kc, thusA ∈ K. We have:

K = Mod(Σ) ⊆ Mod(Σ′) ⊆ K,

and henceK = Mod(Σ′). ThusK is finitely axiomatizable, as desired. �

5 Size of models

The cardinality of a set is the number of elements in the set. Different infinite
sets can have different cardinalities; for instance, the set of natural numbers has
a smaller cardinality than the set of real numbers. We say thecardinality of a
structureA is the cardinality of its carrier|A|. The cardinality of a languageL is
the cardinality ofL, considered as a set of sentences.

Remark.If P andF are the sets of predicate symbols, respectively function sym-
bols, of the languageL, then the cardinality ofL is κ = max(cardP ∪ F ,ℵ0).
Here,ℵ0 is the cardinality of a countable set.

To see why this is true, first, notice that the alphabetA ofL consists of the symbols
from P andF , finitely many special symbols such as parentheses and logical
connectives, and countably many variables. Thus, the cardinality of A is κ. Let
A∗ be the set of finite strings in the alphabetA. One can regard these strings as
finite tuples, thusA∗ = {ǫ} ∪ A ∪ A ×A ∪ A3 ∪ A4 ∪ . . .. Hereǫ is the empty
string. But notice that the cardinality of eachAn is the same as the cardinality of
A, whenn > 1. Thus the cardinality ofA∗ is at mostA × ℵ0, which is in turns
the cardinality ofA. SinceL ⊆ A∗, it follows thatcardL 6 cardA∗ 6 cardA.
On the other hand, clearlycardA 6 cardL. Thus it follows thatL has the same
cardinality as its alphabetA.

Theorem 8(Löwenheim-Skolem-Tarski). LetΓ is a satisfiable set of formulas in
a language of cardinalityκ. Then
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1. Γ is satisfiable in some structure of cardinality6 κ.

2. IfΓ is satisfiable in some infinite structure, then for every cardinality λ > κ,
there exists a structure of cardinalityλ in whichΓ is satisfiable.

Proof. 1. This follows from the proof of the completeness theorem. In the proof
of the completeness theorem, we proceeded as follows: First, we replace all free
variables inΓ by new constants, to obtain a set of sentences, which we closeunder
derivability to obtain a theoryT . The language ofT contains at most countably
many new constants, so it has the same cardinality as the language ofΓ. LetL be
the language ofT . Next, we constructed a Henkin theoryTω by adding a constant
symbol for each existential sentence ofL, countably many times. The resulting
languageLω still has the same cardinality asL. We definedA to be the set of
closed terms ofLω. Clearly, the cardinality ofA is at most that ofLω. Finally, we
constructed a structureA in whichT , thusΓ, is satisfiable. We let the carrier|A|
be a certain quotient ofA. Thus,card |A| 6 cardA 6 cardLω = cardL = κ.

2. Suppose now thatΓ is satisfiable in some infinite structure. LetL be the
language ofΓ. Let λ > κ be a cardinal. Consider the languageL′ obtained from
L by addingλ many new constant symbols{cx | x ∈ λ}. Consider the set of
formulas

Φ = Γ ∪ {cx 6≈ cy | x 6= y ∈ λ}.

Notice that sinceΓ is satisfiable in some infinite structureA, every finite subsetΦ′

of Φ is also satisfiable, namely by mapping the finitely manycx that are mentioned
in Φ′ to different elements ofA. By compactness, it follows thatΦ is satisfiable.
By part 1.,Φ is satisfiable in some structureB of cardinality6 λ (notice thatλ
is the cardinality of the languageL′). On the other hand, sinceB is a model of
cx 6≈ cy, for any distinctx, y ∈ λ, B has cardinality at leastλ. It follows that the
cardinality ofB is exactlyλ. Further,Γ is satisfiable inB. �

Recall that two structuresA andB are calledelementarily equivalentif Th(A) =
Th(B). Concretely, this means thatA andB make precisely the same sentences
true. IfA andB are elementarily equivalent, we writeA ≡ B.

Corollary 9. (a) LetΣ be a set of sentences in a countable language. IfΣ has
an infinite model, thenΣ has models of every infinite cardinality.

(b) LetA be an infinite structure for a language of cardinalityκ. Then for any
infinite cardinalλ > κ, there is a structureB of cardinalityλ such that
B ≡ A.
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Proof. (a) TakeΓ = Σ andκ = ℵ0 in Theorem 8(2). (b) TakeΓ = Th(A) in
Theorem 8(2) to obtain a modelB of Th(A) of cardinalityλ. Then Th(A) ⊆
Th(B). On the other hand, ifσ is some sentence that is true inB, then¬σ is
not true inB, thus¬ σ is not true inA, henceσ is true inA. If follows that
Th(B) ⊆ Th(A). HenceB ≡ A. �

Note that the preceding theorem and corollary are surprising. They imply, for
instance, that there is an uncountable structure which satisfies precisely the same
first-order sentences as the natural numbers. On the other hand, there is some
countable structure which is elementarily equivalent to the reals.

6 Complete andκ-categorical theories

Recall that a set of sentences is called atheory if for all sentencesσ, T ⊢ σ
impliesσ ∈ T . Also recall that the theory Th(A) of a structureA is the set of
sentences that are satisfied inA. (It follows from soundness that this is indeed a
theory). Further, ifK is a class of structures, then Th(K) is defined to be the set
of sentences that are satisfied inall structures inK.

Definition. A theory T is completeif for every sentenceσ, eitherσ ∈ T or
¬σ ∈ T .

Lemma 10. 1. IfT ⊆ T ′ andT is complete andT ′ is consistent, thenT = T ′.

2. A theory is complete iff it is maximally consistent.

3. For any structureA, Th(A) is complete.

4. SupposeK is a non-empty class of structures. ThenTh(K) is complete iff
for all A,B ∈ K, A ≡ B.

Proof. 1. SupposeT ⊆ T ′ andT is complete andT ′ is consistent. Suppose there
was some sentenceσ ∈ T ′ such thatσ 6∈ T . Then¬σ ∈ T sinceT is complete.
SinceT ⊆ T ′, it follows that¬σ ∈ T ′. But thenσ,¬ σ ∈ T ′, which implies that
T ′ is inconsistent, a contradiction. HenceT = T ′.

2. Left-to-right. SupposeT is complete. Then it is maximally consistent by 1.
Right-to-left: SupposeT is maximally consistent. Supposeσ 6∈ T . ThenT ∪ {σ}
is inconsistent by maximality ofT . HenceT, σ ⊢ ⊥, and thusT ⊢ ¬ σ by the
(¬ I) rule. SinceT is a theory, it follows that¬ σ ∈ T . HenceT is complete.
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3. This is trivial. For any sentenceσ, either|=A σ or |=A ¬ σ, by definition of|=.
Thusσ ∈ Th(A) or¬σ ∈ Th(A).

4. Left-to-right: Suppose Th(K) is complete. Consider anyA ∈ K. Then
Th(K) ⊆ Th(A). But Th(K) is complete and Th(A) is consistent, hence Th(K) =
Th(A) by 2. Similarly Th(K) = Th(B) for any B ∈ K, henceA ≡ B.
Right-to-left: SupposeA ≡ B for all A,B ∈ K. Pick someA ∈ K. Then
Th(K) = Th(A). But Th(A) is complete by 3. �

One useful fact about complete theories is that they are often decidable.

Theorem 11. SupposeT is a theory with an axiom setΣ that can be effectively
listed by an algorithm. IfT is complete, thenT is decidable.

Proof. Essentially, the decicion procedure forT is the following: Suppose you
want to decide whether a given sentenceσ is in T . systematically enumerate all
the valid natural deductions whose hypotheses are amongΣ. SinceT is complete,
eventually eitherσ or ¬σ appears as the conclusion of one of these deductions.
Depending on which is the case, the procedure will output “yes” or “no”. This is
always guaranteed to happen after a finite amount of time. �

The following test is sometimes useful for proving that certain theories are com-
plete. If κ is a cardinality, then we say that a theoryT is κ-categorical if all
models ofT of cardinalityκ are isomorphic.

Theorem 12 (Łoś-Vaught Test). SupposeT only has infinite models, andT is
κ-categorical for someκ not less than the cardinality ofL. ThenT is complete.

Proof. SupposeT is not complete. Then there exists a sentenceσ such thatT 6⊢ σ
andT 6⊢ ¬ σ. By completeness, there exist modelsA andB of T such that6|=A σ
and 6|=B ¬ σ. In other words,|=A ¬σ and |=B σ. A andB are infinite by
assumption. By Corollarycor-LST, there exist structuresA′ andB′ of cardinality
κ which are elementarily equivalent toA, respectivelyB. Thus |=A′ ¬σ and
|=B′ σ. Since bothA′ andB′ are models ofT , this contradicts the fact thatT is
κ-categorical.

Applications:

Example13. We proved in class that any two countable dense linear orderswith-
out endpoints are isomorphic. In other words, the theoryT of countable dense
linear orders without endpoints isℵ0-categorical. Also,T has no finite models. It
follows thatT is complete.
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Example14. It is a theorem in algebra that two algebraically closed fields are iso-
morphic if they have the same characteristic and the same transcendence degree. It
follows that any two algebraically closed fields of characteristic 0 are isomorphic
if they have the same cardinality. In our terminology, the theory of algebraically
closed fields of characteristic 0 isκ-categorical for any uncountable cardinalκ.
Also, this theory has no finite models. Hence it is complete bythe Łoś-Vaught
Test. One consequence of this fact is that any two such fields are elementarily
equivalent. Thus, any sentence that is true for the complex numbers is true in
every algebraically closed field of characteristic 0. Another consequence of com-
pleteness is that the theory of the complex numbers is decidable. This means, for
any first-order statement about the complex numbers, there is a decision procedure
which decides whether the statement is true or false.

A decision procedure for the first-order theory of complex numbers is a very pow-
erful tool to have. However, this does not mean that we can decideanystatement
about the complex numbers. Onlyfirst-orderstatements are affected. There are
many interesting statements about the complex numbers thatare not expressible
in first-order, for instance, any statements that refer to arbitrary subsets of the
complex numbers.
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