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There are infinitely many monotone games over L5

Eric Demer, UCLA

Peter Selinger, Dalhousie University

Abstract

A notion of combinatorial game over a partially ordered set of atomic outcomes was recently intro-

duced by Selinger. These games are appropriate for describing the value of positions in Hex and other

monotone set coloring games. It is already known that there are infinitely many distinct monotone game

values when the poset of atoms is not linearly ordered, and that there are only finitely many such values

when the poset of atoms is linearly ordered with 4 or fewer elements. In this short paper, we settle

the remaining case: when the atom poset has 5 or more elements, there are infinitely many distinct

monotone values.

1 Introduction

Combinatorial game theory, introduced by Conway [2] and Berlekamp, Conway, and Guy [1] in the 1970s
and 1980s, is a mathematical theory of sequential perfect information games. In its original form, this theory
deals with games following the normal play convention, under which the last player who is able to make a
move wins the game. However, combinatorial game theory has also been applied to many other situations,
including misère play, in which the last player to move loses, as well as scoring games, in which the final
outcome is a numerical score.

In [4], a new variant of scoring games was introduced in which the atomic positions are elements of a
partially ordered set (poset). These games are appropriate for analyzing monotone set coloring games such
as Hex, and in fact, they capture that class of games exactly [3]. In [4], it was shown that when the atom
poset A is not linearly ordered, i.e., when it has a pair of incomparable elements, then there are infinitely
many non-equivalent monotone game values over A, and when A is linearly ordered with 4 or fewer elements,
there are only finitely many such values up to equivalence. It was stated in [4] without proof that when A

is the 6-element linear order, there are infinitely many values, and it was conjectured that this is also true
when A is the 5-element linear order.

The purpose of this short paper is to supply a positive answer to this conjecture.

2 Background

We briefly recall the definition of games over a poset and some of their properties. Full details can be found
in [4]. Let A be a partially ordered set whose elements we call atoms. The class of combinatorial games over
A is inductively defined as follows:

• For every atom a ∈ A, [a] is a game, and

• Whenever L and R are non-empty sets of games, then {L | R} is a game.

The fact that it is an inductive definition implies that there are no other games except the ones constructed
above. A game of the form [a] is called atomic, and we often write a instead of [a] when no confusion arises.
A game of the form {L | R} is called composite. In the game G = {L | R}, the elements of L and R are
called the left options and right options of G, respectively. The idea is that there are two players, called
Left and Right, and in the game G = {L | R}, L represents the set of all moves available to Left, and R
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represents the set of all moves available to Right. We use the usual notations of combinatorial game theory.
Specifically, if L = {G1, . . . , Gn} and R = {H1, . . . , Hm}, we write {G1, . . . , Gn | H1, . . . , Hm} for {L | R}.
We also write GL and GR for a typical left and right option of G. A position of a game G is either G itself,
or an option of G, or an option of an option, and so on recursively.

On the class of games over a poset A, we define the relations 6 and ⊳ by mutual recursion as follows:

• G 6 H if all three of the following conditions hold:

1. All left options GL satisfy GL ⊳ H , and

2. all right options HR satisfy G ⊳ HR, and

3. if G or H is atomic, then G ⊳ H .

• G ⊳ H if at least one of the following conditions holds:

1. There exists a right option GR such that GR 6 H , or

2. there exists a left option HL such that G 6 HL, or

3. G = [a] and H = [b] are atomic and a 6 b.

Intuitively, G 6 H means that the game H is at least as good for Left as the game G. The following
transitivity properties hold for games G,H,K over A: If G 6 H 6 K then G 6 K; if G ⊳ H 6 K then
G ⊳ K; and if G 6 H ⊳ K then G ⊳ K. When G 6 H and H 6 G, we say that G and H are equivalent.
The value of a game is its equivalence class; in particular, we say that G and H have the same value if they
are equivalent.

A game G is called locally monotone if all its left options satisfy G 6 GL and all its right options satisfy
GR 6 G, and monotone if all positions occurring in G are locally monotone. For n > 0, let Ln denote
the linearly ordered set with n elements. It was shown in [4] that for n 6 4, there exist only finitely many
monotone games over Ln up to equivalence. It seems natural to conjecture that this remains true for n > 5,
but we will show below that this is not the case: when n > 5, there exist infinitely many non-equivalent
monotone games over Ln.

3 An infinite sequence of games over L5

Let L5 = {−3,−2,−1, 0, 1} be the 5-element linearly ordered set, with its natural order −3 < −2 < −1 <

0 < 1. We define the following games and operations on games over L5:

⋆ = {−1 | −3},
M(G) = {1 | G},
P (G) = {G | −2},
P ∗(G) = {G | ⋆}.

Moreover, for n ∈ N, we write

Pn(G) =

{

P (G) when n is odd,

P ∗(G) when n is even.

Then we define the following sequence of games:

G0 = 0,
Gn+1 = M(Pn(Gn)).

For example:
G0 = 0,
G1 = M(P ∗(0)),
G2 = M(P (M(P ∗(0)))),
G3 = M(P ∗(M(P (M(P ∗(0)))))).
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Lemma 3.1. For all n, Gn is monotone.

Proof. It is easy to see from their definition that the games in the sequence G0, G1, G2, . . . all have the
property that the final score is equal to the number of moves made by Left minus the number of moves
made by Right. Such games are automatically monotone. To see why, consider the slightly more general
class of games G with the property that the final score is equal to the number of moves made by Left minus
the number of moves made by Right plus some constant C ∈ Z. We write m(G) = C (the mean value of
G, see [2]). It is then easy to prove by induction that for all such games, m(G) 6 m(H) implies G ⊳ H

and m(G) < m(H) implies G 6 H . In particular, since m(GL) = m(G) + 1, we have G 6 GL, and similarly
GR 6 G, proving that G is monotone.

Lemma 3.2. For all n, Gn 6 Gn+1.

Proof. To show Gn 6 Gn+1, we must show three things: First, we must show that all left options GL
n satisfy

GL
n
⊳ Gn+1. When n = 0, there is no such left option, and when n > 0, the unique left option of Gn is 1.

But 1 is also a left option of Gn+1, so 1 ⊳ Gn+1 as claimed. Second, we must show that all right options
GR

n+1 satisfy Gn ⊳ GR
n+1. But the unique right option of Gn+1 is Pn(Gn), and Gn ⊳ Pn(Gn) holds because

Gn is a left option of Pn(Gn). Third, we must show that if Gn or Gn+1 is atomic, then Gn ⊳ Gn+1. But
this only happens when n = 0. In this case, we must show 0 ⊳ G1. But this holds because 1 is a left option
of G1 and 0 6 1.

Remark: the proof is not by induction.

Corollary 3.3. For all n, 0 6 Gn.

Proof. From Lemma 3.2 and transitivity, since 0 = G0 6 G1 6 . . . 6 Gn.

Lemma 3.4. For all n, Gn+1 
 Gn.

Proof. The following claims hold for all n. We prove them by simultaneous complete induction on n. The
lemma is claim (8).

(1) Gn ⋪ −1.

This follows from Corollary 3.3. Indeed, if Gn ⊳ −1 were true, then transitivity would imply 0 ⊳ −1,
which is absurd.

(2) Pn(Gn) 
 −1.

This follows from (1), because Gn is a left option of Pn(Gn).

(3) If n is even, Pn(Gn) ⋪ −2.

Since −2 is atomic and Pn(Gn) is not, the only way Pn(Gn) ⊳ −2 can hold is if some right option H

of Pn(Gn) satisfies H 6 −2. But this is impossible because ⋆ is the unique right option of Pn(Gn)
and ⋆ 
 −2.

(4) If n is odd, Pn(Gn) ⋪ ⋆.

Since neither Pn(Gn) nor ⋆ is atomic, there are only two ways in which Pn(Gn) ⊳ ⋆ could hold. Either
some right option H of Pn(Gn) satisfies H 6 ⋆; but this is impossible because −2 is the unique right
option of Pn(Gn) and −2 
 ⋆. Or else some left option K of ⋆ satisfies Pn(Gn) 6 K; but this is
impossible by (2) because −1 is the unique left option of ⋆.

(5) If n > 0, then Pn(Gn) 
 Pn−1(Gn−1).

When n is even, this follows from (3) because −2 is a right option of Pn−1(Gn−1).

When n is odd, this follows from (4) because ⋆ is a right option of Pn−1(Gn−1).

3



(6) If n > 0, then Gn+1 
 Gn−1.

For the sake of obtaining a contradiction, suppose Gn+1 6 Gn−1. By Lemma 3.2, we have Gn 6 Gn+1.
With transitivity, this implies Gn 6 Gn−1. However, this contradicts (8) of the induction hypothesis.

(7) If n > 0, then Gn+1 ⋪ Pn−1(Gn−1).

Because neitherGn+1 nor P
n−1(Gn−1) is atomic, there are only two ways in whichGn+1 ⊳ Pn−1(Gn−1)

could hold. Either some right option H of Gn+1 satisfies H 6 Pn−1(Gn−1); but this is impossible by
(5) because Pn(Gn) is the unique right option of Gn+1. Or else some left option K of Pn−1(Gn−1)
satisfiesGn+1 6 K; but this is impossible by (6) because Gn−1 is the unique left option of Pn−1(Gn−1).

(8) Gn+1 
 Gn.

When n = 0, this holds by direct calculation: G1 
 0 because 1 is a left option of G1 and 1 ⋪ 0.

When n > 0, this follows from (7) because Pn−1(Gn−1) is a right option of Gn.

Corollary 3.5. There are infinitely many non-equivalent monotone games over the 5-element linearly or-

dered atom poset L5.

Proof. By Lemmas 3.2 and 3.4, we have Gn < Gn+1 for all n. In particular, the sequence G0, G1, . . . consists
of infinitely many non-equivalent games. Moreover, they are monotone by Lemma 3.1.

Corollary 3.5 completes the classification of atom posets into whether there exist finitely or infinitely
many game values. Specifically, it provides the last remaining piece of the following theorem:

Theorem 3.6. Let A be a poset. Then the class of monotone game values over A is finite if A is a linear

order of 4 or fewer elements. In all other cases, there are infinitely many monotone values.

Proof. It was shown in [4, Prop. 10.2] that there are infinitely many monotone game values over A when
A has two incomparable elements. This takes care of all cases where A is not linearly ordered. It was
further shown in [4, Sec. 10.2] that there are only finitely many monotone game values over A when A is a
linearly ordered set of size 1, 2, 3, or 4. (In this case, there are 1, 3, 8, or 31 such values, respectively). The
case of the zero-element poset is trivial, as there are no game values at all. The only remaining cases are
linearly ordered sets of 5 or more elements (including infinite ones). In these cases, there are infinitely many
monotone game values by Corollary 3.5. Note that if the atom poset has strictly more than 5 elements, one
may simply disregard the additional atoms.

We conclude this paper with a remark that may shed some light on the properties of the games Gn.

Remark 3.7. As mentioned in the proof of Lemma 3.1, the games in the sequence G0, G1, G2, . . . all have
the property that the final score is equal to the number of moves made by Left minus the number of moves
made by Right. In combinatorial game terminology, these games have constant temperature 1, because
each move shifts the average outcome by exactly 1 in the direction that favors the player who made the
move. As we already saw, such games are automatically monotone. Moreover, such games are equivalent to
normal-play games in the following sense: if Left goes second in G and the players alternate, the outcome
will be 0 if and only if Left gets the last move, and −1 otherwise. Let np(G) be the normal-play game
obtained from G by replacing every atom by 0 = { | }. Then 0 6 G if and only if Left has a second-player
strategy guaranteeing outcome 0, if and only if Left has a second-player strategy guaranteeing the last move,
if and only if Left has a second-player winning strategy in np(G), if and only if 0 6 np(G). Moreover, the
same observation holds for comparison games as well, so that G 6 H if and only if np(G) 6 np(H). We
can therefore see that the strictly increasing sequence of monotone games G0 < G1 < . . . corresponds to a
strictly increasing sequence np(G0) < np(G1) < . . . of (rather specially constructed) normal-play games.
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