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INTRODUCTION

| In the study of flowchart schemes we use a new operation ca;led feedback

(Figure 4.c) instead of the iteration to model the loops. As in the definition of the

iteration appear implicitiy an identification of the return points with the inputs, the use

‘ ‘2@5 of iteration implies the use of tupling (Figure 10 bis), therefore the algebraic theories

. have had & main place in the study of flowehart schemes, The use of feedback permits

to leave ocut the tupling. Our conviction is that the symmetric strict monoidal

categarics {9 }aré the most adequate algebraic structures to study seyelic flowehart

sehemes. To study flowehart schemes we use a symmetric striet monoidal category
endowed with an adequate gxiomatized feedback. |

The aim of this paper is just to provide motivation. Proofs will be given

elsewhere,

1. A FORNAL REPRESENTATION OF FLOWCHART SCHEMES

1.1. A representation by pairs

The usual computation processes may be represented by flowehart pictures s in

Figure 1. The meaning of the picture is the usual one: start the computatiog beginning

with the input vertex (START) and execnte the statements in the order given by Arrows



until an outout vertex is reached; in the epse & statement has more than one attput

arrow {exit) ity oxecution fives at the snme time the information reparding the outpnt

Arrow on which the pxecution is continued,

The (abstroet) flowehart schemes will be obtained by a double sbstriction of

these conerete flowehart pictures: sn abstroction of statements and an abstraction of

connections,
The first sbstraction is easier to understand. It consists of replacing the conercte
stetements used to label the vertices in flowehart pictures by abstract symbols

{variables), Since the statements we use may have more than one entry and one exit,

the set of variables is 8 double-indexed set {X(m,n)}m nEN- An element x€ X{m,n) is
b4

considered 8s a unknown computation process with m contries and n exits (a still

unspecified computation process). Denote by X the disjeint unijon of this family of
variables. Two functions j,0: X=+N specify the numbers of entries and of exits
respectively, corresponding to & variable, " : v € X[, n) ‘H’ A mten 93w

“The result of this abstraetion is the usual notion of "flowchart seheme studied in
tho seventies (Menmg,«;Greibncli,?l\’oto{l)z An X~flowchart scheme is a finite, locally
‘6r2‘}ered, oriented graph whose vertices are coherently labelled by svmbols in X. Such an
abstrlicztion of the flowchart pieture in Figure 1 is given in Figure 2, where
Xy XnX g, X X € X{1,1) and Xg € X(1,2).

The second abstraction is more complicated, and at the present stage of the
presentation only a vague definition ean be given. Note that every flowchart picture
can be rearrsnged in 8 normal way be putting on a first level the statements of the
scheme and on a second level the connections of the scheme, For example, the scheme
in Figure 2 can be arranged in a normal form as in Figure 3. In this way we can image
‘the possibility of using a "theory" {or connections, (What "theory" means will be

explained later.) In our conerete case, this theory is the theory of finite functions Fn
given by the family of sets
Pn(m,n) = {f} f:{m}-2[n} funetion}, for m,n€ N

where mtmﬂ') [n} = il,ft,m,n}- An clement € Fn(m,n) used as a connection indicates
2 h
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the redireeting of flow of control. For the scheme in Figure 3 the connection gefni’,n

is given in the following table | e jh ata -'r:v{"u.r':'-iii O
! i ‘ 3 . 3 N ¥ ,‘w. LY

S 23 4 5

ERtvEbuh

»E(j)]ﬁ 3 4 5

At the abstract level we shall use for eonneetions a "support” theory T given by a

family of sots {"T(m‘n)}m,nGN‘ An_element f€T(m,n) is considered as & known

computation pi-acbsswim m entries and n exits,
The result of this double a'bstraction is the concept of representation of an
X-flowchart scheme over T. It ean be defined as follows. For x in the free monold X*

we dcnote by | x(

ou. 3&1 LW 4 4% {1

_he length of the word x, and for jelix|] we denote by X; the j-th

et imﬁw m)x*n'“\t Vet ,;, L3

letter of x. Henee x = w xz..:xl { Also we use the notation: i{x) = i(x )+ cee ¥ ilx

Ix{’

and ofx) = o(*( Y+ ...+ olx 11 ). A representation of an N-flowchart scheme over T with

m entries and n exits is defined as a pair
F={(x,1)

where X = x{..‘;x (x 'E. X* specifies the vertices of the scheme, ordered in a linear way,
and fET(m + o{x}, n + i(x)) specifies the connection of the scheme. The scheme In
Figure 3 may be represenied as (x! xzx xgxs, g), where g€ Fn(8,7) is the function
defined above, 01y . ,,.5\:\23, .».K.LZ'Lz.gs‘x&,. Ay T gede B
It must be emphasized thal there may be more representations which correspand
to & flowehart scheme, The difference between these representations is generated hy
the way in which the statements of the scheme are linearly ordercd as a string xEX®.
| We denofe by Fly 7 the set of representations of X},}E_ﬂowchart schemes over T.

More precisely,

Fly oim,n) = ix,0[x€X*, [€T(m + o) n+ iGN} .

1.2. Operations

While the sbove representation of schemes by pairs F = {x,f) is convenient for

) . » 3 -
theoretical purposes, for practical purposes it is inconvenient in the sense that it does



not show how the scheme P eonn be oblained from the components x and f of ity
representation. To fill in this gup we introdice here operations on flowehart schems .
If we Jook st the normal representation of schemes given in Figure 3, then we

can deduce that every seheme can boe eobtained from  the componcnts of its

representations using the operations in Figure 4, ealled sum, compoesition and feedhack.

More preciselv, a flowchart seheme F represented by the pair (x,t)el“l,( T( m,n) can also
1l

be represented by a formal expression

Ny . i(x)
((lm*xx*‘.--*ﬁ"q)‘f)f '

where 1‘“"') denotes the appliestion of the feedback by i(x) times, and lme T(m,m) is

the scheme without linternal) vertices which directly connects the i-th entry on the

i~th exit.

1.2.1. The elements of T are considered as particular schemes having only
econnections between entries and exits {i.e., without internal vertices), Therefore, if the
operstions above have sense in HX,T then they must be defined in T, too. The usual
flowchart schemes have as support theory a subtheory of the theory of finite relations
Rel defined by the family of sets

Rel(m,n) = { r|r<[mlx(n] relation}, for m,n€N.

Here the operations in Figurc 4 have the following meaning.

The operations ir Rel. For r&{mlx[n] and r'€ {p}x[q} the sum

r+ }'Qim + pl x[n + ql is defined by
Ar + ‘r' =r U{(m +jn+ i) Hj.j‘)er'j .

For r {mix {n] dnd r'c {n)x [p] the composite ¢« '€ [m]x{p] is the ususl one defincd by
.r ept = i(j‘,j’)‘ there‘cxists u € [n] such that (j,u)€r and (u,j')&r'_’,.

For relm + 1¥x[n + 1] the fecdba(:k rd<mlx [n} is defined by

ez 30,70 Goide ror [Gyn + 1€ ¢ and (m * e

é.{m'& A iﬂfq



| {The meaning of I ERellm,m) is olear: 1

}‘ some distinghttished rrorphi

mYme< Tim + mym), O m€ 10, L, € T(n,0) and mAmC Tm,

5

= {(5'5)“6[’“]}- In the seaual we shall nse

sms of the support theory T, namely me neT{m + n, 6+ ),
m + m), whose monningrin
Rel iz Ked i = {Q,n’rﬁ“(fm SU{(m+1,j)|j~;{n} ‘mVen = 4GP el %y
Uim+ mhcwi O =@ L =0, mam = {G.lietm}uiy.m +j)!j({m]} )

Note. The :ubthenrv of partial, finite functions in Rel, denoted by Pfn and dc—-
fim'\d by the family of sets

an(m,n}t YE{f: [m]-e>n] partially defined function ﬁ for myneN

is closed under the aforementioned operations. The theorv Pn defined in $1.1 is not
closed under feedback, hence it is inconvenient to use Fn as a support theorv for
deterministie flowchart schemes (since Fn(1,0) = @, for the unique functipn FE€Fn(?,1)
we have r»\\ﬂm,m}. The use of Pfn as support theory in the deterministic case is
equivalent to the extension of the concept of usual flowchsrt scheme to the conecept Vof
partisal flowchart scheme. A partial flowchart scheme is obtained from a usual

flowchart scheme by deleting somre arrows, and one interprets such an absence of arrow

- as -4 connection to an endless loop. For the sake of contrast, sometimes the ususal

flowchart schemes (over Fn) will be called comrplete flowchart sehemes,

!

1.2.2. Conversely, in the [ollowing section we shall see that it is easv to extend
the operations in Figure 4 from T to le T supposing T "conteins” bijective, finite
14

functions,

We collect these facts as the following slogan:

In order to define algebra le 5 We have to specifv:
Ny

~ @ double mdcxcd set X;
.«L‘J‘
-a support theorv T contmnmg‘fmxte bijections and 4s

[y L
eébncso;:ed with operations acting as in Figure 4.
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1.3. The algobra of representations {F!x T)

tn order to extend ou i
our operations from T to le,’l" T has to contain some

distinghished clements meneT(m + n, n+ m) representing the "block teanspositions”

where mneR, ie. " i i
! R , i 9,9 In the theory Rl the morphisms m<»n were defined indl.2.1.

The flowchart seheme in the normal form corresponding to s representation of
| Xzé‘ﬂowchart over T F = (x,f) is illustrated in Figure 5. The operations on flowehart
scheme representations esn be oblained by applying first the operations in Figure 4 on
- the pictures corresponding fo the given representations, then by rearranging the
obtained result in an adequate, normal form, and finally by writing the representation
associated to the final pieture.

The sum of two nmavmal ﬂowchavrj? schemes illustrates in Figure 6.8 can be
rearrgnged in the normal form given in Figure 6.h. Hence, we can formslly define the

~ sum of two representations (x,f)€ Tl,, ..(m,n} and (v,g) € Fl, (p,q) by
xiT v X,T N . “

(00 + (v, ) = (XYL + pesolx) + 1 XE+ N1, +i0erg+ 1yl ¥ X

‘F-éf o

The eomposite of two normal flowchart schemes illustrated in Figure 7.a can be
rearranged in the normal form given in Figure 7.b. Hence, we can formally define the

composite of two representations (x,f}€ FIX’T(m,n) and (v,g)€ le’.r(n,p) bv -

I
WMo

\ ¥
_(X,f) - (,V,E!) = (Q:\',(f + lo(y)xln + i(’()(" o(v))(g + 1Nx))“p + i(V)“')i(x”)' %g { T ™ *13

;l‘he fcedback of a normal {lowehart scheme illustrated in Figure 8.a can be
i'earranged in the normal form given in Figure 8.b. Hence, we can formally define the
feedback of a representation (x,NE€Fl¢ lm + 1,0+ 1) by

(x,0% = (x,[{1 + olx)e> DI + 1 «i(xNP .

Let us mention that the embeddings of X and T into le,T are given by the

following applications:

E.r(f) = (¢ ,f) for {€T(m,n), where gc X" is the empty word;

' E)'((x) = (x,m <> n) for x € X(m,n) .



‘}

{The last éqvmlit;v °an be cxter;ded to * into
» embed X* into NX,T ! Ex(x) = {x,{x)e> ofx)) for

xeX*)

We do not insist on the algebraie rules satisfied by the flowehart seheme repre-
sentations since this study is interesting only from & techniend viewpoint. We only men-
tion that an aigebraic structure, called tlow};,' has been singled out, which is preserved by
passing fron T to HX,T’ and that FIX.'I‘ setisfies a universal property partially similar
1o thrt sstisfied by pelvnomials (those interpretations of X and T In a flow that satisfy

a certain supplementary condition ean be naturally extended in a unique way to Fly 'l‘)'
. . o

1.4. Flownomials, flow-caleulus

As we pointed out in §1.2 & flowchart scheme represented by a picture In a

.t

normal form may also be represented bv a formal expression of the particular form

W+ xptactx )04 ik_(‘{l)*.r..?i(xak). The final form of the ealculus is obtained by

allowing arbitrery formal expressions written with "+7, .t gpg npn,

Flownomial expressions. Let X and T be as above. Define the sets EXPX .r(m,n)
14
of flownomial X-expressions over T of tvpe m-»n as {ollows:

{i) atomic elements x ¢ X{m,n)} and f&T(m,n) are flownominl expresions of the

type m-n;. :
VTR § . 1 2 3

(ii) pombine- flowpemial expressions: if F :m-»n, F :p-q, F":n=+q and
F:m+1-+n+1 are flownomial expressions of the indicated 1lype then

Fl + Fz tmtp - ntq, ! -‘Fs : m-rq and'F4 : m->n are flownomial expressions of

the indicated tvpe.

{ifi} all flownomial expressions are obtained by using rules (i) and {ii).

' r
A flownomial expression ,Of the form ((1_ +x, T_;.:.:xk)-f)f , where

r=ilx) .4 ilx ) s said to be in & normal” forn; (in *the §¢ouel we shall use the

: - . - - [3 - . 3 "
following standard notation: x = 2j<kxj’ ix) = ij_k'(xj)’ ofx) = Zj_{k“(xj)' x' z}_{k'“_y
ete. When T is closed with respect to +, - and 4 and contains the block transpositions

. e th
me>n, every flownomial expression can be brought to a normal form by using the



foliowing rofes:

(R1) replae DI L evryen] _

( replaee subexpressions involving onlv clements in T by the corresponding
value computed in Ty

$ie : s P i

| (R} th normal  form  of fe T(m,n) s (1 1% and of XEXmn) is

T ¥ . “‘l.‘ . .
1, + ¥ mont

{R3) the normal form of ((lm +x) .f)?i(") + (“p +x') . p},’ﬂ!’) is
O pap X2 M0 wpesol) + 1 NE+ PN+ itx) g + 1 (x,)mifm’);

(R9)  the normal form of (1 +x)-nH®. €1 +xye Ml
’ ((lm +x+ x‘)t(f + ]dX')}(]n + i{X)“ﬁ'O(X'))(f' + lf(x))(lq + i(XO)“ i(x))])+i(x+x";

(RS) the normal form of ((lm 1t x) o f)?j(*}‘? is

+
(1, + X+ oo DI+ 1ot

Using these rules every flownomial expression ean be brought io a unique normal
form, hence flownomial expressions in normal form give a complete and independent
system of representations for the congrucnce relation R generated by the rules (R1 - 5)
in the glgebra of expressions F'XPX,T‘ In gddition, it can be proved that the algebra of
; representations le’,l, is isomorphie to the quotient alrebra EXPX.T/R. Consequently,

-

in this enlarged frame we have the following identification:

representations by pairs = flownomial expressions in normal form.

The exémples we shall give in this paper are related to the flowchart seheme in
Figure 9‘.8.’They use the variables x € X{(1,3), veX(1,1) and z€X(2,1). The support
theory T is the theorv of finite partial functions, i.e., T = Pfn. An element fE€Pntm,n)
s represented.hy the sequence of its velues, i.c., (1’_(1),1:(2)...‘.7m))n. where f{i) = "if
f(i) = undefined then L else ()", for i€[ml. For instance: the function feEPEn(4.4)
given by f(1)= 1, f(2) = f(4) = 3, {3 =2 is represented by (1,3,2.3)4: (1,1)3 represents

the function £ Pfn(2,3) given by f(1) = 1 and f{(2) = undefined. (This representation of

finite partinl functions is not clegant, and is similar to the representation of natural

numbers by bars, i.e., 7= I eted



Exzmple. In thi ple w ‘ '
ple. In this example we prove that the following identity holds in flow-cal

eulus:
WV 3 XXy 0 = [+ x4 x5 1,2,9,3,4,5)5)‘r’

f. y “‘! normal form oui -
&, la aof thoe l(’ft"hﬂnd“ﬂdp \ g pressio
Mol it ¥, g SR N expr lon i the ri ht-hxm side ex |
X SLERR Y- S 14\« LN \1 LT ON N '{t f-"i' o ¥ N A N w' "

Indeed: - .

=l 4 OTeTt 1) ¢ x004,1,2,9),1

©1Vi.xa= {1? - (1,1, 1. [y + xN4,1,2,3), 141 =
= {1, + XML, + 1,00, + Do 34,12 2.9, + 10x13 Fler o} =
‘[(1 + x)¥4,4 12,3, 1t

o1, x=l1y: 1.2,14% + {1, + xX4,1,2,3) 141 =
= §0, 4 00, € 10+ 1,H01,2), + (4,1,2,8) 01, + 003 + 104400
= [(15 + xX1,2,6,3,4,5). 14 ; ’

SV 11, + 0= 11, + 004.4,1.2,3) 187+ [0, + 00,263,451 =
=1, ¢ x + 0004,4,1,2,3), + 1,01, + 163)0(1,2,6,3.4,5) + 1,)1, + ] enlir? =
= {1, + x + X6,6,1,2,7,3,4,5),1 17

Sl Y T, + M= [, +x ¢ X00,6,1,2,7,3,4,5), 1474 =

= 404+ x+ U1, +6@1NE,6,1,2,7,3,4,5),(1, + 1 021411 2.

= {1y +x+ x>(5,1,2,s,3,'4,5)6}¢2.

2. SEMANTIC MODELS

The basic model for the study of semanties of deterministie flowechsart schemes

has been introduced by C.C. Flgot. It consists in the following: Let § be the sot of va-
N J!.q R ~

lue-vectors denoting the states of memory in a computing device (the %alucq in the re~ 7

gisters of memory). A deterministie flowehart scheme F with m entries and n exits is

interpreted vig an interpretation 1 as a partial function Fl :[mx S e»[n)x§ with the

meaning that "FIQ’S) is defined and cqual to (i, iff "if the exeeutjon of the ‘pro:rruw

_obtained by interpreting I' via 1 begins at entry j of the program with initial state of

memory s, then the exeoution halts at exit J' of the program, the resulted state of



memory being gy

if we denote by

Pt . = YI[T: [l S-erln]x S partial function] , for manc N

we obtain a "theory”, in o vague sense, ans which is the basie semantic model in the
deterministie eose.i

Note that in the particular case when § has exactly onc. element an‘ can ﬁe
identified with Pfa defincd sbove (§1.2.‘£L In this ease the stress is lsid on‘ flow of
control, whereas the memory state remains unchanged.

In a simllar way has been introduced the basic semantic model in thé
rondeterministic case. A nondeterministic flowehart ;scheme F with m entries and n
exits is interpreted, via an interpretation 1, as a relation FIC([m)XSW({n}XS} with the
tqeaning that ”((j.s),(j‘,s‘))él’l" iff “if the execution of the program obtained by
interpreting F via I bering et entry § of the program with initial state of memory s, then
the execution mayv halts, on one variant, at exit § of the program, the resulted state of

memory being s." If we denote by
Rel (m,n) = $rlesdmlxS)x(n}x S}, for mneN
then we obtain theory,Rels which is the basic semantic model in the nondeterministic

case.

As above, in the particular case when S has exaetly one element, Rels can be
identified with Rel defined in él.?.l.

In Reis many operations and slgebraic structures may be considered. The
operations which interest us {(sum, composition and feedback) have the following
definitions.

For r'ERelS(W.n) and r'e Re!'s(p.q) the sum r + r'é€ Rels(m + p,n + q) is defined by

ptrt e r Um + 5,8+ s [(GGheNery

' ite r - r'eRel {m,p) is the usual
For rGRels(m,n) and r’GReIS(n,p) the composite r - '€ Rel (m,p
one, defined by

. r‘ - ‘{((j's),(j‘,s'))‘ 3 (jO,So)(‘ [n} x S with ((j,_“),(jo,sn))(' r ﬂnd ((joyso);(j'as’))( r 5 .



A ”,ki
In order tp define the feedback lot us

note that cvery relation veRelﬁ(m.n) is

given by g faumily  of  relatl : fefr
| X Hatlons viyquSxS. fer  iefm), jelnl, where

wn j ol H
U R RS N ECENA M) ' : j
hioot Sy H\{!.r'._.{j she vj - Denote by v* the reflexive-tennsitive closure of & retation
vESXE, fe, v¢s ; 2 ‘heve  § ’
. ISUV Ly, wheve ig ® {(s,s}(sésj. Using  those facts, fop

r Ekelslm + 1,0+ 1) the fecéhack v4e Re!s( n,n) is defined by

s - .

a = i . * i
("”i,j "i.ju{i.nﬂ Tm+1,n41 “Tmenj » for i€lml, jeinl .

We finish this section be defining the natural embedding of Rel in Rel , given by
1, 3

the application

e 9.0 | (e r, s€S].

- Perticularly, this application shows how various eclasses of finite fclntions in Rei
{(bijective functions, injective functions, ete.) can be thoﬁght of as being elements in an

_erbitrary Rcls.

3. SYNTACTIC MODELS

In order to formalize some aspects regarding the study of flowchart schemes:
isomorphism, accessibility, reduction, minimization with respect to the input {step-by-
-step) behaviour, coaccessibility, minimization with respeet to the input-output {step-
-by-step) behaviour, the flow-calculus, introduced i}r § 1.4, has to be augmented with
some rules of identifieution for flownomisls, It is an importent test for this caleulus
whether the identifications corresponding to the natural aforementioned properties cun
be (easily) defined. This task can be done, The most interesting fact is that for the

above properties there is o unique rule of identification (i.e., the equivalence relation

generated by si mulation) that has as particular cases the identification rules neeessary

for esch property.

. . “ . ] r
3.1. The simulation relation. Let F= ((}m Xy * e + xk) )4 and

Fr=((1_+x\+..+x,)" f')’fr' be two flownomial expressions in normal form, having
b - m - l EX X k'

the same type m->n, and yeRcl(k.k’) (think of v us a relation between the statements



3

XyriXy of F ond the statements XprerXlr of F, We say that F and pr are in stmulption 5
: 0 simulation

vig v lin symhols F-—-}VF') if:

M .6 y implies ¥ = '\-'i’ .

*

(ii) the patural "hlock" extensions of y to the inputs of the strtements, denoter

i{y), and 1o the outputs of the statements, denotad ofy), fulfil
f. (ln +ilv) = (1, +olv) -‘!" .

(this equality makes sense when T is elosed under coinposition and the relations ily), ofy)
are "embedded” in T),
Let us explain in more details what we mean by "block" extensions and by
f’embedding". Suppose we are given the sequences Xyreens Xy and x’]....,x;(, and the relation
Ve Rellk,k) satisfving (). Define the block extension of v to the irputs of the

statements i{v)€ Rc!(XEki(xj), > ,i(x'j,)} as follows: An se[ZEki(xj)) can be written

7<k

in a unique way as s = zj(o((s)"'xj) * f(s), where «(s)€ (k] and f{s) efitx o

this: s is the input that has the number g.(s) of the statement that has the number o(s)

s))l {rend

in the sequence x,,..,x ). Similarly, every § ¢ (Zj._{k.i(x},)] can be written as
| §= Z'j,< o('(s’)i(x:i') + £'(s"). Now the relation i(v) is defined by

Hy) = {(s,s')[(d(s), L{sh ey and pls) = F‘(s’)j .

“The block extension of v to outputs o(_v)GRel(ﬂjSko(xj), 'ngk'(’(x'j” is defined in a
similar wav.

At a first stage we can translate "embedding" by “inclusion", Later on we shall
give 8 more general meaning to "embeddfn_g" that contains, as a particular case, the
embedding of Rel in Rels defined in ¢2.°

The meaning of F ;}yF’ depends on the tvpe of v and will be given below for cach
particuler class of relations used for y. We only mention here that this notion of
simulation is the result of an historical proecss aiming to formalize some flowchart
scheme properties. Initially we had found that isomorphism:f end reduction can be

, C . . . Later
captured using simulations via bijective and surjective function, respectively. Later on

we found (hat aceoessibility could also be inodelled by simulation, namely by simulation

J—— T
£) Due_nlao-he-Anpendat® HIIov,
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simulations vip functions, Cnnecoswbihty can be modelled by simulation via converses

of injective funetions, and the  input-cutput (stcp»hv-stcp) behaviour, in  the
R 4 ]

deterministie cnse, can ba captured using simulations vip partially defined functions,

3.2, Equivaleneeas generated by simulations. For a subsot A of Rel let us denote
by ~>45 the simulation via A-relations, ramely "F *—)A'F' iff there exists y in .A sueh
that P —-)rY,F' ", and by = A the equivalenee relation generated by ~>4- By the ahove
comments it follows that the most interesting subsets A of Rel are: Bi (bijective
functions), In (injective functions), Sur (surjective functions), Pn (W, in!
{copverses of injective functions), Pfn, Sur”] (converses of su‘xfjoctive; funetions), and
Rel. | {

In t%m cese when A is closed with respeet to sum and composition, = A is a
congruence relation, hence the operations can be defined in the quotient strustuyre

| FIX,T/ = a- The resulted algehraic structures FIX’T/? A’ for certain X,T and A, are

the basic syntactic models for flowchart scheme theory.

4. FLOWCHART SCHEMES

In seetion §1,1 we emphasized that more reprbsentations by pairs (or
equivalently, flownomial expressions in normgl form) corresponds to a flowehart
Séheme, the difference being generated by the way the statements of the scheme are
linearlv ordered. This observation suggests the identification of a flowehart scheme
“with the‘class of its representations. The mathematical formulation of the fact that

two representations represent the same flowc!mrhpicture is capturated bv the

simulation via bijecﬁve functions.

4.1. The simulstion via bijective functions ‘(isomorphism). Suppose the support
theory T "contains” bijective finite functions. The meaning of the wording "contain® will

be specified later on, In the usual case T is a subthcory of Rel, hence the meaning is



" olenr: T2PRE.

The definition of simulation vig bijective functions g ehtained (or

definition, given in §3.1, using for v morphisms in Bi,

m the genoral

In the partienlar case when Is & subtheory of Rel the meaning of the simulation

"p -3 ’F‘ with y in Bi® is "F and B represent the same flowehnart scheme, the bijection y
doing the connection hetween the linearly ordered statements of F gnd of F.e
Therefore, the simulation via Mjective funetions can be named "isomorphism™.

Now we turn back to the‘g’eneml setting. For the congruence relation =

Bi’
generated by ~>gi the following equivalent characeterizations can be given:
()= p; = *g; (henee —>p; is & congruence);
(i1) = Bj is the congruence relation generated by the identifications

(ﬂk)(x*x’} Nérq=p. me>pe (X +x), where x&X(m n)sndx‘ex(p,q)

(see Figure'10. a)

4.2. The mathematica) concept of flowehart schemes. The above facts show that,
in the case TERel, a ﬂowchért scheme can be identified with an element in the

quotient structure F]x’,r/ = B Generalizing, we say

the elements in a FIX ’I‘/ = g; &re {abstract) flowchart schemes.

4.3. The algebra of flowchart schemes (biflow). We had selected some identities,
written in tet;ms of Mtaf, MW N, Im and men, and satisfied by flowchart schemes, in
order to define an algebraie structure, called biflow, The identities are listed in table !
and illustrated in Figure 11. The main point is that this set of identities is complete, i.e.
they suffice to prove that flownorﬁial expressions ‘'over Rel, which represent the same

flowehart scheme, are equal. Consequently, the identities, listed in tuble‘ 1, completely

characterizes flowehart schemes from the algebraic point of view,

Xl

P w
?

In more details, a biflow B is an abstract structure given by:

:

a family of rsets {B(m,n)}m,nm; the distinguished morphisms IHEB(n,n}.

R

Y



Mesn £fm 4 0, n 4 m); theee operations: compasition - : B(m,n) x B{n,p)

<, (i,
, «#g{msﬂ‘h suov 4 Blmond x Blp,a) > Blm + PN+ Q) and focdbnek 4 Blm + 1 A
n+ 1) -=+Blm,n E

CA 0,‘.5;,.}&#‘

and satisiving the identitios Hsted in table 1. The axioms (B1-6) show thnt a biflux B‘ is
i b 54 ik s n
strict womvidal ca » (BF-10) show e n g -
P category; (B}-10) show that R is a symmetrie striet monoidal category
ek e T YL . . ' :
ald the finite bijective functions are embedded in B; (B11-15) axiomatize the feedback

(B1) {fdh = flrh) o (BN me>(n+p)=(mern+1 X1+ mesp)
ptn

(B:)xmf‘= f=f, BIO)(f+g)- D= merp-(g+ 1)

(B ({egm+h=f+(g+h forf:mf'nn,g:p;»q

(Ba1g+f=f=1+1, (B11) f(g 4™ = ((f + 1 e(h + zp))f!’

(B8)1 41 =1 7 (B12) (f + 1P =  + g4P

(B8) (f + gXu + v) = fu+ gv (B13) (1 + WP = (1 + @)1
form!»nl’ap, m'An'-"—’,p‘ 7 forf:m+p+n+q,g:q->p

o B14) 1,1 =1,

(BS)(}en:ln:n«D (Bls)lﬂl'f:l]

(B7) mern-n<sm=1
m

Table 1. These axioms define a biflow

_Semantic models: Rels and sll of its subtheories, which contain the embedding of

\

Bi in Rc}q {ef. §2), are biflows. Particularly, Bi, In, PSur (partial, su_rjective functicns)

Pfn and Rel are biflows.
Syntactic models: I T is a biflow, then Fly v/ = p; is a biflow.

Generally, the support theory T for the flowchart schemes which interest us, has

at least a structure of biflow. Since Bi is an initinl biftow (in the sense of eategory

theory: for everv biflow B there exists a unique morphism of hiflows from B} to B), the

initial wording "the support theory T contains bijections" gets a precise meaning, when

T is a biflow.



4.4, The universs) preporty. In order to Fet an interpretntion of flowroming

expresstons in EXPL .. (or ro i i ;
_ x.1 (oF répresentatings In Flw’.) in 8 biflow B we have to Interprot

s

S the  wvarieble in X uxing o rank-presorving  appliention Iy : X8 (i.e

x€ X(m,n}!*?'li(*(}(I*(m;n)} sod the morphisms in T using & morphism of hiflows
LF:T-&B {i.c., Iy is given hy a family of applications Lp ¢ Tim,n) > Bim.n) whieh
preserve the constants ‘m' me3n and the operations ™", ™", and "4 7). Now the inter-
pretation of a flownomial expeession in normal form F = (r + Xyt tx ). N’

€EXP x,.r(m.n') is.(ix,,lT)f(F)GZB( m,n), given by
RS ' . r
,(IXJ,;J (F) = (1, * ylxy) +’.,. + lxtxk)) . ITU‘)H‘ .

{of course, the restriction to normal form is inessential.)

The above formule makes sense in each abstract structure B endonfed with Im’
Mn ot gnd 4", We have taken a biflow B in order that the interpretation (Ix,},r)r
ecommuste with the operations and in order that the = Bi " equivalent flownomiel expres-
sions have the same interpretetion. The latter statement shows that the extension
u(!x,},r)f makes sense for FIX,T/ = gi 100 and in that case we denote the corresponding
application by “xr‘w-)bf t Fly o/ = g; =*B.

In the usual cases T is a subtheory of Rel, B is a subtheory in & Rels, !X gives the
semantics for each statement x & X, and Lr is the restriction to T of the embedding of
Rel into Rel. In this cases the interpretation (IX,IT)f(F) gives the behaviour of the
program obtained by interpreting via Ix the flowchart scheme corresponding to. the
flownomial expressiog F.

Leat (E?(, Eb) be the embedding of (X,T) into FIX,T‘HBi obtained using the |
embedding (EX, ET) of {(X,T) in le’,r, ‘defined in §1.3, and the canonical projection
from FIX,T to FIX,T/ = Bi* 'The universal property setisfied by le’.r/ = Bi is similar to
that satisfied by the polynomisls, namely

ufar every biflow B and every interpretation (Ix, l,r) of {X,T) in B there exists a

unigue morphism of bifiows 11 tFly g/ = gy~ B (amely, {1y, 1 defined

b bf
above) such that Fg’( lbf = IX and E * "= I.T."



in n eatepori quage > ; . ‘
AR rorical language this property shows that Fl,( p! = 'B; 18 the coproduct of the

biflow T and the one freely generated by X'in the eategory of biflows.

4.5. Eiﬂ-ﬂowam‘u!us. The ecoleulus with '!‘lowrnominls associated to flowehart
sghomes, called bi-flow-caleulus, is obtained by adding to the rules (R1-5), thnt define
the flow-rolenlus (e, the ealeulus feor representations introduced in §1.4). the rule
which consists in .the identification of = Bi ~ echivalent flownomial expressions,

Another mcthod to define the same bi-flow-caleulus is to consider flownomial
¥

X -

N

xpremons over T ton'ethcr with the slgcbraic rules that define a biflow. NMore

,.F——&

precisely, the caleulus is defined by the rule (R1) in §1.4 and (B1-4, B6, B10-13) in

‘table 1. (Since T is a biflow, the other rules (BS, B7-9, B14~15) are covered by (R1).)

Example. In this example we shall prove that the followmg identitv holds in bi-

-ﬂow~calculus
| (lVl . xﬂ1 +y+ )t (13 +vK1,3,2.3)4 = (1V1 - x(12'+ x))’l‘(l.3.2,4)4(12 +(y + v)IVL) .

- {a) Prool. ﬁsing normal forms: As in example in §1.4 the normal form of the

left-hand side expression is NF = [(I +x+y+x+vX4,1,5,6.3,2,7,4 3:,,] 1‘ and of the
4 A\

right-hand side expression is NF, = I(l +x +x+y+y (4,16,5274,3,3), 147, We shall

prove that N Fl

statements with respect to the sequences (x,v.x,¥) and (XX, v,v), hence condition (1} in

-— ‘-'F for the buechon v*(l,i.u «ﬂ Note that v preserves the
y

definitiorn §3.1 holds. The extension o_f v to inputs is (1,3,2,4).1 and to outputs is
(1'2’3’7‘4'5’6’é)8’ Since (4,1,5,6,3.2,7.4 3).-.(13 +(1,3,2, 4) Y= {4,1,6,5, 3,2,?,4,3)7 =

3.1 holds. too. X
“O"I +{1,2,3.7,4,5,6.8)g) (4,1,6 5,.”4- 4,2,2), condition (ii) in definition & o ’

PRI ;.

{b) Proof. Using the algebraie rules (without marking the epplication of the rules

(R1) and (B1-4)) o
(V1 x(1 +y+ XN (1, + v)n 3,2 3)3-;
6
={1V] - x(l2 N1y +y .]2) + 11)%(13 + vX1,3,2,3)4 by B
by Bl1l

S (VI Xy ¢ A+ Y+ 10 3H13,28)y



i3
e

= (v "'X“,? + x))ﬂ!, MR P y)(}1 + el + '1’“?. +1V1) bvRs

={IVI - x(1, + b1 » , ,
SUUTREE RS W1, + Vi) by BG, R1D

= {1Vt - x(1, \))Nz...._,q (1, + (2 + ¥) - 1V1) A “bv 6

5. ACCESSBILITY )

A flowehart scheme is a notation of a scquentinl computation process. In the

process of computation only the vertices that ean be reached hy paths going from inouts

f t ¢, i
A gw@m thone i ¢\Ju wdwa 4{ “*M*ﬁ-'tuﬂdq e

matter; these vertices form the uccemblo part of the scheme., Here we regard s;s

equivalent two flowehart schemes that have the same aceessible part. In o formal
approoch aceessthility is cup!urred by simulation via injective functions,

5.1. The simulation vig injcetive functions; the resulicd coﬁ(rrucpce. Suppose that
the support theorv T "contains” injective finite {unctions. In the case TS Rel this means
T2In. . - -

| The definition of simulation via injeetive functions Is obtained froﬁ the gencral
definition, given in § 3.1, using for v morphisms inIn,

In the particular case when T is a subtheory of Rei the meaning of the simulation
"F —+ F' with v in Tn" is "F' con be obtsined from F by adding a pert inaccessible from
F, namolv that corresponding to the vertices thot are not in the image of ¥". Of cour%.
the relation =y is not svmmetrie, the meaning of the converse relation F' 5—-— F being
"F ean be oblained from F' by deleting the part corresponding to the complement of the
image of v; this part is not accessible from the r(;mﬂln(;d one".

Now we turn back to the genernl setting, For the congruence relation = n’

generated by —')ln’ the following equivalent characterizations can be given:

EIE i

W= F In’

- (it) = yn IS the congruence relation generated by the identifications (<> X) in
n

§ 4.1 and the identifications

, i(x + y) -
@« 00 ® =@ +xey) AT wenen (1 #1500 * Oy

= + + 0O )ﬂp
Ot Tom) ™ Yoty

mmL
Xy In nudomnts and syVECﬂ thoory tiie £l

8
wrogolu il fila St

“property is called

i 1L, ))n




o

P

whoro x and y are finite sums of varinbles;

//N‘
i) = i IS the congruence relation e o — T
- ' ___..,--'*"‘w “;lf_sai\m. A T
D qp Hy. »»--;;*"‘, L & ‘“‘,.,.... . ) . <E_>:“ ‘
5 (‘ {ﬂ) F 1 §TN {T - F }m" ==? () 1\ “"h(?f‘e ":':\“'%w,,_‘-.,.....‘,, L,

N -

}“" m * p—#n P imdgant " qand \’Un!p Q)“

generagted by the identifications ( <» X) and the identifications

L} - . > ’
(OX} O x =0, , where x& X{m,n) (see Figure 10.h). -
AP "'.1 Y A 4 "»4 L . : e R s -
A ek b - R Y 'u*;}q't"'-h S

Comments. By (i) two flowchart schemes are = In " equivalent iff they can be
transformed into the same scheme by deleting inaccessible parts. In (ii), by using
sépamte simulations vie bijective functions, we can suppose that the injeétive functicn
cLy hf;s the particular form lr + Os, and, in this case, the meaning of the formula of
simulation is much clearer. Much more interesting is the characterization (i), since it
reduces ‘the.generators to («>»X)+ (OX) by restricting the class of the congruerce

relations, used to generate = In © those satisfying (Pm).

'5.2. The mathematical coneept of accessible flowchart scheme. The sbove facts
show that, in the case T& Rel, every equivalence class with respeet to = In' coptains an
accessible flowehart scheme, unique up to an isomorphism. Corsequently we can

‘identify an accessible flowchart scheme to its = In~ equivalence class. Generalizing we

say
the elements in @ FIX ’I‘/ *In are aceessible flowehart schemes.
s .
5.3, 5.4. We do not insist on the glgebraic rules satisfied by accessible flowehart
sehemes. We only mention that the corresponding glgebraic structure. called inflow. is a

biflow, conrtains injections (in order to generate injections we use the distinguished

morphisms O ¢ 0-3n), and satisfies:

{11) 'f 0 , for f:m—>n3

(12) f(i ORI +y)g=sf+?—gfq T ) -~

’{\ wherc f:mtp 11t py g Qi ta a_Qd Y. is an injection: p?,q.;
o p

- - S

‘V""’ -

* 3 . f
R ety e

e ,.»p_ LT

NS st St

o e e e i .
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8.5.

flowchort sehemes, called in-flow-calovlus, is obtnined by ndding to the riles that

define the bi-flow-caleulus in §4.5 the rule which eonsists in the idcntificet'ion of

ol T equivalent expressions,

For the algebraie version, we add the rules (11-2) above to the ruloes (R1, Bi-4,
{13

B6, B10-13) in §4.5 that define algehmicaI\fﬂbi«ﬂow-ctﬂculus.

Example. In in~flow-calculns the following identity holds;
gty xr 901,3,2.3,2,5,4,0, 4% = (0 3t W(1,3,2,3), .

(a) Proof. Using normal forms: The normal form oMet-hand side expression (G in

Figure 9) is NF, =[(1,+v+x+ y)(1,3,2,4,3,2,6,s,s)6}+3 and of (14 +yN1,3,2,3)y is
NF2 =((14 + y)(’l,3,2,4,3§1’3. We shall prove that NF2 "*y NF; for the injection
y=1,+ 02 = (1)3. Note that v preserves the statements with respect to the sequences
(y) and {v,x,v), hence condition (i) in definition § 3.1 holds. The extension of y to input is
,(1)3 and to outputs is (1)5. Since (1,3,2,4,3)4(13 + (1)3) = (1,3,2.4,3)6 = (l4 + (1)5) .

. (1!392’49392!6 ,5’5)6 the COHdiliOﬂ (li) in definition §3.1 hOldS, too.

o«

(b) Proof. Using algebraic rules (marking the application of the new rules (11-2}

2 ‘

only): Note that 02(x ty)= (01 + O_I)(x +V)=0;x+0,y= (by I1) O4 + O, = 0, hence

(14 + 02 )(13 +y b+ y)(l,3,2,3,2,5,4,4)s = (13 +y+ 04)(1_.3,2,3,2,5,4,4)5 =
' ‘ v
Using (I2) we obtain - .

0
[y +y+x+ vX1,3,2,3,2,5,4,4)] A2 = (1 + y)1,3,2,3)4] 0

- hence the conclusion follows.

)
6. REDUCTION )

is i i i 0Cess,
We repeat: a flowehart scheme 1s & notation of a sequential computation pr

B e e e —

£) In antomata snd systes theory the siumilar properidy is enllod
"oUservauility” (cf. Aroit-nies, d. Pure Appi. algcbia O(HY) B1T-T00,



A

of all-finite and infinite Sequences of statements that can be exec

‘behaviour. Here w

2

Hence the re: y ' . : E . : ‘
esult of the computation depends on the sequences of statements to b
e state \ be

excecuted only. T e
Y The (ﬁﬁpi‘{uitip) bef’_}’LOf 8 vertex in a flowehart scheme is the set

uted beginning with

the given verte S . .
4 eX. In a flowehart seheme we can identify the vertices that have the same

behavi i ' ‘
ehaviour and obtain o flowchart secheme that denotes the same computation process. A

flowchart seheme will be ealled ;ed\xcetljf it has no different vertices having the same

i e

? regard as cquivaelent two flowchart schemes that ean be reduced to
the same scheme by identifying vertices with the.same behaviour; In a {ormal approach .

reduction is eaptured by simulation via surjective functions.

6.1. The simulation via surjective functions; the resulted congruence. Suppose
?hat the support theorv T "contains" surjective, finite functions. In the case T €Rel this

means T2 Sur,

The definition of simulation via surjective functions is obtained from the general

-definition, given in §3.1. hy using for y morphisms in Sur.

In the particular case when T is a subtheory of Rel the meaning of the simulation
np —’9 F' with y in Sur" is "F' can be obtained from F by identifying vertices which have
the same label and whose output connections are equal after identification". Of course,

the relation > sur is not symmetrie, the meaning of the converse relation F' ;’f" F

‘being "F can be obtained from F' by (partially) unfolding same vertices".

Now we turn back to the gencral setting. For the congruence relation ® sur’

generated by .'+Sur' the following equivalent characterizations can be given:

D =gy = T sur’ sur<

(i) = gp is the congruence relation ~ satisfying

_ 0 q
. ;= ~ Gt
(PSur) ur(ln +y)~ (1m + y)G F4 s |
where F s m+prn+p, G m+q-=>n+qand y€ Sur(p,a)"

generated by the identifications (¢>X) and the identifications

| ‘ fw ‘ see Figure 10 ¢).
(VX) mVm - x = {x + %) nVI?/. where x € X{m,n) (s g



22

reduced ‘ > 8 y i i |
wed to the same ‘facheme by identifving certain vertices. The characterization (if)

gives very simple generators for = by restricti
_. g for Sur by regtr1ct:ng the elass of congruence relations

used to énerate = .
® : Sur

6.2, The mathem:atical concept of reduced flowchart scheme. The above facts

show in the case TCRel every equivalence elass, with réspect to =é , contains a
ur

reduced flowehart scheme, unique up to an isomorphism. Consequently, we can identify

& reduced Mowchart scheme to its = Sur equivalence class. Generalizing we sav:

the elements in a FIX,T/ = gy A€ reduced flowchart schemes.

6.3, 6.4. We do not insist on the algebraic rules satisfied by reduced flowchart
schemes. We only mention that the corresponding algebraic structure, called surflow, is
a biflow, contains surjections {in order to generate surjections we use the distinghuished

morphisms mVm : m + m ->m), and satisfies:

S1)mvm.f={f+1{)enVn, for f: m—>n;
‘(Sz(f(1n+ V=Q0_+vig > (4P =g49,

}/where f:m+p>n+pg:m+g->n+qand yﬁfa*s?fjewctign'p—> q}
i) *r.a‘..;;;m PN ARV rm.)i,‘“g,‘,.
6.5. Sur-flow-caleulus. The calculus with flownomials associated to reduced
flowchart schemes, called sur-flow-caleulus, is obtained by adding to the bi-flow~
caleulus the rule which consists in the identification of = o . - equivalent expressions.

For the algebraic version, we add the rules (S1~2) above to the rules that

‘ \_jf\ﬁ .

algebraically defifie)bi-flow-caleulus in §4.5.
Examples. In sur-flow-calculus the following id‘entities hold:
(a) (1V1 - x(12 + x))‘T‘(.L,l,.L,l)l =(1v1-x)t+ ,1)1;

(b) (1\"1 . )((11 + V + x))’f(l3 + V}‘1,39253)3 = (]Vl - x“2 + X))"’ (17392;3)3(12 + }') .



Proot of () usi '
(8) using normal forms: The normal form of the left-hand side
expression is NF, = o :
) 1 [(1] tx+ X}(z,ld,&l,l,’?)s]‘?z gnd that Of the right“hﬂﬂd side

expression is NF, =
P n is N 2 ‘[(11 * "xzs-‘-.l.i’)?}ﬁ*l. We shall prove that NF_-> NF, for the

surjection v = (1 Logen Fha
¥ y 0:”1-7\0& that v preserves the statements with respeet to the sequences

<x , _ - -
{%,x)} and (x), hence the condition (i} in definition £ 3.1 holds, The extension of y to
fnputs is (1,1 .

R )] and 10 outputs 'is (1,2,3,1,2,3)3. Since (2,.L.1,3,.L,1,2)3(1 +{1, 1) )=

={2,1,1,2,.1, =
vtk 1,2)2 (11 + (»1.2,391,2,3)3)(2,.1.,1.2)2 the condition (ii) in definition §3.1
holds, too. '

Proof of (b) ‘using algebraic rules. By the example in §4.5 the left-hand side

expression is equal to
(v1 . x(1, + xN1(1,3,2,4) (15 + (y+y)-1V1) L | | | l
= (V1= x(1y+ X)) #(1,3,2,4),(1, + 1V1- ) * by(sp

o =(1v1- x(lz + x))*r(l,:x,z,s)3(12 + ).

7. THE INPUT BEHAVIOUR (COMPLETE MINIMIZATION)

A flowchart scheme denotes a sequential computation process. For an input of

the scheme let us consider the set of fimte and infinite sequences of statements that
Ff oA AR

ean be executed beginning with this input his set can be identified with the tree

obtained by completly unfolding the scheme beginning with the given input.) By (step-

bv-step) input behaviour of a flowchart scheme we mean the tuple of the sets obtained
as above for each input. It is natural to regard as equivalent two flowchart schemes
Adhe

that h wve the same in?ut behaviour. In the class of the flowehart schemes that have &

- b"‘ » I N » . - . -
v ;gjﬁen behavmur the: e is a minimal one, unique up to an isomorphism. This minimization

preserves the completeness of the scheme, namely the minimal flowehart scheme in

of & scheme over Fn is over Fn, too - hence the name. In a formal approach the

Fly ptn

(step-by-step) input behaviour is captured by simulation via functions.



Q)\

Uy

7.1. The simulation via functions; the resulted congruence. Suppose that the

- support theory T "eontsing' functions. In the case TS Rel this means T 2Fn,

The definition of simulation via functions is obtained from the general definition,

FIVPH h" \ :).1. nlv s ”';gr fol‘ v mOT[)hlhm‘i in r‘n.

In the general case > In? henee in the case T GRel the meaning

c > —-*1
Fn Sur_‘ .
of the simulation "I "'*> F' with v in Fn" is "F' can be obtained from F in two steps: first

by identifying vertices with common labels and coherent continuations, and second by
adding inaccessible vertices". The meaning of the equivalence relation = pn £enerated

A Fn’ is "F = Fnrl " iff "F and F' have the same (step-bv-step) input behaviour {or

)S{N.,( ;\J ‘J,t."\ Wi

equwalentlv “by completly unfolding F and F' we gtﬂ samc tuple of trees)" iff "by
identifying vertices and deleling inaccessible ones F and F' can be transformed into the
same minimal flowehart {with respect to the input behaviour )"

For the eongruence relation = Fn’ generated by -+Fn‘ the following equfvatent

characterization can be given:

N

O=pr = g 1" “In"seF |
l ot Y fandin & n - fimckonnd * %‘
(ii) = IS the congruence relation ~ sabgging ety PW* .‘ ~ 6:—»» o 7

(‘P y,,)NTFH SRyl + * 6 ->r+P~c M

T e L

L _where F : m+p—+n+p,G. m+q v_gf_g(p,q)"'
'__,/P'

e‘enerated by the identifications («> X) in &4.1, (0X)in §5.1 and (VX) in §G 1,

' = - jvalent iff by identifving
Comments. By (i) two flowehart schemes are = g, equival Y
.
5 i e scheme,
vertices and deleting innccessible ones. they can be transformed into the same s

; y : = _ ) restricting the class of
Agein in (ii) we get very simple generators (now for Fn) g

congruence relations used for generation.

i ost to the
7.2 Cdmputntion processes {or minimal flowchart schemeg with respeet

q d - i Ui Blbl l if
] | n
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com utatlen »
P pzm ess that consist in {inite and infinite scquences of statemetns,

Genernlizing we say

“The clements in & Tl ./ =
€ ih a ”x,'r/ = g A€

- minimal flowchart sehemes with respect to the input béhaviour;

- computation processes.

7.3. The slgebra of minimal flowchart scheme (with respect to the input
behaviour). We had sclected some identities satisfied by such minimal schemes (namely,
."the identities listed in Table 2 and illustrated in Figure 12), in order to define an
algebraic structure, called funflow. The main point is that the set of idon;ities (B1-
15) + (F1 - 8), suffices to prove that flownomial expressions over Pfn, which represent
the same computation process, a: ﬁual. f fro1
| " Rigorously, a fw (l‘o /-méﬂv a strong iteration algebraic theorv)/xs a biflow B
. with some distinguished morphisms ome B(0,m) and mVm &B(m + m,m), and satisfying
the algebraic rules listed in Table 2 {it should be emphasized that (F6) is not an
equation, but an implication). The axioms (B1-10) + (F1 - 5) give a presentation of

algebraie theories - in the scnse of Lawvere - in terms of sum and composition, hence

finite functions are embedded in each funflow.

FO, =1, (FS) mern = (O + 1+ 1, + 0 )+ (n+ miV(n+m)
HF2) O =0 ‘ (F6) £(1, + ) = (1 + ¥e 4P = g0

;
|

(F3) (nVn + 1 )-n\’n=(ln+n\’n)-n\’n forf: m+-p”-a-‘n+p,g: m+q ->n+q,
n

{

|

}

(F4) mVm+ £ = (f+)- mVn and y € Fn(p,a) € P i

| sey 4%.); .}nmk».‘L!ég&%‘

together with these ones define a funflow

’! able 2. The axioms in Toble 1
(» (=Y )’\A_,{.\m\ \MVM ‘{(A.’w\ 41

i i es, which contain the embedding of
‘Semantic models: Relg and all of its subtheories,
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n in RcL. are funfiows, Partienlarty, an and Rael

are funflows, Ptn being an initial
f unt‘!m

C!i l o i l ’ { vy «’: » .

1.
4. The univaersal property. Let (T‘K.I‘ ) be the embedding of (X,T) into

F}x '!‘ F obtained by nqmg, the embedding (12)\, r'f) of (X%,T) into m}\ e defined in

§I 3, and th«. c:'momca} projection from H)‘ p o Fi X, 'I‘/ = The universel property

satisfied by F!X,T/ > Pn is

Mor every funflow F and every interpretation (1 X! Lr) of {X,T) in F there exists a

. unique morphism of funflows If FIXT/ -’F such that F&-[”ﬂx and
x?tfr-l“:LP".

- The axiom (F8) ensures that “the intcrpretation (IX,IT){, defined in § 4.4, identifies

= ‘Fh - eqguivalent flownomial cxpressions. The morphism iff above is that induced by{(l-(,

‘!T).f in the quotient structure HX,T/ = rn :

7.5. En-flow-caleulus. The caleulus with flownominls associated to ecomputation
processes(or to minimal flowehart schemes, with respeet to the input behaviour)eatled
fn-flow-caloulus, is obtnined by adding {o the bi-flow-cpleulus the rule which consists’in

the identification of = p = cauivalent expressions.

For the slgebraie version, we add the rules (F2, F4, F6) in Table 2 to the rules

tm‘
that algebreically © *inu ,hi-flow-cateulus.

© Examples. In fn-flow-calculus the following identity holds

= e H= [1\’1 . x(]z + X)]T(1,3,2,3)3[((11 + 1Vl - V)Z)'f + YL

9
995 e und
. th'PT(‘ o= []Vl . x(ll +y + 'X)] ?1 = {(13 + v + x t ‘\!)(19302;3,21-).4'4)5}
o - dde eRDreSSion 18 = g ~-minimal.
CUH= A, IV Yz 41y aocoover, the 1eft-hand side expre Fn
, R | ’



Indeed, by example £5.5 G = (15 + ¥X1,3,2, 3y =t G' and by example 6.5.b

.G =1V -'X(} + x4 3,.,,”)0“? 4 v) Henee the ideﬂtlt\’ hf‘!ds. The Jeft-hand side

xprossion is = .~ nini g
expression is Fn minimal sinee the assoclnted ﬂowchnrt scheme is redueced and

“accessibin,

8. COACCESSIBILITY

‘;omettmes in a computation preocess we are interested in successful compumtion
| sequcnccw only (l.c., computation paths that finesh normally by reaching an output). In
that case, in the exeecution proecess only the vertices ‘that belong to paths going to
outputs matter' these vertices form the Ec_:gceesq;ble pm't of the scheme. Here we
v!'egar.d as equivalent two lewehnrt scheme that hav;‘ the same coaccessible part. In a
'for.‘m‘nl appr'qach coaccessibility is captured by simulation yia relations whose converses
represent injective functions.

The study of coaccessibility ean be redueed to the study of accessibility, made in
( és;‘by using a principle of duality: The dual flowechart scheme associated to a scheme F
with m inputs and n outputs, is the scheme F°, with n inputs and m outputs, obtaincd by
reversing arrows of F (in the abstract case this method consists in taking the dual
composition in the dual category). In this way the ecoaccessible part of a scheme F is the

accessible part of the dual scheme F°.

For this reason we omit any details here,

9. THE INPUT-OUTPUT BEHAVIOUR (DETERMINISTIC MINIMIZATION)

The input-output behav:our of a scheme is the restriction of the (step-bv-step)

input behaviour to the suecessful (terminal) paths. Here we regard as equivlagent two

Tflowchart schemes that have the same mput-output behaviour. In the class of the
‘schemes that hnv:mi:;; xﬁput—output behaviour there is a minimal one, unique up to
‘an isomorphism. 'l‘he minimization with respect to the input-output hehaviour does not
preserve the completencss of a scheme, i.é., the minimal scheme asscciated to a

scheme over En may be over Pfn\Fn. However, this minimization preserves the



1’}

determinism of o se ' . e minimal s s in P . .
determinism of o scheme, i.e., the minimeal scheme in ”X,Rel of a seheme over Pfn is
aver Pin, t6o - henee the name. Formally the input-output behavionr is captured by

simulation via partially defined functions,

9.1. The simulation via partial Tunctions; the resulted congruence. Suppose that
the support theory T "eontains” partial functions. In the case T S$Rel this means T 20fn.
The d2finition of simulation via partinl furctions is obtained from the general
definition, giveﬁ in §3.1, by using for v morphisms in Pfn.
In the general case »ang_ “*ln-l . Mj)Sur . —*i , hence in the ease T< Rel the
meaning of the simulation "F ’%},F' with v in P{n" is "F' can be obtained from F in three
- steps: first by deleting noneosccessible vertiees, second by identifying vertices with
cominon labels and coherent continuations, and finally by adding inaccessible’ vertices".
The mesning of the cquivalence relation = Pen’ generated by —*an, is
"F ='anF' v iff "F and F' have the same input-output behaviour® iff "by deleting
noncoaccessible vertices, identifving vertices with common labels and eoherent
. _continuations, and deleting inaccessible vertices F and F' ean be transformed into the
sam:e minimal scheme {(with respect to the input-output behaviour)".

For the congruence relation = ' Pfn’ gnerated by "’*pt.n, the following equivalent

characterization can be given:

i).= = - 1y = . €, . - : Lo 2 i
0= ppn = 4 1\ SSur_ i insur /I I )

(i) = Pin is the congruence relation ~v satisfying ° extg m,i,gji (}NQ\ q {MW&w
/;., —— )

(pr YU+ )~ 4 Y6 = FAPnGAY,

)
,t‘s where I 3 m+p-}n+p,G m+q—an+qandvean(p,q)“ \

T ——.— a———
i, St o e A et S S O

generated by the identifications («3X) in §4.1, (OX) in §5.1, (VX) in $6.1 and

e ot et et g e e e

(LX)yxa = ‘Lrﬁ , where x EX(m,n) (sce figure 10 d).

Comments. By (i) two flowchart schemes are = e, = equivalent iff by deleting

‘\Q.&\‘QA .

. / &



~noncoaccessible verticos, fdentif ving vertices and dolelmg inscecssible ones they ean ho

transforined inte the same scheme. In (i) we get very simple penerators for = by
o an’

~resiricting the clas of congruence relations used to generate = Pin’
, ; n

. 9.2, Suceessiul computation procésses (or minimal flowchart schemes with
respect to the Input-output behaviour). In the case T < Rel every = e - equivalence
class has a minimal seheme, unique up to an isomorphism. Since two scheﬁos are
= pfn " equ'ivalent iff they have the same successful computation processes, we can
identifv surch a class ;o a suecessful computation process that consists in finite terminal

sequences of statements. Cenem}izing we sayt

The e}lements ina FIX’T/ = ppp BTC
= minimal flowchart schemes with respect to the input-outpur behaviour;

- suceessful computation processes.

9.3, 9.4. We only mention that the algebraic structure corresponding to succes-
~ sful eomputation processes, called parfunflow, is a funflow, contains partial functions
(in order to generate partial functibns we use the distinguished morphisms J’m 1m0},
and satisfies: ' M M,
o (Pl)fr.Ln: L, forf:m-~>n; ‘f@
é—g"“”ﬂ . -AqA L -L’\“ \t\{‘r‘\j 'TM\&.i\\w W% E,\A \huk‘\i_
(P2)4(1 +y)=Q Vg = LAEEgAT, ey | :

where f-rm -}'-Ap-...)n + p,bg :m+ag-»ntgandy prﬂ(P,Q) .

9.5. Pfn-flow-calculus. The calculus with flownomiels associated to successful

computation process"g(dr, to minimal flowchart schemes, with respeet to the input-

output behaviour)., called pin-flow-caleulus, is obtained by ndding to the bi-flow-

i ists i i ificati = - ivalent expressions.
-ealeulus the rule which consists in the identification of pry ~ equivale p

For the algebraic version, we add the rules (P1-2) sbove to the rules that
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,the ‘
"algebrawﬁ}lv Sefine frm ~flew-enlenlus in §7.5.

Example. In pfn-fl:}owwmlcmus the following identity holds

F-GeHe=0VEex) M, + ),

vhere B,GH are those defined in example § 7.5. Morcover, the left-hand side

exprassion is = pgn = Minimal.
fndeed 1= ‘Lo» henee  [(1, +1Vi- ¥zld = t(1 + V1 -yl 4 1o =
= I(ll +1Vi. y)elf . -3- = (hv P1) _L . Consequently, using the cvamplc{%? 5 we obtazn

Fo G- H=[IV1-x(ly « 014(1L3,230L, + y) = (V1 « &1, 4 DML, L 4,0,y .

.-

‘ ' : 3 .
Finallv, using the emmphﬁ&a the desired identity follows easilv. The left-hand side

expression is ”Pf -minimal since the associated ﬂowchart scheme is coacceasmle,

redueed nnd acce«qzh]c.

10, com:nvmxdu

In the case we are interested in the study of mput—output behaviours we can
successfully use the duality defined in §8. The input behaviour is not preserved by
duality, while the input-output hehaviour is preserved. More exactly, the input-output
behaviour of a dual scheme contains the same computation sequences as. the given
seheme, but having the statements concatenated in the reverse order. Let us call (step—
-bv~step) cobehaviour of & vertex in a scheme, the {step~by-step) behaviour of the
correspondmg vertex in the dual scheme, defined as in §6. In a scheme we can identify

vertices that have the same cobchaviour, without changing the input-output hehaviour

of the scheme. A flowehart scheme will be called careduced if it has no different

vertices having the same cobehaviour. In a formal approach coreduction is captured by

simulation via relations whose converses represent surjective functions.

This colro(‘uctinn connot be used properly in the context of deterministic

flowchnrt sehemes. The reason is the following. By reduction we identify vertices

. provided after identifiention they have the same output arrows and bring together the
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A4

CO‘ i .' . ' V‘ - i ‘ - - - %
g ’ B ’

if o 1 ‘
after xmntvfivmmn thnv have the same inpul arrows and bring together the

N 0 \ln 7 r
gorresponaing rmtput arcowy hepee & vondeterminﬁmc choice hotweon d:ffere nt outlptt

“arvows of conlinuation can appoar,

More details can be obtained from §6 by dunlity.

11. HONDETHRMIRISTIC FLOWCHART SCHEMES

The feature of flowchart scherﬁe we toke now into account Is "nondeterministie
choire", i.e., the po‘mbmtv in a point of a scheme (input, or continuation after a
¢ ""v"'m W ~.1

statement) to have more arrows of continuation for the flow of control) gt the
exgcution process chooses one variant in a random way. Consequently, in the context of
usﬁal flowchart schemes, represented as in §1.1, the ba;ic support theory for this
nedeterministic case is Rel, while in the doterministic case the basic support theorv
was Pfn. In the presence of the nondeterministic ehoice we are interested in considering
the input-output behaviour, rather than the input bchaviour. For médeling the input-
-~output behaviour, in this noncdeterministic case we can try to apply simulation via
relations. This syntactic transformation of ﬂowcha-rt schemes is again useful: it is
| ecorrect, in fhc sense it preserves the input-output behaviour, hut st the present time
we do not know whether it is complete, i.e. we do not know whether two usual

nondeterministic sehemes, having the same input-output behaviour, can be connected by

a c¢hain of simulations.

11.1. The s{mulation via relations; the resulted congruenee. Suppose that the

support theory T neantainst finite relations. In the case of usual flowehart schemes this

means T = Rel. The definition of the simulation via relations was given in & 3.1,

ln the gcnor.xl ense '?Rel C :a m Sur in hence in the case

T = Rel the meaning of the ummlutmn " '-?'}' v g "' ean be obtained from P in four

stops: first by deleting noncoaccessible dertlce‘;, second by multiplying vertices

!'

gi'lr\wf‘\\.. -y /QACK
g i
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'mﬂ""“‘*‘ﬂi‘lc VL!‘hom’ The meaning nf the couivalence relstion

“having eomposition, tupling and scalar iterati

suffice for representing el f

-

oy
] 2
A\ %

keepping ,f“‘ the_; inputs and sharing the outputs, then by idoﬁtiiv{n? vertices th
: ntifving vertices that give

the same oulputs and bring together the corresponding inputs, and fmally by addi
vV aoding

* Reyp flCherated by

’Rcl‘ is stid mm’.mw. We conjecture that "F = ra™ ™ I "F and F' ohave the
, ) { snine

gnpﬁtt~nﬂ§,}|li bnhﬂ\rtmx""

For the congruence relation = |

~characterization con be givem

LU P M

(=g 4 = <= » <~ =« > — 3 '
Rel o T S e il S s 2 .
In Sur  In7! sur”! Sur In sorl ml’

iy =g

is ] : H ' . B . ,
et | the congruence relation ~ satisfying * o wekic g 5{;%;,‘“ K

(PRd "L+ eli 4 G =2 F P G,

'

where F:m+p->n+p,G:m+q->n+qand venel(pq)"

_generated by the identifications («>X) in 4,1, (OX) in §5.1, (VX) in §6.1, (LX) in

§9.1and

C(AX) x - nAn=mAm e (x +x), where x &X(m,n) (see Figiire 10 o).

As we do not know the semantic meaning of = Rel W€ do not insist on this

syntactice study which has been done as a natural extension of the above ones.

HISTORICAL COMMENTS

3 . N ", T
It is well known that the operations of ‘structured programmmg,x.c.,compo..mon,

1f—then~eLsc and while-do arc not enough for representing all flowehart sehepe
) e sebwats

VL *‘:\{ “( " - e )
behaviours, essentially %ug_:e—-llrcrrénc—mput/onc -exit fmtqre However thoy sulfxc.n./

provided additional memory is permitted.

H i —eXi y seheinCn
_The-basie Flgot's idea in [3) is to use many-input/many-exit flowehart scheincs,

on os basic operations. These operaticns

), Sg ) .‘I:'\V
lowchart scheme behaviours. Nore preeisely, ©VeE

(o cmk{\m
(i.c. ,usi equivalent w

!

-
T“ ylrode

ith respect to the irout

. 3 Al
flowehart scheme is "strongly equivalent’
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petinviour) to a scheme huilt up from atomie schemes pnd tﬁvia! ones by means of 11
| S DY means of these

operations. However, for representing all flowehart sohemes {pictures) in this setti
‘ 2 g $ setting

one needs a veetorinl iteration, which is not obtained by a repeated application of th
, \ : , £ the

sealar iteration.

The feeddeck operntion was introduced in 1121 It is a "sealar" operation and it
vs‘éems that this operation is more adequate to study (eyclic) fluchart schemes than
‘sealor 'tem“o”' One reason is the follommg, All flowehart schemes (pictures) can be
built up from atomic sche-mes and trivial ones by means of composition, (separated) sum

~and (sealar) feedback.

(1) The repreacntatmn of flowchart schemes by pairs (or by triples, prov:dcd that

=

the connection morphism is qpht«te into its "input" part and its "transfer" part) is due

'to Elgot; see [3,14,4,2], At that stege the schemes were over Fn [3), Sur [4], or Pfn [2)
(although it was not thought of eonnections as being imorphisms in a "theory"), and the
. operntions on flowchart schemcs were verbally defined. In {8] the connections were
thought of as being morphisms in an "algebraic theory with iterate". Particularly , this
eondition impiies thét in the case of usual flowchart schemes one has to ;'eplace Fn by
its closure thh respect to iteration, namclv Pfn. The operations on flowehart
schemes were defined formally by extending those of the theory of connections, The
" representation of flow.chart schemes by flownomial expressions in normal form was

introduced in {12, 13]. The extension to arbitrary flownomial expressions. was given in

BRI

(2) 'Yhe results of Seetion 1 and 4 are new. The details for Section 1 were given in

{13l
[s]. Without nxiomatizing finite buectmna the result of Section 4 was sketched in

The resulté in ‘(-3»1 and 6)4 are stronger and much more natural than those in [8.5,2].

T \ ined as iflow over an
Actually a theory with itemte, as introduced in [8], may be defined as a bi

. ek - iy
g(hxnprﬂt d I t t ’ g . . P N )
€ )] - lh(‘ (84 te‘ |',“)“ “’ ‘443])8”!(95 "l i ’ Y B . WS ;‘iVCH in ‘i)'. 1'!‘, ”i““‘

i bt
mﬁ;f,’cﬁ{;‘gﬁ in obtaining a natural result regrarding the algebra

ic charactorization of
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[N
‘ | usim? of an elgebraic theorv as support theorv.
Indeed, the flowehart sehemes do not have n

flowchart schemes in {8.51 was the

strueture of an nigebraic theory but onlv of

a strict monoidal catepory, This comment applies also to [2].

(3) The rosults of Section 7 are the translation in terms of feedback of the
results in {10]. In the translotion of these results the use of the new set of operations
‘(cbmposition—sumdeer.ﬂmck) allows to separate the study of ace(;ssibi]it_v, given in
Scetion 5, from the study of reduction, given in Séection 6. The results of Sections 5 and
6 are new and cannot be ﬁroper]y done using algebraic et\eories and iteration,

(4) In section 9 we have given some details for the extension of the calculus for
determiﬁisgé ﬁo“*chnrt sche\mos anrncunced in [10, Section 7.8). The results appear here
for the first time but a weaker voriant directfy follows from the results in the

nondeterministic case in [111. The paper [11] covers the resplt of Section 11, too,
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ON SOME SYMMETRIC STRICT MONOIDAL CATEGORIES

Virgil Cdzdneseu and Gheorghe Stef&nescu

We have found that each of some subcategories of the category of finite S-sorted
Iations Rels is frecly generated by the set S of objects in a category of symmetric strict
onoidal categories (ssme-ies, for short) [Zfendowed with an adequate additional strueture,

Rels as a calegory: An object of Relg is an element in the free monoid (s¥,0,e), i.e. O
npt'és juxtaposition and e the empty string. Notation: A string a€s® is denoted as follows
£’-~aID ;'iz't:l . Da lai? where 8, €8; [n] = {1,2, ...,nY . A morphism f¢ Relg(a,b) is a relation
{latlx{ib]) such that (i,j)€f implies a, = bj‘ The composition and the identity morphisms
2.the usual ones, .

’ Relg as a ssme (Rels, O,e, y): For f€Relgla,b) and g C:Rels(c,d) we define
| fngeRelgane,bod) as fU{(lal +i, Ib] + PlGeg];
Vpp = A 1bL+ Dlieliailiv {daj +iplielivl 1.
The subcetegories PRel_: To define them let us consider the relations:
aVa= i(i,;)]ig[ lal ]3 L {( lat +i,i)|iellal ]ﬁeRcls(nua,a), 0y = @enels(e,a),
ana={(,Dliellall UG lal + D]icllal 1)€ Relgla,alln), L, = OC Relg(a,e),
I the following sets R, = javajaes*y, R,ﬁ{af\ﬂiaés’% » Rg= {03'5165*5 and
= {-LafaQS'_‘I . By using & parameter PSA = {R R, ’RO’RJ-} the subcatcgory. PRelg
defined &s the least ssmc of Relg which has the same objects as Relg and con.tfnns' the
rphisms U{R] Re Pﬁ . For instance, QR(:IS is the category of finite S-sorted bijections,
ty Rel, that of surjections, {Rok Relg that of injections, {RV’RO% Relg that of
ctions cte. ' ) .

The additioiml structure (the functor Gp): Let C be the category of ssme-ies, M that of
noids and Ob: G~ M the functor which forgets the morphisms. The definition of Gp:C —>M
sbtained from the definition of UA’ given below, by restriction to components corresponding
elements of P. The functor G, is defined by:

For a ssme (B, B,e, {) the corresponding monoid GH(B) is defined as follows:

% T axious of Ssmc e BAo10 ow posy (<.
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i) 1ts elements are S-tuples {4V, A,0, L), where a€ON(B), V€ BlaDa,a), A € Bla,af1a)
5 eBlea) and L € Bla,c) satisly the following identities: ' P

(1)(vm1a)V: (1acw)v

") ALADL) =A(1 T A)
(2) Y0¥ =V

(2°)A\;~“=A

B aaov=1, B AQ L) =1

(4) OV = 0010 4y AN1L=10L
(5)0.!.:1e
(s)/\v:xa

(MVA =(AD /\)(laD \ra,am 1 vavy

fi)flts operation is defined by (a,V,A,0,4)- (b, V', A,0%, 1" = (allb, (185 Vo ag 18)(\”“«),
. ' ?

AD ANL, Dy pO1), 000, Lol ,

® For a morphism 11& C(B,B") the corresponding morphism G A(H) maps {(a,V,A,0,1) into

H(a), B(V), H(A), H(O), H(L)). ’

The categories CP: The objects are pairs (B,F), which consist of an object B of Candof a

- monoid) morphism F : Ob(B)’*GP(B) such that FUg = 1op(B)’ where UF : G_—>0b is the natural

ransformation which forgets the additional struture, i.e., U (a,...)=§. The morphisms of

3P((B,F),(B',F’)) are those mdrphisms HeC(B,B') that fulfil F GP(H) = Ob{H) F'. ‘
PRelS @y an object in CP’ namely (PRels,FP): The definition of FP is obtained from the

efinition of F A’ given below, by restriction to components corresponding to elements of P.

he monoid morphism F , : Ob(ARelg) = s*—> GA(RelS) is defined by F ,(a) = (a,8Va,a08,0 ko)

THEOREM. If (B,F) is an object in CP’ then every monoid morphism H :8*—>O0Ob{B) has a
v\‘idue, extension to & morphism in CP from (}’Rels,Fp) to (B,F).

COROLLARY. The category of finite S-sorted bijections ORelg forms the ssme freely
:nerated by the set S of objects.
| Our interest in {inite relations comes {rom theoretical computer science, In the theory of
swehart schemes the finite relations play a similar role as the numbers in classical algebra [1}.

| Cézéineseu V.E., Stefinescu Gh., Towards g new algebraic foundation of flowchart scheme
theory, INCREST Preprint Series in Mathematics No.43/1987.

| MacLane S., Categories for the working mathematician, Springer-Verlag, 1971.

Virgil Emil Céizfinescu Gheorghe $tefdinescu '
anulty of Mathemixtics . Department of Mathematics
University of Bucharest INCR F_A_Sz;lo

Str. Academici 14 Bdul Pacii

70109 Bucharest, Romania. : . 76922 Bueharest,‘Romania. ‘
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