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Introduction

@ Linear actegories: A linearly distributive category with a monoidal
category acting on it both covariantly and contravariantly.
-The Logic of Message Passing (J. R. B. Cockett and Craig Pastro)

@ We shall prove that the actions give the structure of a parameterized
linear functor and the inductive and coinductive data types form a
linear functor pair (when data is built on a linear functor).

@ In particular, circuit diagrams are helpful to establish these facts.

N
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Motivation

@ The logic of products and coproducts gives the logic of
communication along channel.

o Linearly distributive categories manage communication channels.
@ Linear actegories provide message passing in process world.

@ Linear functor gives a basis on which one can build inductive (and
coinductive) concurrent data or protocols.



Algebraic definition of Inductive datatype

An inductive datatype for an endo-functor F': X — X is:
e An object ux.F(z).
e A map cons : F(ux.F(x)) — px.F(z) such that given any object

AeXand amap f: F(A) — A, there exists a unique fold map such
that the following diagram commutes.

| |
F(fold(f)) | | fold(f)
v v
F(A)

A



Algebraic definition of Coinductive datatype

Dually a coinductive datatype for F' is:
@ An object va.F(x).
e A map dest : vx.F(x) — F(vz.F(z)) such that given any object
AeXand amap f: A— F(A), there exists a unique unfold map
such that the following diagram commutes.

A f

|
unfold(f) | | F(unfold(f))

Y dest Y
ve. F(z) == F(ve.F(z))

F(A)
|
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Fixed points

Lambek’s Lemma

If F:X — Xis a functor for which px.F(x) exists then

cons : F(ux.F(z)) — px.F(z) is an isomorphism and (dually) if vz.F(x)
exists then dest : vz.F(xz) — F(vz.F(x)) is an isomorphism.
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Circular combinator (alternative method)
A (circular) combinator over F'is
A—1-p

<[

where
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Circular definition of Inductive datatype

A circular inductive datatype is:

e An object ux.F(z).

e A map cons : F(ux.F(z)) — pz.F(z) such that given a (circular)
combinator c[_] over F', there exists a unique fold map pa.ca] such
that the following diagram commutes.

F(pr.F(x))=">pz.F(r)
c[pa.cla]]
D

pa.cla]
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Circular definition of Coinductive datatype

Dually a circular coinductive datatype is:
@ An object vz.F(x).

e A map dest : vx.F(x) — F(vz.F(z)) such that given a (circular)
combinator c[_] over F, there exists a unique unfold map vb.c[b] such
that the following diagram commutes.

D vb.c[b]

c[vb.c[b]]

vr.F(x)

dest



Circular rules

We can express cons, dest, fold and unfold in proof theoretically.

o fold map

VX f:X D

X —D
F(X)—D

pr.F(x) — D

@ unfold map

VX f:D—X

D— X
D — F(X)

D — vz.F(x)
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Circular rules

@ cons
x 1 F(pz.F(z))
x M P(e)
@ dest

F(vz.F(x)) S X

yy:.F(J:)deifl X

@ These circular rules are used to form datatypes.
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Example for inductive datatype

@ The set of natural numbers N with zero and succ constructors

[zero,succ]

1+ N——N

@ This map forms an inductive datatype for natural numbers such that
the following diagram commutes.

[zero, succ] zero succ

1+N—— >N l1——>N=<—N

idif P r f

' \ \ N

1+ ———U 1—U<—""U
[u,h] w h

@ |f we use circular combinator, then
VX XF; N

Thzo N X Fgee(x) N

1+ XFN
Nkg N
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Polycategories

A Polycategory X is a category that consists of list of objects with
polymaps.
For example, P,Q, R+ A, B, C.

These maps correspond to Gentzen sequents.

Composition of polymaps is the cut rules. For example,
PQ+FR A ABFC,D
P,QQ,B+-R,C,D
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Representability of ® and &

We can represent ® and & by sequents calculus rules of inference. For
example,

M, X,Y,IhFA
MN,XeY,IFA

MN-AL X, Y, Ay
NEALXBY,Ap

M, XFA; YIoF A,
M, XY, I+ A, A

MEALX ToFY, Ap
M,MFALX®Y, A)
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Linear distribution

@ A representable polycategory gives us linearly distributive category.

@ For example, a derivation of one linear distribution is

XFX YFY
XYFXQY Z+-2Z

XYOZFrX®Y,Z
XeoYaeZ)F(XeY)aZ
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Symmetric linearly distributive category

A linearly distributive category is symmetric if both the tensors and pars
are symmetric. For symmetric case, there are two linear distributions.

kA9 (BaC) — B®(A®C0)
B (BaC)oA — (BoA)aC

that must satisfy some coherence conditions. For example,

61%; 1®ag = ag; 1®51%; ok
R L1 ag = 0k 1@ 68

16
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Circular rules for linearly distributive categories

@ Circular rules are natural formalism to get fixed points in linearly
distributive categories.

o If we have closure, then

VX XEFI=A

XHEI=A =8
F(X)FT=A
pr.F(z) - T = A
I pz.F(z) - A

But it is not expressable in the linearly distributive setting.

@ Circular rules allow us to express this

VX XFA

rnxeEA U
—— c[]
MF(X)FA
I pz. F(z)F A
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Monoidal functor

@ Suppose F': X — X is a monoidal functor.
@ So there must be the following two natural transformations.
» mg: F(A)® F(B) — F(A® B)
» mt: T — F(T)
that must satisfy two equations.
» (mT®1)m F(u)=u
» ag (lem)m=(m®1l) m F(ag)
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Is the greatest fixed point of a monoidal functor monoidal?

Proposition

The greatest fixed point of a monoidal functor is monoidal and dually the
least fixed point of a comonoidal functor is comonoidal.

o Consider F' = vz F(_,z) is the greatest fixed point of a monoidal
functor.

e To prove that F' is monoidal, we have to show that the two equations
hold.

o Consider the first equation, (T ® 1) M F(u) = u

o It suffices to show that for a fixed g, (T ® 1) 7 F(u) = unfold(g)
and u = unfold(g).

19/49



Defining diagram of m and mT

P(a) @ F(B) =255 p(a, B(a)) @ F(B, F(B) ——> F(A® B, F(4) @ F(B)

\ iF(l,m)
m

F(A® B) ——— > F(4®B, F(A® B))

mT
T ——> F(T,T)

ﬁ;l iF(l,ﬁ{—\r)

F(T) T F(T, F(T))
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(m7 @ 1) m F(u) = unfold[(mr @ dest) mg F(u,1)]

1@ dest N mT@®1
@ F({A F(A)) —= F(T,T)¢

mT 1 (2) F(1,mT)®1

@
@ F(A, F(A) —> F(T@A,TaF(A)

Fu,1) .
——> F(A, T @ F(4))

F(1.mT ®1)

F(l.mT ®1) (a)

F(u,1)

dest®@1 2
F(A)) —= F(T.F(T)) @ F(A, F(A)) —= F(T ® A, F(T)® F(A)) —= F(A, F(T)@ F(A))

BT ®
,\%\ (5) F(1,7) 6) F(1,7)
) dest A Flu1) ‘L
F(T @A) F(T®AF(T®A) —= F(A, F(T @ 4))
ﬁlu) (7) F(1,F(u))
dest
Fla) i F(AL B(A))
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u = unfold[(mt ® dest) mg F(u,1)]

meg

1@ des mT @1
T® F4) Mt @ F(A, F(4) ——= F(T T)®F(A F(A) ——>= F(T® A, T ®F(4)) *> F(A, T ®FA)

ui (1) (2) F‘(u u) /
\ F1,u)

dest
F(A, F‘(A))

F(A)

e So (mT ®1) i F(u) =
@ The greatest fixed point of a monoidal functor is monoidal.

22 /49



Linear Functor

@ A linear functor is a functor that consists of a monoidal (F: X — Y)
and a comonoidal (F': X — Y) functor and four natural
transformations (called “linear strengths™).

@ The above data must satisfy several coherence conditions. For
example,
(me 1) vf Flag) = ag (1® vf) vff
(vg ®1) 0 (L& vk) = mg F(O5) v
(vg ® 1) 6% (1 mg) = mg F(6R) vg
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Linear fixed point

Proposition

The fixed point of a linear functor is linear.

In order to prove this, we have to show that

o The greatest fixed point of a monoidal functor, F' is monoidal and
(dually) the least fixed point of a comonoidal functor, F is
comonoidal.(Proved)

@ There exist linear strengths between these two fixed point functors
that must satisfy the coherence conditions.
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Does linear strength exist?

e Prove F(A)® Ié(B) 1::'(A ® B) map exists and it is unique fold
map.

o It suffices to show that if there is a combinator c[]

F(A)® X F F(A® B)
F(A)® F(B,X)F F(A® B)

c[]
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~R .
Ugy Map exists

VX F(A)® X +; F(A® B)

A®Bri  A®B F(A)® X H; F(A® B)

F(A® B, F(A)® X) Fp 5 F(A® B, F(A® B))

F(A® B, F(A) ® X) F (1 f)cons F(A® B)

;cons

F(A,F(A) ® F(B,X) F(A® B)

o

(1, f);cons

1, f)icons (A ® B)

x|

F(A) ® F(B’ X) ’_dest®1;v

PF(
FA) @ F(B)F g F(A® B)

b

[S25

@ So there exists ﬁg.

o 9% is unique fold map such that
1 ® cons; @g = c[@g] =dest ® 1; vé;; F(1, ﬁg); cons.
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Coherence condition

@ Linear strengths must satisfy the coherence conditions. For example,

(m©1) 88 Flag) = ap (1 @ 0F) 0

@ |t suffices to show that they both equal to fold map that means it
suffices to find a combinator u[ ] such that

» ((1®1)®cons) ag (1®ﬁ@)f = ulag (1®v£) ]:
» (1®1)®cons) (m®1) 8% Fag) = u[(m ® 1) 08 F(ag)]
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(1®1) ®cons) ag (1

(F(a)® F(B) ® F(C. F(©)

(destadest) @1

®

(18 1)@cons

—_—

It

F(A) @ (F(B) © F(C.F(C))

10(dso1)

N ag dos(121)
(F(A. F(A4) @ F(B. F(B)) ® F(C. F(C)) —= F(A, F(4) ® (F(B. F(B)) & F(C. F(€)) =— F(4) @ (F(B. F(B)) ® F(C. F(C)

F(A® B F(A)® F(B) & F(C,F(C)

F(A® B)® ), (F(A)® F(B))

Fey)

(ag

1oult

®)

1oult

F(A.F(A) @ F(B® C. F(B) ® F(C)) =<—— F(A) @ F(B & C. F(B) & F(C))

()
10FL0f)

@

Pzl

10F@.0f)

Fa)e FBeC, F(BeC)

do2o1

F(A.F(A) @ F(B&C,F(B®C))

Pl

(F(a) @ F(B)) @ F(C)

16(15wn) X i N
F(A) © (F(B) © F(©)
3)
1008
1cons X 4
F(A) @ F(B®C)
@ oft

F((4® (B ®0).(F(4) @ (F(B) © F(C)) == F((48 (B®0)).(F(A)® F(B & 0) == F(A8 (Be 0). Fae (B 0) —= Fas B o)
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(1® 1) ® cons) (1 ® 1) 98 Flag) = ul(m © 1) 8 Flag)]

(1@1)@eons ) -
(F(a) @ F(B) @ F(C)

(F(a) @ F(B)) & P(C. F(C))

| T

1cons -
@ F(a® B)® F(C, F(C)) — > F(4® B)® F(C)

a i1

(F(A, F(A) ® F(B, F(B))) ® F(C, F(C))

ma @1 desto1
) i . FLm@F(1D),
F(ag B, F(4)® F(B) ® F(C, F(C)) — > F(Ag B, F(A g B) @ B(C, F(C))

o8 @

FU(A® B)® O), (F4) ® FB) & F©C)) o8 @ o

FQme1)
F(((A® B)® C), (F(A® B) ® F(C))
ool
F(ae B ). F(AeB) e C) Flasmeo
\
Flag,Flag)) ®) Flag)
b

F((A® (B®C)), F(A® (B®C)

~.

o (M®1) 08 F(ag) = ag (1 ® df) 52 holds.
@ So if a linear functor has linear fixed point then it is linear.
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Linear Actegories

A linearly distributive category with a monoidal category acting on it
both covariantly and contravariantly is called linear actegories.

Linear A- actegory is:
0:AXxX—=X and e:A? xX — X.

Here A = (A, %, I, ax, s, 74, ci) is a symmetric monoidal category and
X is a symmetric linear distributive category.

The two “actions” of A on X are o and e.

@ The unit and counit are denoted by n4 x : X — Ae (Ao X) and
eax:Ao(AeX)— X.
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Linear Actegories

@ The natural isomorphisms in X for all A,B € A and X,Y € X

Uo Lo X — X,

Ue : X > [0 X,
ay:(AxB)oX — Ao (BoX),
ay: Ae(BeX)— (AxB)e X,
ag Ao (X ®Y) = (Ao X)®Y,
af, (Ao X)BY — Ae (X DY).

@ The natural morphisms in X for all A;,B € A and X,Y € X

dgy:Ao(X@Y)— (Ao X)aY,
d : (AeX)®Y — Ae (X ®Y),
de:Ao(BeX)— Be(AoX)
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Linear Actegories

@ The above data must satisfy some coherence conditions. For
example,

ay (Aodg) dg =dg (Ceay)

de (Aedy) at=(Coa})dg
ag (a3 ® Z) ag = (Aoag) (ag)
4o (a5, @ 2) at, = at, (A e as)
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Actions = Linear functor?

Proposition
Ae _and Ao _ give the structure of a linear functor. J

In order to prove this, we have to show that
@ A e _is a monoidal functor and A o _is a comonoidal functor.

@ ‘“Linear strengths” exist that must satisfy the coherence conditions.
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Is A e _ a monoidal functor?

@ For a functor to be monoidal, there are two natural transformations

mg: (AeX)®(AeY)— Ae (X ®Y)
mt:T —(AeT)

@ These must satisfy two equations.

l® = (mr®1)m® (AOZ@)
ag (L@mg) mg = (mg®1)mg (Aeag)

@ To prove A e _is a monoidal functor, we have to show that the above
two equations hold.
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Defining diagram of mg and m+

(Ao X)®(AeY) "o Ae(X®Y)

dg@ A.1T
Aod:@/ a*

Ae(XQ(AeY)) — > Ae(Ae(XQY)) — > (AxA) e (X DY)
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le = (m7T®1) mg (Aely)

. as,
ue® le1@1 ®
T@(AeS) — > (1eT)R(AeS) —> (AeT)R(AeS) —> Ae (T (AeS))

@ )

ue (1) dg & (2) & ) Aed?,

R |

1o (T @(AesS) Ae((LeT)@5) —> Ae((AeT)®5) Ae(Ae(T®S)

(10)  1edt, (4) ledg, (5 led ay
. r
le(le(1®1)) o
1 le(Ae(T®@5) Ae(le(T@S)) —> Ae(Ae(TRS)) —>(AxA) e(T @S

I L

we  (6) aj a (7) (1x1)e(1@1)  (8) Al

N l

Ae(TRS) —>=(1xA)e(THS) — > Ae¢(TKS)
. [

Iy

@ So Ae_is a monoidal functor and dually Ao _is a comonoidal functor.
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Linear strengths

o Consider one linear strength v2 :(Ae X)® (AoY) —» Ao (X ®Y)
that must satisfy the coherence conditions.

o For example, (mg ® 1) v (Aoag) = ag (1@ vf) vf

° ngag,l;Aodé;Aol;ai;Aoe

° m®:dg§;A0df®,;af;Aol
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(mg ®1) v(g (Aoag) =ag (1®v5§) 'u,j‘%

a1 (Aeds ot aze1 (aen@1
(AeX)9 (A0Y)@(A0Z) ——> (e (X@(AsY)) @ (A0Z) —> (Ae(As (XS V)& (A0Z) > (A+ D)o (XOY)@(A0Z) —— > (Ae(XeY)@(doZ)
L
Ao((Ae (X Y)©Z)
1o
(a
Ao(a X & Y)®2)
A oY) @2
-1
A0dg, Nt az e
(AeX)@(A0(YBZ) — > A0((AeX)@(YBZ) — > A0(Ae(XB(Y®Z)) — = (A+A)0(Ae(X@(YBZ) —=Ac(Ao(Ae (X (YBZ)) =40 (X® z))

o Difficult to show categorically...

o Circuit diagrams are easier and they do have to satisfy the net
conditions.
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Circuit Rules

@ Circuit introduction and elimination rules for ®

A B AR

@ Circuit introduction and elimination rules for *

AxB
) B /é\
(uI:\%/ (=E)
As+B A B

o Copy rule

A

A
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Circuit Rules

@ Circuit reduction rules for ® and *

A B A B
A®E =
A B
ARE A®B
A B =
A®B

40
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Circuit Rules

@ Circuit introduction and elimination rules for o
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Circuit Rules

@ Circuit reduction and expansion rules for o

A X
A X
AoX =
@)
A X
AoX AcX
6)
= A X
o/
AcX
@ Circuit expansion rule for e
AeX AsX
-

42
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Circuit Rules

@ Box-eats-box rule

@ Box-elimination rule
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Circuit Diagram of my, for e

(AeX)@(AeY)

AeY)

(AeX)@®(

Ae(X®Y)

Ae (X ®(AeY))

(A+A) 8 (XBY)
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Circuit Diagram for v

(AeX)®(A0Y)

Ao((AeX)®Y)

R
@

(AeX)®(A0Y)

Ao (X®Y)

45
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Circuit Diagram for [(mg ® 1) v2 (Ao ag)]

(AeX)@(AeY)) @ (A0 Z)

AolX®Y)® Z) A0 (X®(Y®27)

Ao (X (V@ 2Z)

46
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Circuit Diagram for [ag (1 @ vE) vf]

(AeX)® (AeY)) @ (A0 Z)

(AeX)®(AeY))® (A0 2Z)

Ao (X®(Y®2Z)

o So (mg®1) vl (Aoag) =ag (1@ vf) vk
@ Ae_and Ao _give the structure of a linear functor.
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Conclusion

@ The greatest fixed point of a monoidal functor is monoidal.
@ The fixed point of a linear functor is linear.

@ The actions of linear actegories give the structure of a parameterized
linear functor.
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Thank you
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