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Dependently Typed Folds for Nested Data Types

PENG FU, Dalhousie University

PETER SELINGER, Dalhousie University

We present an approach to develop folds for nested data types using dependent types. We call such folds

dependently typed folds, they have the following properties. (1) Dependently typed folds are defined by well-

founded recursion and they can be defined in a total dependently typed language. (2) Dependently typed folds

do not depend on maps, map functions and many terminating functions can be defined using dependently

typed folds. (3) The induction principles for nested data types follow from the definitions of dependently

typed folds and the programs defined by dependently typed folds can be formally verified. (4) Dependently

typed folds exist for any nested data types and they can be specialized to the traditional higher-order folds.

Using various of examples, we show how to program and reason about dependently typed folds. We also

show how to obtain dependently typed folds in general and how to specialize them to the corresponding

higher-order folds.

Additional KeyWords and Phrases: Dependently typed folds, Nested data types, Induction principles, Depen-

dent types, Theorem proving, Formal verification

1 INTRODUCTION

Consider the following list data type and its fold function in Agda1.

data List (a : Set) : Set where

Nil : List a

Cons : a -> List a -> List a

fold : {a p : Set} -> p -> (a -> p -> p) -> List a -> p

fold {a} {p} base step Nil = base

fold {a} {p} base step (Cons x xs) = step x (fold {a} {p} base step xs)

The key word Set is a kind that classifies types. The function fold has two implicit type argu-
ments, they correspond to the implicitly quantified type variables a and p in the type of fold. In
Agda, implicit arguments can be supplied explicitly using braces (e.g. {a}), sometimes they can be
omitted.
The function fold is defined by structural recursion and it is terminating. Once fold is defined,

we can use it to define terminating functions such as the following map and sum. This is similar to
using the iterator to define terminating arithmetic functions in System T [Girard et al. 1989, §7].

map : {a b : Set} -> (a -> b) -> List a -> List b

map f l = fold Nil (\ a r -> Cons (f a) r) l

sum : List Nat -> Nat

sum l = fold Z (\ x r -> add x r) l

When defining the map function, if the input list l is empty, then we just return Nil, so the first
argument for fold is Nil. If the input list l is of the form Cons a as, then we want to return

1Agda documentation: https://agda.readthedocs.io/en/v2.5.3/.
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:2 Peng Fu and Peter Selinger

Cons (f a) (map f as), so the second argument for fold is \ a r -> Cons (f a) r, where r
represents the result of the recursive call map f as. The function sum is defined similarly.
We can generalize the type of fold to obtain the following induction principle for list.

ind : {a : Set} {p : List a -> Set} -> p Nil ->

((x : a) -> {xs : List a} -> p xs -> p (Cons x xs)) -> (l : List a) -> p l

ind {a} {p} base step Nil = base

ind {a} {p} base step (Cons x xs) = step x {xs} (ind {a} {p} base step xs)

Ignoring the implicit arguments, the definition of ind is the same as fold. Compared to the type
of fold, the type of ind is more general as the kind of p is generalized from Set to List a ->

Set, we call such p a property of the list. The second argument step for ind has an implicit term
argument {xs : List a}. The induction principle ind states that to prove a property p holds for
any list l, one has to first prove that Nil has the property p, and then assuming p holds for any
list xs as the induction hypothesis, prove that p holds for Cons x xs for any x.
We can now use the induction principle ind to prove that map behaves the same as the usual

recursively defined map’ (lemma1).

map' : {a b : Set} -> (a -> b) -> List a -> List b

map' f Nil = Nil

map' f (Cons x xs) = Cons (f x) (map' f xs)

lemma1 : {a b : Set} -> (f : a -> b) -> (l : List a) -> map f l == map' f l

lemma1 {a} {b} f l =

ind {a} {\ y -> map f y == map' f y} refl (\ x {xs} ih -> cong (Cons (f x)) ih) l

refl : {a : Set} -> {x : a} -> x == x

cong : {a b : Set} -> {m n : a} -> (f : a -> b) -> m == n -> f m == f n

In the proof of lemma1, we use a notion of equality == with the tactic refl to construct a re-
flexivity proof and the tactic cong to construct a congruence proof. The key to use the induction
principle ind is to specify what kind of property on list we want to prove. In this case the property
we have in mind is \ y -> map f y == map’ f y. Thus the type of ind {a} {\ y -> map f y

== map’ f y } is the following.

map f Nil == Nil ->

((x : a) -> {xs : List a} -> map f xs == map' f xs ->

map f (Cons x xs) == Cons (f x) (map' f xs)) ->

(l : List a) -> map f l == map' f l

The first two arguments for the above type correspond to the base case and the step case in the
inductive proof. For the base case, we just need refl. For the step case, the induction hypothesis
ih has the type map f xs == map’ f xs, we just need to show map f (Cons x xs) == Cons

(f x) (map’ f xs). Since map f (Cons x xs) can be evaluated to Cons (f x) (map f xs),
we finish the proof by a congruence on the induction hypothesis, so cong (Cons (f x)) ih is
the proof for map f (Cons x xs) == Cons (f x) (map’ f xs).
To summarize, the fold functions for regular data types (i.e. non-nested inductive data types

such as List and Nat) are well-behaved in the following sense. (1) The fold functions are defined
by well-founded recursion. (2) The fold functions can be used to define a range of terminating
functions (including maps). (3) The types of the fold functions can be generalized to the corre-
sponding induction principles. Unfortunately, these properties of folds for regular data types does
not directly carry over to nested data types. Consider the following nested data type.

, Vol. 1, No. 1, Article . Publication date: June 2018.
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data Bush (a : Set) : Set where

NilB : Bush a

ConsB : a -> Bush (Bush a) -> Bush a

According to Bird and Meertens [Bird and Meertens 1998, §1], at each step down the list, entries
are bushed. For example, a value of type Bush Nat can be visualized as the following.

bush1 = [ 4, -- Nat

[ 8, [ 5 ], [ [ 3 ] ] ], -- Bush Nat

[ [ 7 ], [ ], [ [ [ 7 ] ] ] ], -- Bush (Bush Nat)

[ [ [ ], [ [ 0 ] ] ] ] -- Bush (Bush (Bush Nat))

] -- Bush (Bush (Bush (Bush (Bush Nat))))

We can use general recursion to define the following map function and fold function.

hmapB : {b c : Set} -> (b -> c) -> Bush b -> Bush c

hmapB f NilB = NilB

hmapB f (ConsB x xs) = ConsB (f x) (hmapB (hmapB f) xs)

hfoldB : {a : Set} -> {p : Set -> Set} ->

({b : Set} -> p b) -> ({b : Set} -> b -> p (p b) -> p b) -> Bush a -> p a

hfoldB base step NilB = base

hfoldB base step (ConsB x xs) =

step x (hfoldB base step (hmapB (hfoldB base step) xs))

The fold function hfoldB for the nested data type Bush is called a higher-order fold in the liter-
ature (e.g. [Bird and Paterson 1999b], [Johann and Ghani 2007]). Observe that the type variable p
in hfoldB is generalized to kind Set -> Set.
The higher-order fold hfoldB has the following problems. (1) The definition of hfoldB requires

themap function hmapB, and hmapB can not be defined from hfoldB. (2) For both hmapB and hfoldB,
Agda’s termination checker fails because the use of recursion in both cases are not well-founded.
For example, in the second case of hmapB, the outer recursive call of hmapB is on the structurally
smaller argument xs, but there is no such indication for the inner recursive call (hmapB f). (3)
Although possible (see Section 6), it is not immediately clear how hfoldB can be used to define
functions such as a summation of all the entries in Bush Nat. Themost obviousway is to instantiate
p with \ x -> Nat for hfoldB, thus hfoldB {Nat} {\ x -> Nat} has type ({b : Set} ->

Nat) -> ({b : Set} -> b -> Nat -> Nat) -> Bush Nat -> Nat. We will have to provide
a function of the type ({b : Set} -> b -> Nat -> Nat) as the second argument for hfoldB
{Nat} {\ x -> Nat}. Such function would need to be defined for any type b, so it cannot be
useful for defining the summation. (4) Unlike the induction principle for list, it is not clear how to
obtain an induction principle for Bush from the higher-order fold hfoldB.
As a result, in the pioneer works of generalized folds for nested data types by Bird and Paterson

([Bird and Paterson 1999b], [Bird and Paterson 1999a]), they have to define generalized folds using
maps, and both generalized folds and map functions are defined by general recursion. As for the
formal verification, nested data types such as Bush can not be declared directly in the dependently
typed language Coq2. In Agda, although we can declare nested data types such as Bush, we cannot
easily program and reason about higher-order folds. This is because: (1) The Agda termination
checker fails to recognize the termination of higher-order folds defined from general recursion. (2)

2Coq user manual: https://coq.inria.fr/refman/
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:4 Peng Fu and Peter Selinger

Currently there is no natural formulation of induction principles for nested data types similar to
the ones for regular data types.

1.1 Contributions of the paper

We present an approach to define fold functions for nested data types using dependent types in-
side the total dependently typed language Agda. We call such folds dependently typed folds. Depen-
dently typed folds are defined by well-founded recursion, hence their termination is confirmed by
Agda. Map functions and many other terminating functions can be defined directly from the de-
pendently typed folds. Moreover, the higher-order folds (such as hfoldB) are definable from the
dependently typed folds. From the definitions of dependently typed folds, we can also obtain the
corresponding induction principles. Thus we can formally reason about the programs involving
nested data types in a total dependently typed language. In this paper, we illustrate these ideas by
focusing on several concrete examples, we also show how to obtain dependently typed folds in
general.
The main technical contents of the paper are the following: In Section 2, using the Bush data

type, we develop the first example of dependently typed folds. In Section 3 and Section 4, as a case
study, we show how to define, program and reason about dependently typed folds in Agda using
two well-known nested data types from the literature. In Section 5, we give an example to show
how to obtain dependently typed folds in general, and we show how to specialize dependently
typed folds to the higher-order folds. In Section 6, we discuss related work. In Section 7, we discuss
future work and conclude the paper. All the detailed programs for each section are available at
https://github.com/Fermat/dependent-fold and checked by Agda 2.5.3.

2 A DEVELOPMENT OF DEPENDENTLY TYPED FOLDS IN A TOTAL TYPE THEORY

VIA THE BUSH DATA TYPE

Let us continue the consideration of the Bush data type. The following is the result of evaluating
hmapB f bush1, where f : Nat -> b for some type b.

[ f 4, -- b

[ f 8, [ f 5 ], [ [ f 3 ] ] ], -- Bush b

[ [ f 7 ], [ ], [ [ [ f 7 ] ] ] ], -- Bush (Bush b)

[ [ [ ], [ [ f 0 ] ] ] ] -- Bush (Bush (Bush b))

] -- Bush (Bush (Bush (Bush (Bush b))))

In order to define the map function for Bush Nat, we need to already have the map functions
defined for Bushn Nat for all n ≥ 0, which seems paradoxical. A way out is to define a general map
function for Bushn , for all n ≥ 0. First we define Bushn as the following NBush.

NTimes : (Set -> Set) -> Nat -> Set -> Set

NTimes p Z s = s

NTimes p (S n) s = p (NTimes p n s)

NBush : Nat -> Set -> Set

NBush = NTimes Bush

The function NTimes is a type level function defined by pattern-matching on the natural number
n. The function call NTimes p n a returns a type of the form pn a. We now define the following
map function mapB for Bushn , where mapB (S Z) corresponds to the map function for Bush a.

mapB : {a b : Set} -> (n : Nat) -> (a -> b) -> NBush n a -> NBush n b

mapB Z f x = f x

mapB (S n) f NilB = NilB

mapB (S n) f (ConsB x xs) = ConsB (mapB n f x) (mapB (S (S n)) f xs)

, Vol. 1, No. 1, Article . Publication date: June 2018.
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The recursive definition of mapB is well-founded as all the recursive calls are on the components
of the constructor ConsB. The Agda termination checker accepts this definition of mapB. The defini-
tion of mapB confirms a general principle in theorem proving: proving a more general lemma may
be easier than proving a concrete one. We will use this principle again and again when verifying
programs involving nested data types.
Fromnowon, instead of considering the concrete data type Bush, wewill focus on its generalized

counterpart NBush n. Looking at the definition of mapB, we can view NBush n as a kind of abstract
indexed data type that has three constructors. The first constructor has type a -> NBush Z a,
corresponding to the first case of mapB. The second constructor NilB has type NBush (S n) a,
and the third constructor ConsB has type NBush n a -> NBush (S (S n)) a -> NBush (S n)

a.
We now give the following dependently typed fold for the abstract indexed data type NBush n.

foldB : {a : Set} -> {p : Nat -> Set} ->

(a -> p Z) ->

((n : Nat) -> p (S n)) ->

((n : Nat) -> p n -> p (S (S n)) -> p (S n)) ->

(n : Nat) -> NBush n a -> p n

foldB base nil cons Z x = base x

foldB base nil cons (S n) NilB = nil n

foldB base nil cons (S n) (ConsB x xs) =

cons n (foldB base nil cons n x) (foldB base nil cons (S (S n)) xs)

The dependently typed fold foldB captures the most general form of computing/traversal on
the abstract data type NBush n a. The definition of foldB is well-founded because all the recursive
calls of foldB are on the components of ConsB. Observe that the definition of foldB has the same
structure as mapB. We can redefine mapB using foldB.

mapB : {a b : Set} -> (n : Nat) -> (a -> b) -> NBush n a -> NBush n b

mapB {a} {b} n f l =

foldB {a} {\ n -> NBush n b} f (\ n -> NilB) (\ n -> ConsB) n l

The dependently typed fold foldB allows us to directly define other terminating functions such
as the summation of all the entries in Bush Nat and the length function for Bush.

sumB : Bush Nat -> Nat

sumB = foldB {Nat} {\ n -> Nat} (\ x -> x) (\ n -> Z) (\ n -> add) (S Z)

lengthB : {a : Set} -> Bush a -> Nat

lengthB {a} = foldB {a} {\ n -> Nat} (\ x -> Z) (\ n -> Z) (\ n r1 r2 -> S r2) (S Z)

Comparing the dependently typed fold foldB and the higher-order fold hfoldB in Section 1, we
can see that foldB does not depend on map, and mapB can be defined from foldB. The termination
of foldB is obvious and it can be used to define other terminating functions. Moreover, the higher-
order fold hfoldB is an instance of the dependently typed fold foldB, as we can define hfoldB

using foldB.

hfoldB : {a : Set} -> {p : Set -> Set} ->

({b : Set} -> p b) -> ({b : Set} -> b -> p (p b) -> p b) -> Bush a -> p a

hfoldB {a} {p} base step =

foldB {a} {\ n -> NTimes p n a} (\ x -> x) (\ n -> base) (\ n -> step) (S Z)

, Vol. 1, No. 1, Article . Publication date: June 2018.
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Last but not least, we can generalize the type of dependently typed fold foldB to obtain the fol-
lowing induction principle indB, just like how we obtain the induction principle for List from its
fold function.

indB : {a : Set} -> {p : (n : Nat) -> NBush n a -> Set} ->

((x : a) -> p Z x) ->

((n : Nat) -> p (S n) NilB) ->

((n : Nat) -> {x : NBush n a} -> {xs : NBush (S (S n)) a} ->

p n x -> p (S (S n)) xs -> p (S n) (ConsB x xs)) ->

(n : Nat) -> (xs : NBush n a) -> p n xs

indB base nil cons Z xs = base xs

indB base nil cons (S n) NilB = nil n

indB base nil cons (S n) (ConsB x xs) =

cons n (indB base nil cons n x) (indB base nil cons (S (S n)) xs)

Observe that the definition of indB is the same as foldB, and the type variable p is generalized
to kind (n : Nat) -> NBush n a -> Set. The type of indB is specifying how to prove a property
p holds for any xs of type NBush n a by induction. More specifically, for the first base case, we
need to show p holds for any x of type NBush Z a (which equals a), hence p Z x. For the second
base case, we need to show p holds for NilB of type NBush (S n) a. For the step case, we assume
p holds for x of type NBush n a and xs of type NBush (S (S n)) a as the inducton hypotheses,
we need to show p holds for ConsB x xs.

With indB, we can now prove properties about mapB and foldB. In the following we prove that
mapB has the usual identity and composition properties.

identity : {a : Set} -> (n : Nat) -> (y : NBush n a) -> y == mapB n (\ x -> x) y

identity {a} n y =

indB {a} {\ n v -> v == mapB n (\ x -> x) v} (\ x -> refl)

(\ n -> refl) (\ n {x} {xs} ih1 ih2 -> cong2 ConsB ih1 ih2) n y

mapCompose : {a b c : Set} -> (n : Nat) -> (f : b -> c) -> (g : a -> b) ->

(x : NBush n a) -> mapB n (compose f g) x == mapB n f (mapB n g x)

mapCompose {a} {b} {c} n f g x =

indB {a} {\ n v -> mapB n (compose f g) v == mapB n f (mapB n g v)}

(\ v -> refl) (\ n -> refl) (\ n {x1} {xs} ih1 ih2 -> cong2 ConsB ih1 ih2) n x

cong2 : {a b c : Set} -> {m1 n1 : a} -> {m2 n2 : b} ->

(f : a -> b -> c) -> m1 == n1 -> m2 == n2 -> f m1 m2 == f n1 n2

We note that the usual way of proving things in Agda is by recursion, and relying on the Agda
termination checker to prove termination. However, since our purpose is to show the strength of
induction principles such as indB, we do not use recursion at all. All the proofs in this paper are
by induction principles.
Let us take a closer look at identity. It is a general statement of mapB n (includes the special

case mapB (S Z)). It is also about a property of y : NBush n a, i.e. y has the property of being
equal to mapB n (\ x -> x) y for any n. So we instantiate the property p in indB with \ n v

-> v == mapB n (\ x -> x) v. Thus the type of indB {a} {\ n v -> v == mapB n (\ x ->

x) v} is the following.

((x : a) -> x == mapB Z (\ x -> x) x) ->

((n : Nat) -> NilB == mapB (S n) (\ x -> x) NilB) ->

((n : Nat) -> {x : NBush n a} -> {xs : NBush (S (S n)) a} ->

, Vol. 1, No. 1, Article . Publication date: June 2018.
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x == mapB n (\ x -> x) x ->

xs == mapB (S (S n)) (\ x -> x) xs ->

ConsB x xs == mapB (S n) (\ x -> x) (ConsB x xs)) ->

(n : Nat) -> (xs : NBush n a) -> xs == mapB n (\ x -> x) xs

We need to provide three arguments for indB {a} {\ n v -> v == mapB n (\ x -> x) v} to
obtain a proof of the theorem (n : Nat) -> (xs : NBush n a) -> xs == mapB n (\ x ->

x) xs. These three arguments correspond to the three cases in the inductive proof, i.e. a case for
NBush Z a, a case for NilB and a case for ConsB x xs. In the third case for ConsB x xs, we have
two induction hypotheses, i.e. ih1 : x == mapB n (\ x -> x) x and ih2 : xs == mapB (S

(S n)) (\ x -> x) xs. A congruence on these two induction hypotheses, i.e. cong2 ConsB ih1

ih2, gives us the proof for ConsB x xs == mapB (S n) (\ x -> x) (ConsB x xs). The proof
of mapCompose is similar to the proof of identity.
Recall that Agda does not accept the general recursive definition of hmapB in Section 1. Now

that we understand that hmapB is just mapB (S Z), we can use the induction principle indB to
show that mapB (S Z) has the same computational behavior as hmapB.

mapNilB : forall {a b : Set} -> (f : a -> b) -> mapB (S Z) f NilB == NilB

mapNilB {a} {b} f = refl

mapConsB : {a b : Set} -> (f : a -> b) -> (x : a) -> (xs : Bush (Bush a)) ->

mapB (S Z) f (ConsB x xs) == ConsB (f x) (mapB (S Z) (mapB (S Z) f) xs)

mapConsB {a} {b} f x xs = cong (ConsB (f x)) (addMap {a} {b} (S Z) f xs)

addMap : {a b : Set} -> (n : Nat) -> (f : a -> b) -> (x : NBush (add n n) a) ->

mapB (add n n) f x == mapB n (mapB n f) x

addMap {a} {b} n f x =

indB {NBush n a} {\ m v -> mapB (add m n) f v == mapB m (mapB n f) v}

(\ x -> refl) (\ n -> refl)

(\ n {x} {xs} ih1 ih2 -> cong2 ConsB ih1 ih2) n x

The theorem mapNilB corresponds to the first case in the general recursive definition of hmapB, the
theorem mapConsB corresponds to the second case. To prove mapConsB, we need to prove a more
general lemma addMap. The proof of lemma addMap is by standard induction, however, coming up
with the correct lemma addMap requires some effort.

Similarly, we can use indB to show that the hfoldB defined from foldB behaves the same as
the one defined by general recursion. The following theorem foldBNilB corresponds to the first
case in the general recursive definition, and theorem foldBConsB corresponds to the second case.
We elide the nontrivial proof of the lemma lemmConsB (which uses indB).

foldBNilB : {a : Set} -> {p : Set -> Set} -> (base : {b : Set} -> p b) ->

(step : {b : Set} -> b -> p (p b) -> p b) ->

hfoldB {a} {p} base step NilB == base

foldBNilB base step = refl

foldBConsB : {a : Set} -> {p : Set -> Set} -> (base : {b : Set} -> p b) ->

(step : {b : Set} -> b -> p (p b) -> p b) ->

(x : a) -> (xs : Bush (Bush a)) ->

hfoldB base step (ConsB x xs) ==

step x (hfoldB base step (mapB (S Z) (hfoldB base step) xs))

foldBConsB {a} {p} base step x xs =

, Vol. 1, No. 1, Article . Publication date: June 2018.



:8 Peng Fu and Peter Selinger

cong (step x) (lemmConsB {a} {p} (S Z) base step xs)

Finally, we use the induction principle indB to prove that for any function f, if f behaves accord-
ing to foldBNilB and foldBConsB, i.e. f base step NilB == base and f base step (ConsB

x xs) == step x (f base step (mapB (S Z) (f base step) xs), then f is equal to hfoldB.
This statement can be formalized as the following.

uniqueness : (f : {a : Set} -> {p : Set -> Set} ->

({b : Set} -> p b) ->

({b : Set} -> b -> p (p b) -> p b) -> Bush a -> p a) ->

(hp1 : {a : Set} {p : Set -> Set} -> (base : {b : Set} -> p b) ->

(step : {b : Set} -> b -> p (p b) -> p b) ->

f {a} {p} base step NilB == base) ->

(hp2 : {a : Set} {p : Set -> Set} -> (base : {b : Set} -> p b) ->

(step : {b : Set} -> b -> p (p b) -> p b) ->

(x : a) -> (xs : Bush (Bush a)) ->

f base step (ConsB x xs) ==

step x (f base step (mapB (S Z) (f base step) xs))) ->

{a : Set} -> {p : Set -> Set} ->

(base : {b : Set} -> p b) ->

(step : {b : Set} -> b -> p (p b) -> p b) -> (bush : Bush a) ->

f {a} {p} base step bush == hfoldB {a} {p} base step bush

uniqueness f hp1 hp2 {a} {p} base step bush =

indB {a} {\ n v -> lift n (f base step) v == lift n (hfoldB base step) v} ...

lift : {a : Set} {p : Set -> Set}

(n : Nat) -> (g : {a : Set} -> Bush a -> p a) -> NBush n a -> NTimes p n a

lift {a} {p} Z g x = x

lift {a} {p} (S n) g x = g (mapB (S Z) (lift {a} {p} n g) x)

The proof of uniqueness is nontrivial and requires all the lemmas and theorems about foldB
and mapBwe seen so far together with the helper function lift. The complete proof can be found
in the supplementary material. The key idea of the proof is that instead of proving the concrete
theorem (bush : Bush a) -> f base step bush == hfoldB base step bush, we use lift
to prove a more general one, namely, (n : Nat) -> (bush : NBush n a) -> lift n (f base

step) bush == lift n (hfoldB base step) bush.

2.1 The indexed representations

We now show that the nested data type Bush is in fact definable even in a core type theory without
nested data types. Indeed, we can define NBush directly as a non-nested indexed data type BushN
(called the indexed representation). The nested data type Bush is recoverable as BushN (S Z). This
opens the possibility of a user defined nested data type in a surface language, then it can be auto-
matically desugared to a non-nested definition in the underlying type theory while still providing
the fold function and induction principle. For example, the total dependently typed language Coq
does not accept nested data types such as Bush due to the failure of Coq’s strict positivity check.
So in this case we can work with the indexed representations instead.
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Consider the following indexed data type BushN.

data BushN : Nat -> Set -> Set where

Base : {a : Set} -> a -> BushN Z a

NilBN : {a : Set} -> {n : Nat} -> BushN (S n) a

ConsBN : {a : Set} -> {n : Nat} ->

BushN n a -> BushN (S (S n)) a -> BushN (S n) a

The BushN data type is indexed by the natural numbers. A value of type BushN Z a is of the form
Base x, where x : a. A value of type BushN (S n) a can be either a NilBN, or ConsBN x xs

with x : BushN n a and xs : BushN (S (S n)) a.
The following are the fold function and the induction principle for BushN.

foldBN : {a : Set} -> {p : Nat -> Set} ->

(a -> p Z) ->

((n : Nat) -> p (S n)) ->

((n : Nat) -> p n -> p (S (S n)) -> p (S n)) ->

(n : Nat) -> BushN n a -> p n

foldBN base nil cons Z (Base x) = base x

foldBN base nil cons (S n) NilBN = nil n

foldBN base nil cons (S n) (ConsBN x xs) =

cons n (foldBN base nil cons n x) (foldBN base nil cons (S (S n)) xs)

indBN : {a : Set} -> {p : (n : Nat) -> BushN n a -> Set} ->

((x : a) -> p Z (Base x)) ->

((n : Nat) -> p (S n) NilBN) ->

((n : Nat) -> {x : BushN n a} -> {xs : BushN (S (S n)) a} ->

p n x -> p (S (S n)) xs -> p (S n) (ConsBN x xs)) ->

(n : Nat) -> (xs : BushN n a) -> p n xs

The definition of indNB is exactly the same as foldBN. Notice that foldBN is almost the same as
foldB except it actually pattern-matches on all the constructors of the index data type BushN n a.
We can convert back and forth between NBush n a and BushN n a.

to : {a : Set} -> (n : Nat) -> NBush n a -> BushN n a

to {a} n s =

foldB {a} {\ n -> BushN n a} Base (\ n -> NilBN) (\ n -> ConsBN) n s

from : {a : Set} -> (n : Nat) -> BushN n a -> NBush n a

from {a} n s =

foldBN {a} {\ n -> NBush n a} (\ x -> x) (\ n -> NilB) (\ n -> ConsB) n s

toFrom : {a : Set} -> (n : Nat) -> (x : NBush n a) -> from n (to n x) == x

fromTo : {a : Set} -> (n : Nat) -> (x : BushN n a) -> to n (from n x) == x

In principle, all the programs and theorems about NBush n a can be converted to BushN n a.
Please see the supplementary material for an example.

2.2 The Church encodings of the indexed representations

We can work with the indexed representations via their Church encodings in the Calculus of Con-
structions [Coquand and Huet 1988], a minimal total dependent type system that does not provide
primitive data types and recursion. As an example, we now define CNBush, the Church-encoded
version of BushN.
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CNBush : Nat -> Set -> Set

CNBush n a = {p : Nat -> Set} ->

(a -> p Z) ->

((n : Nat) -> p (S n)) ->

((n : Nat) -> p n -> p (S (S n)) -> p (S n)) -> p n

The definition of CNBush is impredicative. The kind of CNBush should be Nat -> Set ->Set1, not
Nat -> Set -> Set (recall that Set in Agda is a shorthand for Set0), due to the quantification
of p : Nat -> Set. Since Agda does not support impredicative polymorphism, we enable this
feature by using the unsafe --type-in-typeflag. In a language that supports impredicativity (e.g.
Coq), defining the Church-encoded CNBush is not a problem, we also provide the Coq version of
CNBush in the supplementary material.
To obtain the Church-encoded BushN, we first identify the type CNBush n a with the type of

foldBN, then we define the three constructors of CNBush by imitating the three cases of foldBN.

cbase : {a : Set} -> a -> CNBush Z a

cbase x = \ base nil cons -> base x

cnil : {a : Set} -> (n : Nat) -> CNBush (S n) a

cnil n = \ base nil cons -> nil n

ccons : {a : Set} -> (n : Nat) -> CNBush n a -> CNBush (S (S n)) a -> CNBush (S n) a

ccons n x xs = \ base nil cons -> cons n (x base nil cons) (xs base nil cons)

Since the principle of fold is already encoded in the constructors, the following definition of
cfoldB is essentially an identity function.

cfoldB : {a : Set} -> {p : Nat -> Set} ->

(a -> p Z) ->

((n : Nat) -> p (S n)) ->

((n : Nat) -> p n -> p (S (S n)) -> p (S n)) ->

(n : Nat) -> CNBush n a -> p n

cfoldB base nil cons n b = b base nil cons

Programmingwith the Church-encodedCNBush is just like programmingwith foldBN for BushN.
Instead of using foldBN, we use cfoldB. For example, the following is themap function for CNBush.

cmapB : {a b : Set} -> (n : Nat) -> (a -> b) -> CNBush n a -> CNBush n b

cmapB {a} {b} n f =

cfoldB {a} {\ n -> CNBush n b} (\ x -> cbase (f x)) cnil ccons n

Note that we do not use any recursion in the definitions of cfoldB and cmapB.
Although we can program with the Church-encoded CNBush using cfoldB, we cannot obtain

the induction principle from cfoldB, as it is well-known that induction is not derivable in the
Calculus of Construction ([Coquand 1989], [Geuvers 2001]).

3 CASE STUDY I: DE BRUIJN NOTATION AS THE NESTED DATA TYPE TERM

One place in the literature where nested data types are useful is the representation of de Bruijn
lambda terms. In this section and the next section, we give an extended case study of two nested
data types that are used to represent the de Bruijn lambda terms. The case study demonstrates
that the dependently typed folds is sufficient for the purpose of programming and reasoning about
nested data types.
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Recall that the idea of de Bruijn notation is to use a number to represent a bound variable. The
number is the number of binders between the bound variable and its binding site [De Bruijn 1972].
For example, the lambda term λx .x (λy.x y (λz.x y z)) is represented as λ.0 (λ.1 0 (λ.2 1 0)). This
idea can be captured by the following data types (from [Bird and Paterson 1999a]).

data Incr (a : Set) : Set where

Zero : Incr a

Succ : a -> Incr a

data Term (a : Set) : Set where

Var : a -> Term a

App : Term a -> Term a -> Term a

Lam : Term (Incr a) -> Term a

The data type Term is a nested data type because the constructor Lam requires an argument of
larger type Term (Incr a), instead of Term a. At each level down the constructor Lam, a term
will gain an additional Incr in its type. For example, the following are the representations of the
terms λ.0 (λ.1 0 (λ.2 1 0)) and λ.λ.1 0 (S(S‘W ‘)).

term1 : Term Char

term1 = Lam (App (Var Zero) -- Var Zero : Term (Incr Char)

(Lam (App (App (Var (Succ Zero))

(Var Zero)) -- Var Zero : Term (Incr (Incr Char))

(Lam (App (App (Var (Succ (Succ Zero)))

(Var (Succ Zero)))

(Var Zero))))))

term2 : Term Char

term2 = Lam (Lam (App (App (Var (Succ Zero)) (Var Zero))

(Var (Succ (Succ W)))))

-- Var (Succ (Succ W)) : Term (Incr (Incr Char))

Notice that each variable in term1, term2 has a type of the form Term (Incrn Char). In a term
of the type Term Char, the maximum number of Succ in a bound variable is strictly less than the
number of Incr in its type, while the number of Succ in a free variable is equal to the number of
Incr in its type.

3.1 Dependently typed folds for Incr and Term

Since we will need to manipulate both bound and free variables, we define the following depen-
dently typed fold foldI and mapIncr function for Incrn a.

NIncr : Nat -> Set -> Set

NIncr = NTimes Incr

foldI : {a : Set} -> {p : Nat -> Set} -> (n : Nat) ->

(a -> p Z) ->

((m : Nat) -> p (S m)) ->

((m : Nat) -> p m -> p (S m)) -> NIncr n a -> p n

foldI Z base zero succ x = base x

foldI (S n) base zero succ Zero = zero n

foldI (S n) base zero succ (Succ x) = succ n (foldI n base zero succ x)
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mapIncr : {a b : Set} -> (n : Nat) -> (a -> b) -> NIncr n a -> NIncr n b

mapIncr {a} {b} n f y =

foldI {a} {\ n -> NIncr n b} n f (\ m -> Zero) (\ m -> Succ) y

Of course, the usual fold function for the regular data type I is an instance of foldI.

foldI' : {a : Set} -> {p : Set} -> p -> (a -> p) -> Incr a -> p

foldI' {a} {p} zero succ = foldI {a} {\ n -> p} (S Z) succ (\ m -> zero) (\ m x -> x)

Let a be a fixed constant type. We say y : NIncr n a is closed if y only consists of Zero and
Succ, otherwise we say y is open. If y : NIncr n a is open, then it must be of the form Succn x,
where x : a. The behavior of mapIncr is subtle. Suppose y : NIncr n a is open, then the result
of mapIncr l Succ y (where l ≤ n) will be Succ y. If y : NIncr n a is closed, then y must
be of the form Succm Zero, wherem < n. In this case mapIncr l Succ y will be evaluated to y

ifm < l ≤ n, or evaluated to Succ y if l ≤ m. We can test this by comparing the following num1

and num2. The program num1 is evaluated to Succ (Succ Zero), while num2 is evaluated to Succ

(Succ (Succ Zero)).

num0 : NIncr (S (S (S (S (S Z))))) Char

num0 = Succ (Succ Zero)

num1 : NIncr (S (S (S (S (S (S Z)))))) Char

num1 = mapIncr {Incr (Incr Char)} {Incr (Incr (Incr Char))}

(S (S (S Z))) Succ num0

num2 : NIncr (S (S (S (S (S (S Z)))))) Char

num2 = mapIncr {Incr (Incr (Incr Char))} {Incr (Incr (Incr (Incr Char)))}

(S (S Z)) Succ num0

We now define the following dependently typed fold for Term (Incrn a).

foldT : {a : Set} -> {p : Nat -> Set} -> (n : Nat) ->

((m : Nat) -> NIncr m a -> p m) ->

((m : Nat) -> p m -> p m -> p m) ->

((m : Nat) -> p (S m) -> p m) -> Term (NIncr n a) -> p n

foldT {a} {p} n var app lam (Var x) = var n x

foldT {a} {p} n var app lam (App x1 x2) =

app n (foldT {a} {p} n var app lam x1) (foldT {a} {p} n var app lam x2)

foldT {a} {p} n var app lam (Lam x) = lam n (foldT {a} {p} (S n) var app lam x)

The function foldT traverses the structure of Term, replaces the constructors Var, App and Lam

with var, app and lam, increases the number n only when traversing under the Lam constructor.
The higher-order fold for Term is an instance of the dependently typed fold foldT.

hfoldT : {a : Set} -> {p : Set -> Set} ->

({a : Set} -> p a) ->

({a : Set} -> p a -> p a -> p a) ->

({a : Set} -> p (Incr a) -> p a) -> Term a -> p a

hfoldT {a} {p} var app lam =

foldT {a} {\ n -> p (NTimes Incr n a)} Z (\ m a -> var) (\ m -> app) (\ m -> lam)

The following is the map function defined from foldT and mapIncr.

mapT : {a b : Set} -> (n : Nat) -> (a -> b) -> Term (NIncr n a) -> Term (NIncr n b)

mapT {a} {b} n f y =

foldT {a} {\ n -> Term (NIncr n b)} n

(\ n v -> Var (mapIncr n f v)) (\ n -> App) (\ n -> Lam) y
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When defining the function mapT, we use foldT to traverse the abstract data type Term (NIncr n

a), and perform action at the leaves, where we apply the mapIncr function.
For a variable Var x, we say it is open/closed iff x is open/closed. Note that an open variable

is necessarily a free variable, but a closed variable can be either bound or free. For example, the
variable Var Zero : Term (Incr Char) is a free and closed variable because it is not bound by
any Lam constructor, while the variable Var Zero : Term (Incr Char) in Lam (Var Zero) :

Term Char is closed and bound. Let y be a term of type Term (NIncr n a) for some fixed constant
type a. The function call mapT n f y will map f to all the open variables in y and leave the closed
variables (including free and closed variables) unchanged. On the other hand, the function call
mapT Z f y will map the function f to all the free variables (open or closed) in y, while leaving
the bound variables unchanged. When n = Z and y : Term (Incr Z a), there are no closed
free variables in y, thus the free variables coincide with the open variables, the bound variables
coincide with the closed variables.

3.2 Programming with dependently typed folds and maps

The following programs are the printing functions defined from foldT and foldI.

showT : Term String -> String

showT y = foldT {String} {\ n -> String} Z

showI

(\ m x y -> ` LP ` ++ x ++ ` EMP ` ++ y ++ ` RP `)

(\ m x -> ` L ` ++ x) y

showI : (m : Nat) -> NIncr m String -> String

showI m y = foldI {String} {\ n -> String} m

(\ x -> x) (\ m -> ` Ze `) (\ m x -> ` Su ` ++ x) y

showTC : Term Char -> String

showTC x = showT (mapT Z (\ x -> Cons x Nil) x)

In the definition of showTC, we first convert all the free variables in the term x to String3, and
then apply showT to the resulting term.
We now define the abstraction function abst that takes a name x and a term t , returns the

abstracted term λx .t . We assume there is a generic comparison function4 cmp : {a : Set} -> a

-> a -> Bool and it satisfies axiom1 : {a : Set} -> (x x1 : a) -> cmp x x1 == True ->

x == x1. We can express these two assumptions as postulates in Agda.

abst : {a : Set} -> a -> Term a -> Term a

abst x t = Lam (mapT Z (match x) t)

match : {a : Set} -> a -> a -> Incr a

match {a} a1 a2 = foldBool {Incr a} Zero (Succ a2) (cmp a1 a2)

foldBool : {p : Set} -> p -> p -> Bool -> p

foldBool x y True = x

foldBool x y False = y

The function match compares a1 with a2, if they are equal, returns Zero, else returns Succ a2.
So the function call abst x t will look at all the free variables in t, replace a free variable to Zero
if it is equal to x, otherwise add an extra Succ to it.
A beta-redex is a term of the form App (Lam t) s : Term a. To perform a beta reduction

for App (Lam t) s, we need to substitute the variables bound by Lam in t with s. The following
actions are required to define the subsitution. (1) For each variable bound by the Lam inside t, we

3The data types String and Char are user-defined.
4The comparison function here is similar to the equality method in the Eq type class in Haskell.
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need to replace it by s. (2) For each free variable in t, we need to decrease a Succ in it. (3) For each
free variable in s, we need to increase a Succ for it whenever s is traversing under a binder in t.
(4) All the other bound variables in t remain unchanged.

In the following we define the substitution function subst and the function redex.

redex : {a : Set} -> Term a -> Term a

redex (App (Lam t) s) = subst Z s t

redex t = t

subst : {a : Set} -> (n : Nat) -> Term a ->

Term (NIncr n (Incr a)) -> Term (NIncr n a)

subst {a} n s t =

foldT {Incr a} {\ n -> Term (NIncr n a)} n

(\ m -> varcase m s) (\ m -> App) (\ m -> Lam) t

varcase : {a : Set} -> (n : Nat) -> Term a -> NIncr n (Incr a) -> Term (NIncr n a)

varcase {a} n s v =

foldI {Incr a} {\ n -> Term (NIncr n a)} n

(h s)

(\ m -> Var Zero) -- Action (4)

(\ m r -> mapT Z Succ r) -- Action (3)

v

where h : {a : Set} -> Term a -> Incr a -> Term a

h s Zero = s -- Action (1)

h s (Succ b) = Var b -- Action (2)

The substitution function subst is generalized to allow substitution for any term of the type Term
(NIncr n (Incr a)), the definition of redex uses subst Z. In the definition of subst, all the
actions happen in the variable case, we use foldT just for traversing to the leaves of Term (NIncr

n (Incr a)). The varcase function inspects on the variable v and performs actions (1)–(4).

3.3 Reasoning with the induction principles indI and indT

Based on the dependently typed fold foldT and foldI, we can obtain the following induction
principles. The induction principles follow the same definitions as foldT and foldI, except their
types are more general. They provide a way to prove a property holds for any Term (NIncr n a)

and NIncr n a.

indT : {a : Set} -> {p : (n : Nat) -> Term (NIncr n a) -> Set} ->

(n : Nat) -> ((m : Nat) -> (v : NIncr m a) -> p m (Var v)) ->

((m : Nat) -> {v1 v2 : Term (NIncr m a)} ->

p m v1 -> p m v2 -> p m (App v1 v2)) ->

((m : Nat) -> {v : Term (NIncr (S m) a)} -> p (S m) v -> p m (Lam v)) ->

(v : Term (NIncr n a)) -> p n v

indI : {a : Set} -> {p : (n : Nat) -> NIncr n a -> Set} -> (n : Nat) ->

((x : a) -> p Z x) ->

((m : Nat) -> p (S m) Zero) ->

((m : Nat) -> {x : NIncr m a} -> p m x -> p (S m) (Succ x)) ->

(v : NIncr n a) -> p n v

Now we can use induction to prove the following thm1, which states (λx .t) x =β t .
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thm1 : {a : Set} -> (x : a) -> (t : Term a) ->

redex (App (abst x t) (Var x)) == t

thm1 {a} x t =

indT {a} {\ n v -> subst n (Var x) (mapT n (match x) v) == v} Z

(thm0 x)

(\ m {v1} {v2} ih1 ih2 -> cong2 App ih1 ih2)

(\ m {v} ih -> cong Lam ih) t

thm0 : {a : Set} -> (x : a) -> (m : Nat) -> (v : NIncr m a) ->

subst m (Var x) (mapT m (match x) (Var v)) == Var v

thm0 {a} x m v =

indI {a} {\ n u -> subst n (Var x) (mapT n (match x) (Var u)) == Var u} m

(\ x1 -> lemm0 (cmp x x1) (lemm1 x x1) (lemm2 x x1))

(\ m -> refl) (\ m {x1} ih -> cong (mapT Z Succ) ih) v

lemm0 : {p : Set} -> (x : Bool) -> (x == True -> p) -> (x == False -> p) -> p

lemm1 : {a : Set} -> (x x1 : a) -> (cmp x x1 == True) ->

subst Z (Var x) (mapT {a} {Incr a} Z (match {a} x) (Var x1)) == Var x1

lemm2 : {a : Set} -> (x x1 : a) -> (cmp x x1 == False) ->

subst Z (Var x) (mapT {a} {Incr a} Z (match {a} x) (Var x1)) == Var x1

The inductive cases for thm1 are straightforward, the only nontrivial case is the variable case,
which needs thm0. For thm0, the only nontrivial case is the base case, where we need a proof of
(x x1 : a) -> subst Z (Var x) (mapT Z (match x) (Var x1)) == Var x1. We prove this
by considering both cmp x x1 == True (lemm1) and cmp x x1 == False (lemm2). The proofs of
lemm1 (requires axiom1), lemm2 and lemm0 are straightforward.
We now consider the theorems mapTfuseZ and mapSubst, which are properties of mapT and

subst and will be needed for proving the theorem cvtThm in the Section 4.
The following mapTfuseZ theorem states that for any s : Term (NIncr n a), the following

two results are equal: (1) first add an extra Succ to all the free variables, and then add an extra
Succ to all the open variables. (2) first add an extra Succ to all the open variables, and then add an
extra Succ to all the free variables.

mapTfuseZ : {a : Set} -> (n : Nat) -> (s : Term (NIncr n a)) ->

mapT {a} {Incr a} (S n) Succ

(mapT {NIncr n a} {Incr (NIncr n a)} Z Succ s) ==

mapT {Incr (NIncr n a)} {Incr (Incr (NIncr n a))} Z Succ

(mapT {a} {Incr a} n Succ s)

mapTfuseZ {a} n s = mapTfuse {a} Z n s

mapTfuse : {a : Set} -> (m n : Nat) -> (s : Term (NIncr (add m n) a)) ->

mapT {a} {Incr a} (S (add m n)) Succ

(mapT {NIncr n a} {Incr (NIncr n a)} m Succ s) ==

mapT {NIncr (S n) a} {Incr (NIncr (S n) a)} m Succ

(mapT {a} {Incr a} (add m n) Succ s)

The mapTfuseZ theorem requires us to prove a more general lemma mapTfuse, finding this lemma
takes a lot of effort, but it can be proved by standard induction using indT and indI.
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The following mapSubst theorem states how mapT Z Succ commutes with subst m. Again,
mapSubst requires a nontrivial general lemma mapSubst’. The lemma mapSubst’ can be proved
by induction using the lemma mapTfuseZ.

mapSubst : {a : Set} -> (m : Nat) -> (s : Term a) -> (t : Term (NIncr (S m) a)) ->

mapT Z Succ (subst m s t) == subst (S m) s (mapT Z Succ t)

mapSubst {a} m s t = mapSubst' {a} Z m s t

mapSubst' : {a : Set} -> (n m : Nat) -> (s : Term a) ->

(t : Term (NIncr (S (add n m)) a)) ->

mapT {NIncr m a} {NIncr (S m) a} n Succ (subst (add n m) s t) ==

subst (S (add n m)) s

(mapT {NIncr (S m) a} {NIncr (S (S m)) a} n Succ t)

4 CASE STUDY II: DE BRUIJN NOTATION AS THE NESTED DATA TYPE TERME

In this section we consider representing the de Bruijn lambda terms using the following nested
data type.

data TermE (a : Set) : Set where

VarE : a -> TermE a

AppE : TermE a -> TermE a -> TermE a

LamE : TermE (Incr (TermE a)) -> TermE a

This data type is already motivated by Bird and Paterson [Bird and Paterson 1999a]. Recall that
when substituting term s for x in term t , i.e. [s/x]t , we need to perform the actions (1)–(4) (Sec-
tion 3). The action (3) requires traversing the term s to add an additional Succwhen the substitution
is going under a binder. This has two drawbacks, namely, traversing s takes additional time and
prevents the sharing of s .
For example, the redex (λ.0 (λ.1 0 (λ.2 1 0))) (λ.0 (S ′W ′)) will be reduced to the following.

(λ.0 (S ′W ′)) (λ.(λ.0 (S(S ′W ′))) 0 (λ.(λ.0 (S(S(S ′W ′)))) 1 0))

Not only we traverse the term (λ.0 (S ′W ′)) three times to add S , but also we have three different
copies of (λ.0 (S ′W ′)) in the resulting term. A more efficient implementation would avoid such
traversal and allow us to obtain the following term.

term0 = (λ.0 (S ′W ′)) (λ.(S(λ.0 (S ′W ′))) 0 (λ.(S(S(λ.0 (S ′W ′)))) 1 0))

In term0, we have three same copies of (λ.0 (S ′W ′)). To enable such representation, we would
need to allow Succ to be applied to a term, hence the type for the LamE constructor. The following
term1 is the concrete representation of (λ.0 (S ′W ′)) and term2 is the representation of term0.

term1 : TermE Char

term1 = LamE (AppE (VarE Zero) (VarE (Succ (VarE W))))

term2 : TermE Char

term2 = AppE term1

(LamE (AppE (AppE (VarE (Succ term1))

(VarE Zero))

(LamE (AppE (AppE (VarE (Succ (VarE (Succ term1))))

(VarE (Succ (VarE Zero))))

(VarE Zero)))))
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4.1 The dependently typed fold foldE

At each level down the constructor LamE, a term gains an additional type-constructor \ x ->

Incr (TermE x) in its type. So we will focus on the type of the form TermE (IncrTermEn a),
where IncrTermEn means the n-th iteration of \ x -> Incr (TermE x).

We define the following dependently typed fold foldE for TermE (IncrTermEn a).

IncrTermE : Nat -> Set -> Set

IncrTermE = NTimes (\ x -> Incr (TermE x))

foldE : {a : Set} -> {p : Nat -> Set} -> (n : Nat) ->

(a -> p Z) ->

((m : Nat) -> p (S m)) ->

((m : Nat) -> p m -> p (S m)) ->

((m : Nat) -> p m -> p m -> p m) ->

((m : Nat) -> p (S m) -> p m) -> TermE (IncrTermE n a) -> p n

foldE {a} {p} Z varBase varZero varSucc app abs (VarE x) = varBase x

foldE {a} {p} (S n) varBase varZero varSucc app abs (VarE Zero) = varZero n

foldE {a} {p} (S n) varBase varZero varSucc app abs (VarE (Succ x)) =

varSucc n (foldE {a} {p} n varBase varZero varSucc app abs x)

foldE {a} {p} n varBase varZero varSucc app lam (LamE x) =

lam n (foldE {a} {p} (S n) varBase varZero varSucc app lam x)

foldE {a} {p} n varBase varZero varSucc app abs (AppE x x') =

app n (foldE {a} {p} n varBase varZero varSucc app abs x)

(foldE {a} {p} n varBase varZero varSucc app abs x')

Observe that foldE is well-founded and the abstract indexed data type TermE (IncrTermEn a)

has five constructors, corresponding to the five cases in the definition of foldE. There are two
variable cases for TermE (IncrTermEn+1 a), i.e. VarE Zero and VarE (Succ x), where x is of the
type TermE (IncrTermEn a). So there is a recursive call in the case for VarE (Succ x), which
traverses the term x.
The following is the map function defined from foldE.

mapE : {a b : Set} -> (n : Nat) -> (a -> b) ->

TermE (IncrTermE n a) -> TermE (IncrTermE n b)

mapE {a} {b} n f x = foldE {a} {\ n -> TermE (IncrTermE n b)} n

(\ x -> VarE (f x))

(\ m -> VarE Zero)

(\ m r -> VarE (Succ r))

(\ m -> AppE)

(\ m -> LamE) x

The function call mapE n f t keeps every constructor in t unchanged and only applies the
function f in the case of VarE x, where x : a. The map function for TermE a is mapE Z.
The dependently typed fold foldE can be specialized to the higher-order fold for TermE.

hfoldE : {a : Set} -> {p : Set -> Set} ->

({a : Set} -> a -> p a) ->

({a : Set} -> p a -> p a -> p a) ->

({a : Set} -> p (Incr (p a)) -> p a) -> TermE a -> p a

hfoldE {a} {p} var app lam =

foldE {a} {\ n -> p (NTimes (\ y -> Incr (p y)) n a)}
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Z var (\ m -> var Zero) (\ m r -> var (Succ r)) (\ m -> app) (\ m -> lam)

The higher-order fold hfoldE replaces the constructors VarE, AppE and LamE to var, app and lam

while keeping the constructors Zero and Succ unchanged.

4.2 Programming with foldE

The following function redexE is for reducing a beta-redex. The substitution function substE

follows the same idea as the subst function in Section 3, except that it does not perform action (3)
due to the optimization of the TermE data type.

redexE : {a : Set} -> TermE a -> TermE a

redexE (AppE (LamE t) s) = substE Z s t

redexE t = t

substE : {a : Set} -> (n : Nat) -> TermE a ->

TermE (IncrTermE n (Incr (TermE a))) -> TermE (IncrTermE n a)

substE {a} n s = foldE {Incr (TermE a)} {\ n -> TermE (IncrTermE n a)} n

(base s)

(\ m -> VarE Zero) -- Action (4)

(\ m r -> VarE (Succ r)) -- No need for action (3)

(\ m -> AppE)

(\ m -> LamE)

where base : TermE a -> Incr (TermE a) -> TermE a

base s Zero = s -- Action (1)

base s (Succ x) = x -- Action (2)

The following abstraction function abstE x t binds the free variable x in t. The definition of
abstE follows the same idea as abst (Section 3).

abstE : {a : Set} -> a -> TermE a -> TermE a

abstE x t = LamE (mapE Z (matchE x) t)

matchE : {a : Set} -> a -> a -> Incr (TermE a)

matchE {a} a1 a2 = foldBool {Incr (TermE a)} Zero (Succ (VarE a2)) (cmp a1 a2)

Let us now consider converting a lambda expression of the type TermE a to a lambda expression
of the type Term a.Wewill define a generalized conversion function to convert TermE (IncrTermE

n a) to Term (NIncr n a) for any n. The main difference between TermE (IncrTermE n a)

and Term (NIncr n a) is that Succ can apply to a term t : TermE (IncrTermE n a), so there
are terms of the form VarE (Succ t) : TermE (IncrTermE (S n) a). The key idea of the
conversion is that when converting a term of the form VarE (Succ t), we first convert the term
t of type TermE (IncrTermE n a) to a term t’ of type Term (NIncr n a), and then apply the
constructor Succ to all the free variables in t’, i.e. mapT Z Succ t’.

cvtE : {a : Set} -> (n : Nat) -> TermE (IncrTermE n a) -> Term (NIncr n a)

cvtE {a} n t = foldE {a} {\ n -> Term (NIncr n a)} n

(\ a -> Var a)

(\ m -> Var Zero)

(\ m t' -> mapT Z Succ t')

(\ m -> App)

(\ m -> Lam) t

The function cvtE converts VarE x, VarE Zero, AppE and LamE to Var x, Var Zero, App and
Lam accordingly. The only subtle case is how to convert VarE (Succ t), which we have explained.

, Vol. 1, No. 1, Article . Publication date: June 2018.



Dep-Fold :19

4.3 Reasoning with the induction principle indE

The following is the induction principle for TermE (IncrTermE n a), we elide the definition as
it is the same as foldE.

indE : {a : Set} -> {p : (n : Nat) -> TermE (IncrTermE n a) -> Set} -> (n : Nat) ->

((x : a) -> p Z (VarE x)) ->

((m : Nat) -> p (S m) (VarE Zero)) ->

((m : Nat) -> {r : TermE (IncrTermE m a)} ->

p m r -> p (S m) (VarE (Succ r))) ->

((m : Nat) -> {x1 x2 : TermE (IncrTermE m a)} ->

p m x1 -> p m x2 -> p m (AppE x1 x2)) ->

((m : Nat) -> {x : TermE (IncrTermE (S m) a)} ->

p (S m) x -> p m (LamE x)) ->

(v : TermE (IncrTermE n a)) -> p n v

The induction principle indE gives us a way to prove a property p : (n : Nat) -> TermE

(IncrTermE n a) -> Set holds for any v : TermE (IncrTermE n a). To obtain such proof,
we first have to prove p holds for VarE x : TermE (IncrTermE Z a) and VarE Zero : TermE

(IncrTermE (S m) a). They correspond to the two arguments (x : a) -> p Z (VarE x) and
(m : Nat) -> p (S m) (VarE Zero) for indE. Then we will need to prove three inductive cases,
they correspond to the other three arguments for indE. For example, one inductive case requires
us to prove p m (LamE x), using the inductive hypothesis p (S m) x.
We now use indE to prove that (λx .t) x =β t holds for our definition of redexE. The proof is

similar to the proof of theorem thm1 for redex in Section 3.

thm1 : {a : Set} -> (x : a) -> (t : TermE a) ->

redexE (AppE (abstE x t) (VarE x)) == t

thm1 {a} x t =

indE {a} {\ n v -> substE n (VarE x) (mapE n (matchE x) v) == v} Z

(lem3 x) (\ m -> refl) (\ m {r} ih -> cong (\ y -> VarE (Succ y)) ih)

(\ m ih1 ih2 -> cong2 AppE ih1 ih2) (\ m ih -> cong LamE ih) t

lem3 : {a : Set} -> (x y : a) ->

substE Z (VarE x) (mapE Z (matchE x) (VarE y)) == VarE y

To convince ourself that the conversion function cvtE is well-behaved, we use indE prove that
the conversion function commutes with the substitution, i.e. cvtE([s/x]t) = [(cvtE s)/x](cvtE t).

cvtThm : {a : Set} -> (n : Nat) -> (s : TermE a) ->

(t : TermE (IncrTermE (S n) a)) ->

cvtE {a} n (substE n s t) == subst n (cvtE {a} Z s) (cvtE {a} (S n) t)

cvtThm {a} n s t =

indE {Incr (TermE a)}

{\ n v -> cvtE {a} n (substE n s v) ==

subst n (cvtE {a} Z s) (cvtE {a} (S n) v)} n

(\ x -> lemmVar x s) -- case VarE x

(\ m -> refl) -- case VarE Zero

(\ m {r} ih -> -- case VarE (Succ r)

equational cvtE {a} (S m) (substE (S m) s (VarE (Succ r)))

equals cvtE {a} (S m) (VarE (Succ (substE m s r))) by refl

equals mapT {NIncr m a} {Incr (NIncr m a)} Z Succ

(cvtE {a} m (substE m s r))
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by refl

equals mapT {NIncr m a} {Incr (NIncr m a)} Z Succ

(subst m (cvtE {a} Z s) (cvtE {a} (S m) r))

by cong (mapT {NIncr m a} {Incr (NIncr m a)} Z Succ) ih

equals subst (S m) (cvtE {a} Z s)

(mapT {NIncr (S m) a} {Incr (Incr (NIncr m a))} Z Succ

(cvtE {a} (S m) r))

by mapSubst {a} m (cvtE {a} Z s) (cvtE {a} (S m) r)

equals subst (S m) (cvtE {a} Z s)

(cvtE {a} (S (S m)) (VarE (Succ r)))

by refl)

(\ m {x1} {x2} ih1 ih2 -> cong2 App ih1 ih2) -- case AppE x1 x2

(\ m {x} ih -> cong Lam ih) -- case LamE x

t

The cases for LamE x, AppE x1 x2 and VarE Zero are straightforward. For the case of VarE x,
we need the following lemmVar and lemmM.

lemmVar : {a : Set} -> (x : Incr (TermE a)) -> (s : TermE a) ->

cvtE Z (substE Z s (VarE x)) == subst Z (cvtE Z s) (cvtE (S Z) (VarE x))

lemmVar {a} Zero s = refl

lemmVar {a} (Succ x) s = lemmM {a} Z (cvtE Z s) (cvtE Z x)

lemmM : {a : Set} -> (m : Nat) -> (s : Term a) -> (t : Term (NIncr m a)) ->

t == subst m s (mapT {a} {Incr a} m Succ t)

The lemma lemmVar is just a special case of cvtThm for VarE x, it needs the lemma lemmM, which
can be proved by straightforward induction.
For the case of VarE (Succ r), we need the induction hypothesis ih and the mapSubst theorem

we proved in Section 3. We also use a custom equational reasoning tactic in the following form 5.

equational t1

equals t2 by p1

equals t3 by p2 ...

equals tn by p(n-1)

This means we prove the following t1
p1
= t2

p2
= t3...

pn−1
= tn .

4.4 Discussion

We have shown that not only we are able to program all the functions for manipulating de Bruijn
lambda terms like Bird and Paterson did [Bird and Paterson 1999a], but also we are able to reason
about the programs formally using induction principles. We are working in a terminating depen-
dently typed language, whereas Bird and Paterson worked in Haskell, a language with general
recursion. Benefiting from the flexibility of dependently typed folds, we also make some minor
improvements. The following are Bird and Patterson’s implementation of cvtE and cvtBodyE

functions in Haskell.

cvtE :: TermE a -> Term a

cvtE = gfoldE Var App (Lam . joinT . mapT distT) id

cvtBodyE :: TermE (Incr (TermE a)) -> Term (Incr a)

5Please see the file Equality.agda in the supplementary material for details.
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cvtBodyE = joinT . mapT distT . cvtE . mapE (mapI cvtE)

The functions gfoldE, joinT, mapE and mapT all require traversal over a term structure. Bird and
Paterson’s implementation of cvtE requires three traversal functions and cvtBodyE requires five
traversal functions. While our implementation of cvtE only requires two traversal functions, i.e.
foldE and mapT. Moreover, the function cvtE corresponds to cvtE Z in our implementation and
cvtBodyE corresponds to cvtE (S Z). So our implementation of cvtE is more flexible.

5 OBTAINING THE DEPENDENTLY TYPED FOLDS FOR ANY NESTED DATA TYPES

In this section, we hint at how the construction of dependently typed fold in Section 2 can be
generalized to arbitrary nested data types. We do not provide a general formulation of the con-
struction because of the technical overhead in formulating the most general form of nested data
type declarations. One can find a formulation of nested data types as the fix points of the poly-
nomial higher-order functors in [Bird and Paterson 1999b]. Instead, we give an example of nested
data type that is hopefully general enough to make it clear what one would do in the general case.
We leave the general formulation and the meta-theoretical study of dependently typed folds as
future work.
In the previous sections, we use a natural number n as the index to obtain the dependently typed

folds for NBush n a, Term (NIncr n a) and TermE (IncrTermE n a). While using the natural
number index has the benefit of being intuitive, it raises the question of whether it is always
possible to obtain dependently typed folds for nested data types. Fortunately, in a dependently
typed language, types can depend not only on the natural numbers but also on any inductive
data types. In a general setting, given an arbitrarily complicated nested data type, we can use a
customized regular data type as the index to define the dependently typed fold.

5.1 A method to obtain dependently typed folds

Consider the following nested data type I and D.

data I (a : Set) : Set where

Zero : I a

Succ : a -> I (I a) -> I a

data D (a b : Set) : Set where

DNil : D a b

DCons : a -> b -> D (I a) b -> D (D (I b) (I b)) (I a) -> D a b

ACons : I b -> D (I (I (D b a))) (D (D b a) (D a b)) -> D a b

Here D is a type-constructor of arity 2 and I is a type-constructor of arity 1. The nested data type
D is reasonably arbitrary and general. It refers to another nested data type I, and its constructors
DCons and ACons are also nested. We will consider how to obtain a dependently typed fold for D.
We first define the following regular data type IndexD to describe all the types arising from D,

i.e. the types constructed from D, I and the variables a, b.

data IndexD : Set where

VarA : IndexD

VarB : IndexD

IsD : IndexD -> IndexD -> IndexD

IsI : IndexD -> IndexD

The constructors VarA and VarB describe the two variables for D, the constructor IsD of arity 2
describes the type-constructor D and the constructor IsI of arity 1 describes I.
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We then use structural recursion to define the following type-level function that translates a
value of IndexD to its corresponding type.

H : IndexD -> Set -> Set -> Set

H VarA a b = a

H VarB a b = b

H (IsD x y) a b = D (H x a b) (H y a b)

H (IsI x) a b = I (H x a b)

For example, H (IsD (IsI (IsD (IsI VarA) (IsI VarB))) (IsI VarA)) Nat Char will be
evaluated to the type D (I (D (I Nat) (I Char))) (I Nat).
Similar to NBush n a, we view H i a b as a kind of abstract indexed data type. We now define

the dependently typed fold for H i a b interactively in Agda. We begin with the following.

foldD : {a b : Set} {p : IndexD -> Set} -> (i : IndexD) -> H i a b -> p i

foldD {a} {b} {p} i l = ?

We will extend the type of foldD with arguments that correspond to the constructors of the
abstract data type H i a b. By dependent pattern-matching on i and H i a b, we have the
following seven cases.

foldD : {a b : Set} {p : IndexD -> Set} -> (i : IndexD) -> H i a b -> p i

foldD {a} {b} {p} VarA l = ?

foldD {a} {b} {p} VarB l = ?

foldD {a} {b} {p} (IsD i j) DNil = ?

foldD {a} {b} {p} (IsD i j) (DCons x y l v) = ?

foldD {a} {b} {p} (IsD i j) (ACons x l) = ?

foldD {a} {b} {p} (IsI i) Zero = ?

foldD {a} {b} {p} (IsI i) (Succ x y) = ?

The cases for VarA, VarB and DNil suggest that we extend foldDwith the arguments varA, varB
and bnil.

foldD : {a b : Set} {p : IndexD -> Set} ->

(i : IndexD) ->

(varA : a -> p VarA) ->

(varB : b -> p VarB) ->

(bnil : {i j : IndexD} -> p (IsD i j)) ->

H i a b -> p i

foldD {a} {b} {p} VarA varA varB bnil l = varA l

foldD {a} {b} {p} VarB varA varB bnil l = varB l

foldD {a} {b} {p} (IsD i j) varA varB bnil DNil = bnil

foldD {a} {b} {p} (IsD i j) varA varB bnil (DCons x y l v) = ?

...

We will now focus on the case for DCons x y l v, as the other cases follow similarly. We want
to make a recursive call of foldD on each of the components in DCons x y l v. The following is
the environment provided by Agda.

Goal: p (IsD i j)

-------------------------------------------------------

v : D (D (I (H j a b)) (I (H j a b))) (I (H i a b))

l : D (I (H i a b)) (H j a b)

y : H j a b

x : H i a b
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The key tomake these recursive calls is to provide foldDwith the correct indexes and these indexes
can be structurally larger than IsD i j. For example, the index we provide to foldDwhen calling
it on v is IsD (IsD (IsI j) (IsI j)) (IsI i) and the result of the recursive call is of the
type p (IsD (IsD (IsI j) (IsI j)) (IsI i)). Thus we add the argument bcons for foldD
to combine the results of the recursive calls on x, y, l, v.

foldD : {a b : Set} {p : IndexD -> Set} ->

(i : IndexD) ->

(varA : a -> p VarA) ->

(varB : b -> p VarB) ->

(bnil : {i j : IndexD} -> p (IsD i j)) ->

(bcons : {i j : IndexD} -> p i -> p j -> p (IsD (IsI i) j) ->

p (IsD (IsD (IsI j) (IsI j)) (IsI i)) -> p (IsD i j)) ->

H i a b -> p i

foldD {a} {b} {p} VarA varA varB bnil bcons l = varA l

foldD {a} {b} {p} VarB varA varB bnil bcons l = varB l

foldD {a} {b} {p} (IsD i j) varA varB bnil bcons DNil = bnil

foldD {a} {b} {p} (IsD i j) varA varB bnil bcons (DCons x y l v) =

bcons

(foldD {a} {b} {p} i varA varB bnil bcons x)

(foldD {a} {b} {p} j varA varB bnil bcons y)

(foldD {a} {b} {p} (IsD (IsI i) j) varA varB bnil bcons l)

(foldD {a} {b} {p} (IsD (IsD (IsI j) (IsI j)) (IsI i))

varA varB bnil bcons v)

...

Note that the above recursive definition of foldD is well-founded, Agda is able to confirm its
termination. The type of the final definition of foldD is the following, its full definition is in the
supplementary material.

foldD : {a b : Set} {p : IndexD -> Set} ->

(i : IndexD) ->

(varA : a -> p VarA) ->

(varB : b -> p VarB) ->

(bnil : {i j : IndexD} -> p (IsD i j)) ->

(bcons : {i j : IndexD} -> p i -> p j -> p (IsD (IsI i) j) ->

p (IsD (IsD (IsI j) (IsI j)) (IsI i)) -> p (IsD i j)) ->

(acons : {i j : IndexD} -> p (IsI j) ->

p (IsD (IsI (IsI (IsD j i))) (IsD (IsD j i) (IsD i j))) ->

p (IsD i j)) ->

(zero : {i : IndexD} -> p (IsI i)) ->

(succ : {i : IndexD} -> p i -> p (IsI (IsI i)) -> p (IsI i)) ->

H i a b -> p i

We can use the dependently typed fold foldD to define the following map and sum functions.

mapD : {a b c d : Set} -> (i : IndexD) -> (a -> c) -> (b -> d) -> H i a b -> H i c d

mapD {a} {b} {c} {d} i f g l =

foldD {a} {b} {\ i -> H i c d} i f g DNil DCons ACons Zero Succ l

mapD' : {a b c d : Set} -> (a -> c) -> (b -> d) -> D a b -> D c d

mapD' = mapD (IsD VarA VarB)
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sumD : D Nat Nat -> Nat

sumD x = foldD {Nat} {Nat} {\ i -> Nat} (IsD VarA VarB) (\ y -> y) (\ y -> y)

Z (\ x1 x2 x3 x4 -> add x1 (add x2 (add x3 x4))) add Z add x

The map function mapD traverses over the abstract data type H i a b, leaving all the constructors
unchanged, while applying f and g at the leaves.
Similar to what we have described in the previous sections, we can obtain an induction principle

from foldD by generalizing its type, i.e., generalizing the kind of p to (i : IndexD) -> H i a b

-> Set. Moreover, since H i a b can be viewed as an indexed data type with seven constructors,
we can obtain the indexed representation (Section 2.1) and the Church-encoding of H (Section 2.2).
Finally, it should be clear that we can apply the method we just described to obtain dependently
typed folds for any nested data types.

5.2 Specializing dependently typed folds to higher-order folds

Let us consider how to specialize dependently typed folds to the higher-order folds, using the data
type D as example. The following is the type of the higher-order fold for D.

hfoldD : {a b : Set} {p : Set -> Set -> Set} ->

(dnil : {a b : Set} -> p a b) ->

(dcons : {a b : Set} -> a -> b -> p (I a) b ->

p (p (I b) (I b)) (I a) -> p a b) ->

(acons : {a b : Set} -> I b ->

p (I (I (p b a))) (p (p b a) (p a b)) -> p a b) ->

D a b -> p a b

To obtain this type, we first obtain dnil, dcons and acons, their types are the same as the types
for the constructors DNil, DCons and ACons, except the type-constructor D is replaced by the type
variable p of kind Set -> Set -> Set. We then use bnil, bcons and acons as the additional
arguments for the function D a b -> p a b. Note that for any nested data type, we can obtain
the type of its higher-order fold this way.
We now define the following type-level function Hp to replace the constructor IsD by the binary

type variable p : Set -> Set -> Set, while keeping the other type-constructors unchanged.

Hp : IndexD -> (Set -> Set -> Set) -> Set -> Set -> Set

Hp VarA p a b = a

Hp VarB p a b = b

Hp (IsD i j) p a b = p (Hp i p a b) (Hp j p a b)

Hp (IsI i) p a b = I (Hp i p a b)

The higher-order fold hfoldD is defined by instantiating foldDwith \ i -> Hp i p a b.

hfoldD {a} {b} {p} dnil dcons acons x =

foldD {a} {b} {\ i -> Hp i p a b} (IsD VarA VarB)

(\ y -> y) (\ y -> y) dnil dcons acons Zero Succ x

The higher-order fold hfoldD traverses over D, replacing the constructors DNil, DCons and ACons
by dnil, dcons and acons, while leaving the constructors Zero and Succ unchanged.

5.3 Discussion

Looking back at the definition of foldD, it can be criticized for being too general. For example,
although foldD is defined for folding D, we can also use foldD to define a summation for I Nat.

sumI : I Nat -> Nat
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sumI l = foldD {Nat} {Nat} {\ y -> Nat} (IsI VarA) (\ y -> y) (\ y -> y)

Z (\ x x1 x2 x3 -> Z) (\ x x1 -> Z) Z add l

In this definition of sumI, we need to supply additional arguments such as \ x x1 x2 x3 -> Z

and \ x x1 -> Z even though we know these arguments will not be used when evaluating sumI.
One way to understand why foldDmay also work for I is that since the definition of D involves

a nested use of I, so a fold for I is needed when folding D. As a result, the function foldD may
be used to operate on the values that only involves data type I. If one wants to program with the
data type I, then it is more natural to program with the designated dependently typed fold for I.
We call the dependently typed folds obtained from the method in Section 5.1 the direct depen-

dently typed folds. The example of obtaining foldD shows that the direct dependently typed folds
always exist and we know how to systematically construct them.
In practice, we often have more intuition on how we intend to use the nested data types. For

example, consider the Term and TermE data type in the previous sections, where we are particularly
interested in types of the forms Term (Incrna) and TermE (IncrTermEna). So in these cases we use
a natural number as the index to define folds for Term (Incrna) and TermE (IncrTermEna). Let us
call the folds for Term (Incrna) and TermE (IncrTermEna) customized dependently typed folds.
Given a nested data type, its customized dependently typed folds can be different from its direct

dependently typed fold. For example, for the data types Term and TermE, the customized depen-
dently typed folds foldT and foldE are not the same as the direct dependently typed folds. On the
other hand, for the data type Bush, the customized dependently typed fold foldB coincides with
its direct dependently typed fold.
We say a dependently typed fold is proper if it can be specialized to the corresponding higher-

order fold. Because the higher-order fold is considered the defining property of a nested data type,
as the higher-order fold can be understood as the unique morphism from the initial nested data
type object in the higher-order functor category [Bird and Meertens 1998, §4]. We show that the
direct dependently typed folds are proper in Section 5.2. For the customized dependently typed
folds, the properness has to be shown in a case by case basis (e.g. hfoldT and hfoldE for Term and
TermE).

6 RELATED WORK

Generalized folds This paper is inspired by the works of Bird, Paterson and Meertens. The
higher-order folds such as hfoldB in Section 1 were thought not expressive enough to define func-
tions such as summation, which leads to the consideration of generalized folds ([Bird and Paterson
1999a], [Bird and Paterson 1999b]). The generalized folds further generalize the existing higher-
order folds with extra higher-order type variables and arguments. For example, the following is a
version of generalized fold for the Bushdata type.We have to use the unsafe flag --no-termination
to make Agda accept the following code.

gfoldB : {a : Set} -> {p q : Set -> Set} ->

({b : Set} -> p b) ->

({b : Set} -> q b -> p (p b) -> p b) ->

({b : Set} -> p b -> q (p b)) ->

Bush (q a) -> p a

gfoldB base step k NilB = base

gfoldB {a} {p} {q} base step k (ConsB x xs) =

step x (gfoldB {p a} {p} {q} base step k

(hmapB (\ y -> k (gfoldB {a} {p} {q} base step k y)) xs))

hfoldB : {a : Set} -> {p : Set -> Set} ->
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({b : Set} -> p b) -> ({b : Set} -> b -> p (p b) -> p b) -> Bush a -> p a

hfoldB {a} {p} base step = gfoldB {a} {p} {\ y -> y} base step (\ y -> y)

sumB : Bush Nat -> Nat

sumB = gfoldB {Nat} {\ y -> Nat} {\ y -> Nat} Z add (\ x -> x)

We can see the higher-order fold hfoldB is indeed an instance of the generalized fold gfoldB.
Moreover, gfoldB can be used to define functions such as sumB.
Higher-order folds Johann and Ghani show that the higher-order folds such as hfoldB can be

used to define functions such as sumB ([Johann and Ghani 2007], [Johann and Ghani 2009]). The
intuitive idea is instead of defining the summation function directly, one uses hfoldB to define the
following auxiliary function sumAux first, and define sumB’ based on sumAux.

sumAux : {a : Set} -> Bush a -> (a -> Nat) -> Nat

sumAux {a} = hfoldB {a} {\ a -> (a -> Nat) -> Nat}

(\ x -> Z) (\ x k f -> add (f x) (k (\ r -> r f)))

sumB' : Bush Nat -> Nat

sumB' l = sumAux l (\ y -> y)

When defining sumAux, we instantiate the type variable p in hfoldBwith \ a -> (a -> Nat) ->

Nat. Johann and Ghani generalize the pattern of sumAux and show how it is related to an advanced
concept called Kan extensions from category theory [Johann and Ghani 2007].
Comparison of dependently typed folds, generalized folds and higher-order folds. We

already mentioned that dependently typed folds can be specialized to higher-order folds, and that
dependently typed folds does not requires map functions, and that map functions can be defined
by dependently typed folds, and that dependently typed folds are defined using well-founded re-
cursion, and that dependently typed folds correspond to the induction principles.
Mendler-style iterators Abel, Matthes and Uustalu propose to use a generalized version of

Mendler-style iteration [Mendler 1987] to programwith nested data types ([Abel et al. 2003], [Abel et al.
2005]). The intuitive idea is that one first defines nested data types as recursive types, i.e. the fix
points of higher-order functors. For example, the Bush data type is encoded as the following Bush’
with the constructors BNil and BCons.

data Mu (F : (Set -> Set) -> (Set -> Set)) (a : Set) : Set where

In : F (Mu F) a -> Mu F a

BushF : (Set -> Set) -> (Set -> Set)

BushF B a = Unit + a * (B (B a))

Bush' : Set -> Set

Bush' = Mu BushF

BNil : {a : Set} -> Bush' a

BNil = In (Inl unit)

BCons : {a : Set} -> a -> Bush' (Bush' a) -> Bush' a

BCons x xs = In (Inr (Times x xs))

Note that the data type Mu is not strictly-positive inAgda, we have to use the unsafe flag --no-positivity
to make Agda accept the above code.
One then defines the following generalized Mendler-style iterator gIt. The iterator gIt uses a

generalized impredicative type abstraction mon.

mon : (Set -> Set) -> (Set -> Set) -> (Set -> Set) -> Set

mon F H G = {a b : Set} -> (a -> H b) -> F a -> G b

gIt : {F : (Set -> Set) -> (Set -> Set)} {H G : Set -> Set} ->

({X : Set -> Set} -> mon X H G -> mon (F X) H G) ->
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mon (Mu F) H G

gIt s f (In t) = s (gIt s) f t

We have to use the unsafe flag --type-in-type to make Agda accept the definition of mon. More-
over, another unsafe flag --no-termination is needed because the termination of gIt is not ob-
vious for Agda.

The sumAux’ function and the map function mapBush can be defined from gIt.

sumAux' : {a : Set} -> (a -> Nat) -> Bush' a -> Nat

sumAux' {a} = gIt {BushF} {\ x -> Nat} {\ x -> Nat}

(\ {X} r {a} {b} f t ->

match t (\ x -> Z)

(\ p -> add (f (p1 p))

(r {X a} {b} (r {a} {b} f) (p2 p)))) {a} {a}

mapBush : {X Y : Set} -> (X -> Y) -> (Bush' X -> Bush' Y)

mapBush = mfold bushF In

Although in Agda, the Mu data type is not strictly positive, the definition of mon requires impred-
icative polymorphism and the definition of gIt is not obviously terminating, Abel et. al. [Abel et al.
2003] show that the recursive types together with the generalized Mendler-style iterators can be
encoded in Girard’s Fω [Girard 1972] using a syntactic version of Kan extensions, hence the pro-
grams defined by the generalized Mendler-style iterators are still terminating.
Induction principles for Mendler-style iterators Matthes proposes to use a system called

LNMIt (logic for natural Mendler-style iteration of rank 2) [Matthes 2009, Fig. 1.] to reason about
programs defined by Mendler-style iterators. The LNMIt consists of the usual constants such as In
and gIt, it also contains the special constants for map and induction. Although the map constant
and the iterator gIt come with reduction rules, there is no such rule for the induction constant.
The type of the induction constant contains the map constant, and the induction constant provides
a mean to show a property holds for the data types defined from Mu. It is unclear to us how the
induction constant in LNMIt is related to the iterator gIt. Matthes [Matthes 2009, §5] proves in
Coq that LNMIt can be definedwithin the Calculus of Inductive Construction [Coquand and Paulin
1990] with the additional axioms of impredicative Set and proof irrelevance.

Comparison of dependently typed folds, generalized Mendler-style iterators and LN-

MIt. Both dependently typed folds and generalized Mendler-style iterators enable total program-
ming with iterators, and allow maps functions to be defined from the iterators. The approach of
generalized Mendler-style iterators requires working with recursive types instead of the usual in-
ductive definitions, it has the advantage of not imposing any positivity constraint for the data
types. The dependently typed folds approach requires working with the inductive definitions of
data types, it is limited to a subclass of strictly positive data types. As for the verification of pro-
grams involving nested data types, the justification of System LNMIt requires impredicative Set

and proof irrelevance, while the induction principles obtained from dependently typed folds work
directly in total Agda and does not requires the axioms of impredicative Set and proof irrelevance.
Other related work from type theory The main technique we use to realize dependently

typed folds is called large elimination in the dependent types literature ([Altenkirch 1993], [Werner
1992]), i.e. computing types by pattern-matching on values. Werner shows that the inductive rea-
soning in the Calculus of Inductive Construction is consistent [Werner 1994]. Modern dependently
typed languages such as Agda, Coq allow user-defined regular/nested data types and well-founded
recursive function definitions [Coquand 1992], this enables us to define the dependently typed
folds, their corresponding induction principles and various type-level functions.
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7 CONCLUSION AND FUTUREWORK

We show how to define dependently typed folds for nested data types and how to specialize them
to the corresponding higher-order folds. Dependently typed folds can be used to define maps,
and other terminating functions. They give rise to the induction principles, similar to the folds
for regular data types. We show how to use induction principles to reason about the programs
involving nested data types. We also discuss how dependently typed folds give rise to the indexed
representations and how to obtain the Church encodings of the indexed representations.
For future work, we would like to formalize a general procedure to obtain the direct depen-

dently typed folds. We would also like to consider the meta-theoretic properties of dependently
typed folds. For example, it would be nice to be able to prove a meta-theorem stating that any
higher-order fold obtained from the direct dependently typed fold will have the same computa-
tional behavior as the higher-order fold obtained from general recursion.
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