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Abstract

Many familiar models of the type­free lambda calculus

are constructed by order theoretic methods. This paper

provides some basic new facts about ordered models of the

lambda calculus. We show that in any partially ordered

model that is complete for the theory ofβ­ orβη­conversion,

the partial order is trivial on term denotations. Equiva­

lently, the open and closed term algebras of the type­free

lambda calculus cannot be non­trivially partially ordered.

Our second result is a syntactical characterization, in terms

of so­called generalized Mal’cev operators, of those lambda

theories which cannot be induced by any non­trivially par­

tially ordered model. We also consider a notion of finite

models for the type­free lambda calculus. We introduce

partial syntactical lambda models, which are derived from

Plotkin’s syntactical models of reduction, and we investigate

how these models can be used as practical tools for giving

finitary proofs of term inequalities. We give a 3­element

model as an example.

1 Introduction

Perhaps the most important contribution in the area of

mathematical programming semantics was the discovery,

by D. Scott in the late 1960’s, that models for the type­

free lambda calculus could be obtained by a combination of

order­theoretic and topological methods. A long tradition of

research in domain theory ensued, and Scott’s methods have

been successfully applied to many aspects of programming

semantics.

In this paper we establish some basic new facts about

ordered models of the type­free lambda calculus. We show
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that the standard open and closed term algebras are un­

orderable, i.e. they cannot be non­trivially partially ordered

as combinatory algebras. We also give a syntactic character­

ization, in terms of Mal’cev operators, of those combinatory

algebras which are absolutely unorderable in the sense that

they cannot be embedded in any orderable algebra.

In the second part of the paper (Section 4), we develop

a notion of finite models for the type­free lambda calcu­

lus. It has long been known that a model of the lambda

calculus in the traditional sense can never be finite or even

recursive [1]. We circumvent this problem by introducing

partial syntactical lambda models, which differ from the

usual syntactical lambda models [1] in that their operations

are only partially defined, hence giving denotations only to

a subset of lambda terms. Such models can be finite, and

consequently term denotations are effectively computable.

We give an example of a non­trivial 3­element model.

Let us briefly present the main issues discussed in this

paper.

Order­Incompleteness. Many familiar models of the type­

free lambda calculus, like Scott’s D∞ and Pω, are con­

structed by order theoretic methods. It is a natural question

to ask whether the class of such ordered models is complete

with respect to the lambda calculus. More precisely, ev­

ery model defines, via the interpretation function, a lambda

theory, by which we mean a congruence relation on closed

lambda terms with or without constants, closed under the

β­rule. By λβ we denote the minimal theory, i.e. the theory

of β­conversion. By λβη, we denote the theory of βη­

conversion. We consider the following two completeness

questions:

(i) Is there a non­trivially partially ordered model whose

theory is λβ (or λβη)?

(ii) Does every lambda theory arise as the theory of a

non­trivially partially ordered model?



Although these questions are of similar nature, (i) is easy,

while (ii) is hard. Question (i) asks for a partially ordered

model which is complete for β­ or βη­conversion. Recall

that neitherD∞ nor Pω are complete in this sense, since in

these models the meanings of unsolvable terms are equated

[6, 13, 1]. In Corollary 8 below, we construct partially

ordered models that are β­ and βη­complete. Question (i)

becomes more difficult, and more interesting, when it is

specialized to smaller classes of models. Di Gianantonio,

Honsell and Plotkin [2] give a positive answer with respect to

models that satisfy a certain weak ω1­continuity condition.

It is an open problem whether (i) still holds when specialized

to the class of topological models, i.e. models which arise as

reflexive objects in a cartesian closed category of complete

partial orders and Scott­continuous functions. This is the

long­standing topological completeness problem, see [5].

We will show in Section 2 that all models that satisfy

condition (i) share an interesting property: the denotations

of lambda terms necessarily form a discrete subset, i.e. de­

notations are pairwise incomparable. This is a consequence

of our Theorem 3: the standard open and closed term alge­

bras of the type­free lambda calculus cannot be non­trivially

partially ordered as combinatory algebras.

Question (ii) asks for the existence of order­incomplete

lambda theories. We call a theory order­incomplete if it does

not arise as the theory of a non­trivially partially ordered

model. In Section 3, we give a syntactical characterization

of such theories: the order­incomplete lambda theories are

exactly those theories that have a family of so­called gener­

alized Mal’cev operators. Mal’cev operators are known from

universal algebra [8, 12, 4], and they arise here because of

their ability to interfere with orders.

For the smaller class of topological models, (ii) is known

to be false: Honsell and Ronchi Della Rocca [5] give a

lambda theory that is not induced by any topological model.

Finite Lambda Models. Our notion of finite models for the

type­free lambda calculus is derived from a notion of models

of reduction. Models of reduction have been considered by

different authors [3, 7, 9], and we will focus here on a

formulation which is given by Plotkin [9] in the spirit of

the familiar syntactical lambda models [1]. Informally, by

a model of convertibility for a lambda calculus, we mean a

model with a soundness property of the form

M ∼= N ⇒ [[M ]] = [[N ]],

where ∼= is e.g. β­ or βη­convertibility, and [[ ]] is a ‘mean­

ing’ function of lambda terms. On the other hand, a model

of reduction has a soundness property of the form

M −→ N ⇒ [[M ]] ≤ [[N ]],

where −→ is e.g. β­ or βη­reduction, and ≤ is some order

on meanings of terms.

It is known that models of convertibility for the type­free

lambda calculus are never finite or even recursive [1]. By

contrast, models of reduction can quite possibly be finite,

and we shall see that they are easy to construct — but they

do not in general yield any information about convertibility

of terms. Our notion of partial models combines features of

both.

The key observation that leads to the definition of partial

models is that in certain models of reduction, a restricted

form of reasoning about convertibility is possible. Specifi­

cally, this is the case if the underlying order is flat, i.e. of the

form X⊥, where X is a set. A partial model can therefore

be understood as a flat model of reduction. After giving the

relevant definitions in 4.1 and 4.2, we investigate methods

of defining such models in practice. Such a method is given

in 4.3, and an example is worked out in 4.4 of how a 3­

element partial model can be used to establish a non­trivial

term inequality.

2 Lambda terms cannot be ordered

The main result of this section is that the open and closed

term algebras of the type­free lambda calculus do not allow

a non­trivial partial order. It is understood that by an ordered

model we mean one where the order is compatible with the

model structure. Since we formulate the results in terms of

combinatory algebras, this simply means that application is

a monotone operation. We follow Barendregt’s notation for

the lambda calculus [1].

Definition An applicative structure (X, ·) is a set X with

a binary operation. A combinatory algebra (X, ·, k, s) is

an applicative structure with distinguished k, s ∈ X sat­

isfying kxy = x and sxyz = xz(yz). Recall that every

combinatory algebra is combinatory complete, i.e., for any

polynomial expression p(x1, . . . , xn) there is an element

f ∈ X with fx1 . . . xn = p(x1, . . . , xn).
We say that a preorder ≤ on an applicative structure

(X, ·) is compatible if a ≤ b implies f · a ≤ f · b for

all f, a, b ∈ X . Note that by combinatory completeness,

this implies p(a) ≤ p(b) for any polynomial expression

p(x); in particular, for a compatible preorder, application is

monotone in both arguments.

A preorder is said to be discrete if a ≤ b implies a = b,
indiscrete if a ≤ b holds for all a, b, and trivial if it is

either descrete or indiscrete. By convention, we will refer to

preorders that merely satisfy a ≤ b ⇒ b ≤ a as symmetric.

A symmetric partial order is, of course, discrete and hence

trivial.

A combinatory algebra is called unorderable if the only

compatible partial orders on it are the trivial ones. Such al­

gebras have been previously known to exist. For example,



Plotkin [10] has recently exhibited a finitely separable alge­

bra, a property which implies unorderability. Here (X, ·) is

said to be finitely separable if for every finite subsetA ⊆ X ,

every function f :A→ X is the restriction of some f̂ ∈ X ,

meaning that for all a ∈ A, f(a) = f̂ · a. Finitely separable

combinatory algebras do not allow non­trivial preorders, for

if a < b for some a, b ∈ X , then x ≤ y for all x, y ∈ X via

some f̂ ∈ X with f̂ · a = x and f̂ · b = y.

The present result differs from this, because our unorder­

able algebras, the open and closed term algebras of the

type­free lambda calculus, occur “naturally”.

Definition Let ΛC be the set of (α­equivalence classes of)

untyped lambda terms, built from constants in C and some

countable supply V of variables. Similarly, Λ
0
C is the set of

closed terms. For Λ∅ we simply write Λ.

The open term algebra of the λβ­calculus is the com­

binatory algebra (ΛC/=β, •,K, S), where • is the applica­

tion operation on terms, and K and S are the terms λxy.x
and λxyz.xz(yz), respectively. The closed term algebra

(Λ0
C/=β, •,K, S) is defined analogously, and similarly for

the λβη­calculus.

Note that these term algebras are not finitely separable:

e.g. the terms ω = (λx.xx)(λx.xx) and I = λx.x cannot

be separated, since the first one is unsolvable. Also, the

term algebras allow non­trivial preorders: for instance, two

terms are ordered if and only if their meanings in the D∞

model are ordered.

We start with a lemma, to be proved in 4.4 below:

Lemma 1 There is a closed term A of the type­free

lambda calculus with Auuut =β Auttt, but Auuut 6=βη

Auutt 6=βη Auttt for variables u 6= t. ✷

The lemma is relevant to orders because of the following

observation: if ≤ is any compatible partial order on open

terms and u 6= t are variables, then u 6≤ t. For sup­

pose u ≤ t, then Auuut ≤ Auutt ≤ Auttt = Auuut,
henceAuuut = Auutt by antisymmetry, which contradicts

Lemma 1.

This shows that any compatible partial order on the open

term algebra is trivial on variables. To show that it is trivial

on arbitrary terms u, t, we need the following technical fact:

If u, t are terms and s is a fresh variable, then any inequality

which holds for variables u and t will also hold for su and

st. In this sense, we can say that su and st behave like

generic arguments. This is summarized in Lemma 2. Here

=β(η) denotes either =β or =βη.

Lemma 2 Let u1, . . . , un be terms such that ui 6=β(η) uj

for i 6= j. If s is a variable not free in u1, . . . , un, then

su1, su2, . . . , sun behave like generic arguments, i.e. for all

terms M,N with s 6∈ FV(M,N),

M(su1)(su2) . . . (sun) =β(η) N(su1)(su2) . . . (sun)
implies

Mx1x2 . . . xn =β(η) Nx1x2 . . . xn.

Proof Idea: An easy syntactic proof is possible by observing

that the subterms of the form (su) never disappear underβη­

reductions. A more semantic proof can be given if one uses

Plotkin’s separability result [10] to embed the open term

algebra in a separable algebra. There, one can choose s to

map u1, . . . , un to x1, . . . , xn, respectively. ✷

Theorem 3 Let M be the open or the closed term algebra

of the λβ­ or λβη­calculus. Then M does not allow a non­

trivial compatible partial order.

Proof: Equality in M is denoted by =β(η). Take a compat­

ible partial order ≤. Let u, t be terms with u ≤ t. Let A
be as in Lemma 1, and let s be a fresh variable. Then by

compatibility,

λs.A(su)(su)(su)(st) ≤ λs.A(su)(su)(st)(st)

≤ λs.A(su)(st)(st)(st)

=β(η) λs.A(su)(su)(su)(st),

hence, by antisymmetry,

A(su)(su)(su)(st) =β(η) A(su)(su)(st)(st)

Applying Lemma 2 to M = λut.Auuut and N =
λut.Auutt, one gets u =β(η) t. Consequently, the order

is trivial. ✷

Corollary 4 In any partially ordered model of the type­free

lambda calculus which is complete for one of the theories

λβ or λβη, the denotations of terms are discretely ordered.

✷

3 A characterization of absolutely

unorderable algebras

We have shown that the combinatory algebra of open

lambda terms cannot be non­trivially ordered. Nevertheless,

it follows from Di Gianantonio, Honsell and Plotkin [2]

that it can be embedded in an orderable algebra. It is an

interesting question whether there is a combinatory algebra

which is absolutely unorderable in the sense that it cannot

even be embedded in an orderable one. Plotkin conjectures

in [10] that the answer is yes.

The problem of absolute unorderability is closely related

to the completeness question (ii) in the introduction. Clearly,

the lambda theories that cannot be realized in a non­trivially

partially ordered model are those whose term algebra is

absolutely unorderable.



We will now characterize absolutely unorderable alge­

bras as those algebras that have a family of generalized

Mal’cev operators. Such operators are known from the study

of Mal’cev varieties in universal algebra. They are relevant

here because of the way they interfere with orders.

3.1 Absolutely unorderable algebras and
generalized Mal’cev operators

A combinatory algebra A is absolutely unorderable if

there is no embedding of combinatory algebras A → B such

that B allows a non­trivial compatible partial order. The

following theorem characterizes such algebras. As usual,

A[u, t] denotes the combinatory algebra obtained by freely

adjoining indeterminates u, t to A.

Theorem 5 The following are equivalent:

1. A is absolutely unorderable.

2. For every compatible preorder ≤ on A[u, t], if u ≤ t
then t ≤ u.

3. For some n ≥ 1, there exist elements M1, . . . ,Mn ∈
A, called generalized Mal’cev operators, such that,

for indeterminates u, t,

t = M1tuu
M1ttu = M2tuu
M2ttu = M3tuu (Malcevn)

...

Mnttu = u ✷

Remark: We say an equation p(u, t) = q(u, t) holds for

indeterminates u, t if it holds in A[u, t]. This is a stronger

condition than being satisfied in A, which is usually de­

noted by A |= p(u, t) = q(u, t), and which means that the

equation holds for all u, t ∈ A. If A is extensional, or

more generally if A is a lambda model [1], the two concepts

coincide.

In the case n = 1, the equations (Malcev1) have the

simple form t = Mtuu and Mttu = u. This is the usual

Mal’cev operator known from universal algebra. General­

ized Mal’cev operators for n ≥ 1 have been used by Hage­

mann and Mitschke [4] to characterizen­permutable classes

of universal algebras.

It is worth noting that Theorem 5 holds not just for combi­

natory algebras, but in fact in any equational variety. Specif­

ically:

Theorem 6 Let A be an algebra in an equational variety of

algebras. Then A is absolutely unorderable if and only if,

for some n ≥ 1, there are M1(x, y, z), . . . ,Mn(x, y, z) ∈
A[x, y, z], such that the equations (Malcevn) are satisfied

in A[u, t]. ✷

3.2 Generalized Mal’cev operators and theories

We call a lambda theory order­incomplete if it does not

arise as the theory of any non­trivially partially ordered

lambda algebra, i.e. if no ordered model is complete for it.

In the introduction, we were asking in question (ii) whether

an order­incomplete theory exists. Applying Theorem 5,

and using the duality between models and theories, we can

now also characterize order­incomplete theories in terms of

generalized Mal’cev operators. Lambda algebras are defined

in [1].

Theorem 7 For a lambda theory T , the following are

equivalent:

1. T is order­incomplete.

2. The closed term algebra Λ
0
C/T is absolutely unorder­

able.

3. The open term algebra ΛC/T is absolutely unorder­

able.

4. T has a family of generalized Mal’cev operators, i.e.

there are closed terms M1, . . . ,Mn ∈ Λ
0
C such that

T ⊢ t = M1tuu etc. for variables u, t.

5. There is no interpretation of T in any non­symmetri­

cally preordered lambda algebra. ✷

Note that if T2 is an extension of an order­incomplete the­

ory T1, then by 4., T2 is also order­incomplete. Also note

that because of 5., an order­incomplete theory does not have

any (not necessarily complete) non­trivially ordered mod­

els. In particular, neither λβ nor λβη are order­incomplete

theories. Thus we can positively answer question (i) from

the introduction:

Corollary 8 Both λβ and λβη arise as the theory of a non­

trivially partially ordered model. ✷

3.3 Mal’cev operators and consistency

At the beginning of this section, we asked whether an

absolutely unorderable combinatory algebra exists. In light

of Theorem 5, this is the case if and only if, for some n, the

equations (Malcevn) are consistent with combinatory logic.

Unfortunately, this is not known, except in the cases n = 1

and n = 2.

Let Y be any fixpoint operator of combinatory logic, and

write µx.M for Y (λx.M). The operator µ satisfies the

fixpoint property:

µx.A(x) = A(µx.A(x)). (fix )

The diagonal axiom is

µy.µx.A(x, y) = µx.A(x, x). (∆)



Theorem 9 (Plotkin, A. Simpson) Assuming the diagonal

axiom, (Malcevn) is inconsistent with combinatory logic for

all n.

Proof: Let x be arbitrary. Let A = µz.M1xzz. Then

A = µz.x = x. Also,

x = A = µz.M1xzz
= µy.µz.M1xyz by (∆)
= µz.M1xxz by (fix)
= µz.M2xzz by (Malcevn)
= . . .
= µz.Mn−1xxz
= µz.z by (Malcevn)

Hence x = µz.z for all x, which is an inconsistency. ✷

Theorem 10 (Plotkin, Simpson) (Malcev1) is inconsistent

with combinatory logic.

Proof: Suppose M is a Mal’cev operator. Let x be arbitrary

and let A = µy.µz.Mxyz. Then

A
(fix)
= µz.MxAz

(fix)
= MxAA

(Malcev1)
= x,

hence x = µz.MxAz = µz.Mxxz = µz.z. ✷

Theorem 11 (Plotkin, Selinger) (Malcev2) is inconsistent

with combinatory logic.

Proof: Suppose M1 and M2 are operators satisfying

(Malcev2). Define A and B by mutual recursion such that

A = µx.f(M1xAB)(M1xAB)
B = µy.µz.f(M2ABy)(M2ABz).

Then

B = f(M2ABB)(M2ABB) by (fix)
= f(M1AAB)(M1AAB) by (Malcev2)
= A. by (fix)

So µx.fxx = µx.f(M1xAA)(M1xAA) = A = B =
µy.µz.f(M2AAy)(M2AAz) = µy.µz.fyz, which is the

diagonal axiom. By Theorem 9, this leads to an inconsis­

tency. ✷

4 Finite models for the lambda calculus

4.1 Models of reduction

Definition 12 An ordered applicative structure (P, ·) is a

poset P with a monotone binary operation ·:P × P → P .

Let PV be the set of all valuations, i.e. functions from vari­

ables toP . A syntactical model ofβ­reduction (P, ·, [[ ]]) [9]

is an ordered applicative structure together with a meaning

function

[[ · ]]·: Λ × PV → P

such that the following hold:

1. [[x]]ρ = ρ(x)

2. [[MN ]]ρ = [[M ]]ρ · [[N ]]ρ

3. [[λx.M ]]ρ · a ≤ [[M ]]ρ(x:=a), for all a ∈ X

4. ρ|FV(M) = ρ′|FV(M) ⇒ [[M ]]ρ = [[M ]]ρ′

5. (∀a.[[M ]]ρ(x:=a) ≤ [[N ]]ρ(x:=a)) ⇒ [[λx.M ]]ρ ≤
[[λx.N ]]ρ

Moreover, we say (P, ·, [[ ]]) is a syntactical model of βη­

reduction, if it satisfies the additional property

6. [[λx.Mx]]ρ ≤ [[M ]]ρ, if x 6∈ FV(M).

Note that if P is a discrete partial order, we obtain the usual

syntactical lambda models (of convertibility) [1].

Also note that 1.–3. do not form an inductive definition;

rather they state properties of a function [[ ]] which is given

a priori. In particular, 3. does not uniquely determine the

meaning of an abstraction.

Unlike in ordered models of convertibility, where the

order relation is to be understood as ‘information order’,

here we are dealing with a reduction order: a ≤ b intu­

itively means a reduces to b. More precisely, the following

properties hold:

Proposition 13 (Plotkin [9]) The following are properties

of models of β­reduction:

1. Monotonicity. If ρ(x) ≤ ρ′(x) for all x, then

[[M ]]ρ ≤ [[M ]]ρ′ .

2. Substitution. [[M [N/x]]]ρ = [[M ]]ρ(x:=[[N ]]ρ).

3. Soundness for reduction. IfM
β

−→N , then [[M ]]ρ ≤
[[N ]]ρ. In a model of βη­reduction: If M

βη
−→N , then

[[M ]]ρ ≤ [[N ]]ρ. ✷

Definition 14 A categorical model of β­reduction (P, p, e)
is given by an objectP in an order­enriched cartesian closed

category, together with a pair of morphisms p:P → PP and

e:PP → P , such that p◦e ≤ idPP . If moreovere◦p ≤ idP ,

then (P, p, e) is a categorical model of βη­reduction.

Such categorical models of reduction have been studied

by various authors, e.g. by Girard [3] for the case of quali­

tative domains, or by Jacobs et al. [7], where they are called

models of expansion. For a detailed discussion of these and

other sources, see Plotkin [9].

There is an evident way of defining a syntactical model

of β­reduction (P, ·, [[ ]]) from a concrete categorical model

of β­reduction, by letting a · b := p(a)(b) and [[λx.M ]]ρ :=
e(λa.[[M ]]ρ(x:=a)). Similarly for βη. This is completely

analogous to Scott’s familiar rendition of a model of con­

vertibility as a reflexive object in a cartesian closed category

[11].



Constructing models of reduction is much easier than

the corresponding task of finding models of convertibility.

Indeed, for a given p:P → PP , there are a few obvious

choices for e: a minimal choice is always possible if P
has a least element ⊥. In this case, let e be the constant ⊥
function, which amounts to declaring [[λx.M ]]ρ to be always

undefined. On the other hand, if p has a right adjoint e, then

e is maximal with p ◦ e ≤ id. In this case, [[λx.M ]]ρ is the

maximal b ∈ P such that for all a ∈ P , b · a ≤ [[M ]]ρ(x:=a).

4.2 Partial Models

We have already noted that the soundness property for

models of reduction does not in general yield any informa­

tion about convertibility. The best statement one can make

is that, if the reduction under consideration is confluent

(Church­Rosser), then [[M ]]ρ and [[N ]]ρ must be compatible,

i.e.

M ∼= N ⇒ ∃c ∈ P.[[M ]]ρ ≤ c and [[N ]]ρ ≤ c.

For this reason we will be especially interested in partial

orders P that have lots of incompatible pairs. An important

special case arises with (P, ·, [[ ]]) where P = X⊥ is a flat

order, and where ·:P × P → P is strict in each argument.

In this case, it is convenient to consider ⊥ as the undefined

element, and ·, [[ ]] as partial functions. This gives rise to

the following definition.

Definition 15 A partial applicative structure (X, ·) is a set

X with a partial binary operation ·:X × X ⇀ X . Let

Val(X) be the set of partial valuations V ⇀ X . A partial

syntactical lambda model (X, ·, [[ ]]), or partial model for

short, is given by a partial applicative structure together with

a partial map

[[ · ]]·: ΛX × Val(X)⇀ X,

such that properties 1.–5. in Definition 12 hold, where =
is replaced by Kleene equality and ≤ by directed equality.

Moreover, if property 6. holds, (X, ·, [[ ]]) is a partial βη­

model.

Kleene equality is defined as follows: A = B if and only

if A and B are either both undefined or both defined and

equal. Directed equality, which we often denote byA ✄✂ B,

means that if A is defined, then so is B and they are equal.

The idea of using partiality in models for the lambda cal­

culus is not new. In fact, Kleene’s “first model”, which

consists of Gödel numbers of partial recursive functions and

their application, is partial. Partial models in our sense,

however, need not even be partial combinatory algebras. In

particular, here we do not even assume that the meanings of

the combinators S and K are necessarily defined.

In any particular partial syntactical lambda model, the

class of terms which denote in it is not given a priori, but

derived. The following soundness properties ensure that

this class is closed under reduction. Note that for partial

models, we have two notions of soundness: the one for

reduction like before, and now, as a trivial consequence,

one for convertibility.

Proposition 16 The following are properties of partial

models:

1. Soundness for reduction. If M
β

−→N , then

[[M ]]ρ ✄✂ [[N ]]ρ.

2. Soundness for convertibility. If M =β N , and if

[[M ]]ρ and [[N ]]ρ are both defined, then [[M ]]ρ = [[N ]]ρ.

3. In a partial βη­model, the respective properties hold

for =βη. ✷

4.3 Methods of construction

For a given partial model, the semantic interpretation

function [[ ]] is given a priori, satisfying certain properties.

For all practical purposes, one desires to be able to define

[[ ]] inductively. This is in general not possible. It turns out,

however, that if (X, ·) is strongly extensional, then [[ ]] can

be defined inductively in a maximal way:

Definition 17 A partial applicative structure (X, ·) is weak­

ly extensional if for all elements a, b ∈ X , whenever ∀x ∈
X.ax ✄✂ bx then a = b. It is strongly extensional if for all el­

ements a, b ∈ X , whenever (∀x ∈ X.ax and bx defined ⇒
ax = bx), then a = b.

Note that strong extensionality implies weak extensionality,

and that in the total case, both coincide with extensionality.

For a given partial applicative structure (X, ·), let P =
X⊥ be the corresponding flat order, and define p:P → PP

by p(a)(b) = a · b. The following proposition relates weak

extensionality to the η­rule, and strong extensionality to the

existence of a right adjoint to p:

Proposition 18 If (X, ·) is weakly extensional and |X | ≥ 2,

then every partial model (X, ·, [[ ]]) is a partial βη­model.

If (X, ·) is strongly extensional, then p:P → PP has a right

adjoint. ✷

Hence, if we start with a strongly extensional applicative

structure (X, ·), it is possible to define [[ ]] inductively, us­

ing the adjointness p ⊣ e like in the discussion following

Definition 14. The resulting definition of [[ ]] is maximal,

and it is summarized in the following corollary:

Corollary 19 If (X, ·) is a strongly extensional applicative

structure, then the following defines a partial βη­model:



1. [[x]]ρ = ρ(x)

2. [[MN ]]ρ = [[M ]]ρ · [[N ]]ρ

3. [[λx.M ]]ρ is defined iff there exists b ∈ X with b · a
✄✂ [[M ]]ρ(x:=a) for all a ∈ X . By strong extension­

ality, such an element b is necessarily unique. Define

[[λx.M ]]ρ = b.

Moreover, if [[ ]] is defined in this way, then for all n ≥ 1

and b ∈ X , one has b = [[λx1 . . . xn.P ]]ρ if and only if for

all a1 . . . an ∈ X , b · a1 · · ·an ✄✂ [[P ]]ρ(x1:=a1)...(xn:=an).

In particular, if such b exists, it is unique; otherwise

[[λx1 . . . xn.P ]]ρ is undefined.

Proof: The last claim follows by induction on n. ✷

4.4 Example: A 3­element partial model

We demonstrate the methods of the previous subsection

by supplying a proof of Lemma 1 above. The proof illus­

trates how a simple partial model can be ‘put to action’.

Lemma There is a closed term A of the type­free

lambda calculus with Auuut =β Auttt, but Auuut 6=βη

Auutt 6=βη Auttt for variables u 6= t.
Proof: Define terms

h = λzyx.zzy(zzy(zzyx))

f = hh

A = λuvwt.λx.fu(fv(fw(ftx))).

Then for all x, y:

fyx
β

−→ fy(fy(fyx)),

hence for all u, t:

λx.fu(ftx)
β

−→ λx.fu(fu(fu(ftx))) = Auuut

λx.fu(ftx)
β

−→ λx.fu(ft(ft(ftx))) = Auttt.

To see that Auuut 6=βη Auutt for variables u and t, we

will construct a partial model with as little as 3 elements.

Let X = {k, 0, 1}, and let · be defined by the following

‘multiplication table’:

· k 0 1

k 0 0 0

0 0 0 1

1 0 1 0

Then (X, ·) is a (strongly) extensional applicative structure.

Define [[ ]] inductively as in Corollary 19. Although (X, ·)
is total, [[ ]] will be partial.

Consider the partial functions φ(c, b, a) := k · c · b · a
and ψ(c, b, a) := [[zzy(zzy(zzyx))]]ρ(z:=c)(y:=b)(x:=a) =

ccb(ccb(ccba)). Rather tediously, the values of these func­

tions are calculated in this table:

c b a φ ψ
k or 0 or 1 k k 0 0

k 0 0 0

k 1 1 1

0 k 0 0

0 0 0 0

0 1 1 1

1 k 0 0

1 0 1 1

1 1 0 0

Hence by Corollary 19, [[h]] = [[λzyx.zzy(zzy(zzyx))]] is

defined and equal to k, and consequently [[f ]] = [[hh]] =
kk = 0. If ρ(u) = ρ(x) = 0 and ρ(t) = 1, then

[[fu(fu(fu(ftx)))]]ρ = 1

[[fu(fu(ft(ftx)))]]ρ = 0.

By soundness, fu(fu(fu(ftx))) 6=βη fu(fu(ft(ftx)))
⇒ Auuut 6=βη Auutt. ✷

4.5 Towards partial completeness theorems

For partial models, the following completeness theorem

holds trivially, since the models can be chosen to be total.

Proposition 20 Completeness: IfM 6=β M
′, then there is

a partial model and ρ for which [[M ]]ρ, [[M ′]]ρ are defined

and [[M ]]ρ 6= [[M ′]]ρ. If M 6=βη M
′, then the model can be

chosen to be strongly extensional. ✷

Of course much more interesting questions can be asked,

e.g. how close one can come to a finite completeness theorem

for partial models? In other words: can every inequality

M 6=β M
′ be demonstrated in a finite partial model? The

answer is obviously no, since this would yield a decision

procedure for convertibility of lambda terms. It remains

open to identify interesting strict subclasses of terms for

which a finite completeness property holds.

Further Research

In the introduction, we mentioned the topological com­

pleteness problem: does there exist a topological model

which is complete for β­conversion. This is a long­standing

open problem, see e.g. [5]. Here, by a topological model we

mean a model which arises as a reflexive object in a carte­

sian closed category of complete partial orders and Scott­

continuous functions. Our results imply that if such a model

is complete, then the term denotations in it must be discretely



ordered. It remains to be seen whether this result can shed

some light on the topological completeness problem.

We have also made partial progress with respect to an­

other incompleteness question, namely order­incomplete­

ness: Does every lambda theory arise as the theory of a

non­trivially partially ordered model? We have character­

ized order­incomplete lambda theories, or equivalently, ab­

solutely unorderable algebras, syntactically via the presence

of generalized Mal’cev operators. The question remains

whether, for some n ≥ 1, such operators are consistent

with the lambda calculus, and hence, whether an order­

incomplete theory exists. So far, answers are only known

for the cases n = 1 and n = 2.

There are many open questions regarding our partial syn­

tactical lambda models. These models seem to resist many

of the usual constructions, e.g. it is unclear whether they

form an interesting category or how to define substructures

etc. The soundness properties in Proposition 16 lack an

important feature: they do not embody reasoning from ad­

ditional hypotheses. While this can be easily fixed in the

case of soundness for reduction, it is a non­trivial problem

in the case of soundness for convertibility, since the latter

involves the Church­Rosser property in a crucial way.

Further, it is an interesting question how close one can

get, using partial models, to a finite completeness theorem

for the lambda calculus. With the prospects for such a

theorem limited by undecidability considerations, it might

nevertheless be possible to identify suitable and interesting

classes of terms for which a finite model property holds. In

particular, what is the theory of finite partial models, i.e.

which equations hold in all finite partial models?

Conclusion

This paper provides some basic new facts about ordered

models of the type­free lambda calculus. While most known

models are ordered, we show that the familiar term algebras

are not; they do not allow a partial order. A consequence,

with a possible application to the topological completeness

problem, is that in an ordered model which is complete for

β­ or βη­conversion, the term denotations must necessarily

form a discrete subset.

We also investigate the problem of order­incomplete­

ness: Can every model of the lambda calculus be embedded

in an orderable one, or equivalently, does every lambda the­

ory arise as the theory of a non­trivially partially ordered

model? Towards an answer to this question, we show that a

theory, or a model, is order­incomplete if and only if it has

a family of generalized Mal’cev operators. Such operators

are known from universal algebra, where they are used to

characterize permutabilities of congruence relations. In our

context, Mal’cev operators are relevant because of their abil­

ity to interfere with partial orders. It remains open whether

such operators are consistent with the lambda calculus.

We introduce a new notion of finite models for the lambda

calculus, called partial syntactic lambda models. Partial

models can be a convenient tool for reasoning about lambda

terms. They can be regarded as a special case of the more

natural class of Plotkin’s syntactical models of reduction.

Unlike in traditional models of the lambda calculus, which

are never recursive, term denotations can be easily and ef­

fectively calculated in finite models.
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