FEEDBACK THEORIES (A CALCULUS FOR ISOMORPHISM
CLASSES OF FLOWCHART SCHEMES)*

GH. STEFANESCU

A simple representation of multi-entry/multi-exit flowchart schemes is given. This shows that
the basic operations on flowchart schemes are : separated sum, romposition with ‘empty flow-
charts,” and feedback. The main technical point is giving a caleulus for isomorphism classes
of flowchart schemes. This caleulus is similar to that of polynomials and may be considered
as a framework of our calculi for deterministic and nondeterministic flowchart schemes present-
edin [5).

1. INFRODUCTION

The reasons for the present note is twofold (a) we are trying to prove
that feedback is more natural than iteration ; (b) we give a calculus for
isomorphism classes of flowchart schemes. This paper may be seen as a
natural extension of the last paper of Elgot [4]. The characteristic feature
of [4]is the attempt to weaken the ‘algebraic theory’ structure (in the sense
of Lawvere), widely used in semantics of flowchart algorithms.

(a) The feedback is ‘scalar’ and all usual flowchart schemes can be
built up from atomic flowchart schemes and trivial ones (which may be
thought of as redirecting flow of control) by means of sum, composition
and feedback. This is no longer true for scalar iteration (ef. [4], only flow-
charts fulfiling ‘for every closed path C there is a vertex t¢ of C such that
every begin path to a vertex of € meets v’ can be obtained).

(b) There is some interest in axiomatization of isomorphism classes
of flowchart schemes [2, 3, 4]. Our calculus extends these; its characte-
ristic features are

— the operations on flowcharts are defined by simple formulae
rather by some ‘verbal descriptions’ as in [2,47;

— the restriction to sum and composition of our algebraic structure
is more general than ‘algebraic theories’ used in [2, 3] and essentially cor-
responds to flow theories in [4], but instead of surjective functions we
need only bijective ones;

— our calculus work in a more general (and useful) case, e.g. instead
of trivial flowchart schemes we can use arbitrary known flowchart alge-
rithms in which a change of memory state may accompany redirecting
flow of control.

* This paper has been circulated as Preprint Series in Mathematics, No. 24/19886,
INCREST, Bucharest, April 1986.
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2. ON THE CHOICE OF OPEBATIONS

. Every -mulfi-entoy/multitexit flowchart: sclierhe. cAn be ordered as
it is shown in Fig. 1.
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Fig. 1. — The standard form of a flowchart scheme.

This shows that the basic operations on flowchart sechemes are: se-
porated sum (or parallel composition) - , composition (or serial composition
and feedback T ; these have the intuitive meaning given in Fig. 2.
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Fig. 2. — ¢4 7 denotes separated sum; ¢.” denotes composition; ¢ 17" denotes feedback.

In the sequal ¥ denotss k-tim2s application of T . By Fig. 1, compo-
sition can be restrictsd to composition with ‘empty flowcharts’, that is
-flowchart schemes without internal vertices. Generally, we define the com-
position as shown in Fig. 3.

3. THE CATEGORIES Fn AND Bi

The category Fn has the set of natural numbers IN as its class of
objects. The sat of morphisms of Fn with source » and target p is the set
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Fig. 3. — Composition in terms of sum, feedback and ‘“scalar” composition,

of all functions f: [»] = {1, ..., n} — [p]. If v € [n] we write zf for the
value of f applied to # and if g :[p]—[¢] is a function, we write fo g :[n] —
—[q) for the composite.

Given a pair of functions f,: [n,] = [pJs ¢ € [2] We define the
function f; + fp: [ny 4 15} = [Py + Pz] as

2(f, + f2) = ‘if « € [n,] then zf, else (x — m,)fy + pi

for z € [n,+m,].

The class of bijective functions in Fn is closed under - and contains
the identities, hence it gives a subcategory Bi of Fn. Moreover, Bi is closed
under +. We write m < n for the block permuiation funciion m <> n:

fm 4+ n] — [» 4 m] given by

x(m « n) = %if x € [m] then n + x else £ — m’ for o € [m + n].

Given a bijective function f: [ + 1] — [p + 1] we define the bijective
function f1: [»] - [p] by

zft = Y4f af # p + 1 then of else (n + 1) for « € [a).

4. FEEDBACK THEORIES

Our hasic algebraic structure is defined as follows.

4.1. A biflow (T, +,°, 1) is an extension of (Bi, 1, o, 1 ; I,
m <> 1) such that

(4.1.1) (1, 4, I,) is a monoid;
{4.1.2) Block permutation axiom : for f; € T(m,, n,), 1 € {2]

(fi + fer(ny & Rp) = (M < my)o(fo + f1)5
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(4.1.3) (T, °, In} is a category, having the same objects as Bi;
(4.1.4) COIIIpOBItIOIl and sum are related by : for f; e T(m;, n,), g: € T(n,,
D)yt € [2]

(i +fa)o(gr+82) = (fieg) + (fy°95);
(4.1.5) Feedback is context free
(£.1.3.1) f + ¢1* = (f + )™
(4#1.5.2) fI* -9 = ((In + m’ Hp) (f+9ela+peor)t?
forfeT(m-}—p,n-{—p), ge T(m'yn');
(41.5.3) fifog = (fo (g + L) 1%;

(£1.5.4) fo g1® = ((f + Ip) > g)1%;
(4.1.6) Shifting blocks on feedback : for fe T(m + p,n + q), g€ T(q, p)

(fea + 901" = (T + 9)° )T

4.2. Remark. (i) According to [4], this should be called a (scalar)
feedback flow theory over Bi.

(ii) The axioms are not independent. In fact, (4.1.5 2) follows from
(4.1.5.1) using (+.1.2), (4.1.5.3), (4.1.5.4).

(iii) For fe I(m, n), ge T(n, p) we have

(£.2.1) feg=(fononog =)+ 9 (nep)"

4. Examples. Bi with the operations defined in 3 is a biflow. All
iteration theories ef. [1, 2], strong iteration theories cf. [3] and theories
with iterate c¢f. [3], naturalh are biflows (as feedback we take: (1, + 0,)
(fle + 0m + 1)), for fe T(m + py,n + p) — tis the right iteration).

4.4. In practice, it is useful to have a simpler characterization of
this algebraic structure. Such a simplification can be obtained using only
composition with morphisms in Bi and taking (4.2.1) as a definition for
general composition. More precisely, if T endowed With sum, left and right
composition with morphisms in Bi, and feedback, extends Bi and fulfils :

—(4.1.1), (£.1.2), (+.1.5.1);

— (7,0, I;)isabimodule over Bi, i.e.

foel,=1,-f=F, for fe F(m, n), and
fo(geh)={(fecg)eh, whenever two morphisms are in Bi;

— (4.1.4), (4.1.5.3), (4.1.5.4), (4.1.6) whenever the ¢ morphisms
are in Bi; (4.1.4), (4.1.5.3), (4.1.5.4) whenever the f morphisms are in Bi;
then 7' is a biflow (composition being extended using (4.2.1)).

4.3. Definition. The category BFl has as objects biflows and as
morphisms functors which preserve morphisms in Bi, sum and feedback.

5, ABSTRACT THEORIES OF FLOWCHART SCHEMES

Such a theory is given by

— a double indexed set X of variables for atomic flowehart schemes
(that is, every x € has a number of entries "z and a number of exits .x—
another way to specify thisisz e X (-2, .2));
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— a ‘support theory’ T consisting of a family of sets 7(m,n)
m, % € [N (an element ¢ € T(m, n) is considered as a known compustation
process with m entries and » exits).

Note. The type of T corresponds to the type of flowehart schemes we
consider. While in the case of deterministic flowcharts the basic support
theory is Pin given by Pfn(m, n) = ‘the set of all partial functions from
[m] to [n}, in the nondeterministic case this ix Rel given by Rel(m, n) =
= ‘the set of all relations included in [m]Xx [n]. Actually, Elgot & She-
pherdson [4] use Sur, the subtheory of all surjective functions in Pfn. In
this paper we use Bi. All these thecries model only redirecting flow of
control. Note that more complicated theories can also be used, e.g. Pin,
given by Pfny(m, n) = ‘the set of all partial functions from D X [m] to
D X [n] inw hxch a change of memory state d € D may accompany re-
directing flow of control. Jij

A flowchart scheme is abstracted to an X-flewnomial over T defined
as an expression

(I + ;) )=

where 2, € X, the sum is finite and e € T{m - Z.r, » — Z-1,); denote by
Fly n(m, n) their set.

The interpretation of an X-flownomial over F in a structure Q.in
which 1, sum, composition and feed back have sense, is specified by . a rank-
preserving function ¢r: X — @ (i.e. ox(z)€@( 2,.2)) and a ‘morphism’
gr : T — @ (i.e. it preserves I, and operations); it is

PH(((Ln + Z2s) e )1 =) = ((In + Zex(2) © or(e))1=*.
T and X can naturally be embedded in Flg 5 as foilows
¢ = (In)ec)1®and v = ((I.. + 2)° (‘T & .x))1'*
(the latter follows by (4.2.1)). -

'In the sequel we shall frequently write X, "X, .X instead of Zay, Z-; Z.2,,
respectively.

6. OPERATIONS ON FLOWXOMIALS

Sum, composition and feedback in T' extend themselves to X-flow-
nomizals over T
(i) for F = ((In + X))o ) *: m ~»n a,ndF"—(I —1—x)oc)1‘*’ m —n'
we-define F 4 F' ¢ m—}—m — 1 -+ n' as ‘
P+ F = (Intw + X +X)o (In + M % + Le)s e+ 0) o
o (I + X 0 + L} 15075
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g;}hfl:r F = ((Ia +X)cc)]=: m »n, feT(p,m), and ge T(n,q) we
Fog=(In+X)oco(g+ Ix)t*and
B foF = (T, + %) (f + L) o )15
(ifi) for F = ((La+y +X)e€)1*:m + 1 = n 4 1 We define Ff:m — nas
Ft = ((In +X)o ((In + X o 1)eco(ly + 1 xHT)T™

Suppose T is a biflow. From these basic operations we derive the
gengral feedback and composition, namely for F = (Ip+r +X)o6) 1 *:
m + k - n 4 k the fiownomial F{*: m — n is

—FTk = ((Im + X)o° ((Im + X e k)° ¢o (In + k 'x))Tk)lx

and for F=((In +X)ee)f*:m—=n F=(Ta+X)ec)T*:n—>p
the flownomial Foe ¥’ :m — p i8

FoF = (In+xX+x)o (04 Le)e (I + X o> X))o (¢ + L)
o (I, + X’ & X)) T

Remark that all these formulae are rules of computation in a biflow,
namely their instances obtained by replacing xs with elements in T are
identities in 7. This gives a half of the main theorem, i.e.

UNIQUE EXTENSION LEMMA. For every morphism or: T — @ in
BFl and every rank-preserving fumction ox: X — Q the ewxiension
T Flyz—>X o#: Flyr — Q preserves the operations. Moreover, this

or \ i.iV i3 the unique eatension of (ex, @r) with respect to
1
& %x

) this property. I

Q

7. ISOMORPHIC FLOWNOMIALS

) Given (z, ,. .., 2;) and (2], ..., oy)afunction y : [k] — (k'] sueh that
@, = iy, V 1 € [k] has a unique ‘block extension’ to entries *y: ['®; +
R R 2 e A SR i 74y and a unique block extension to exits
el + ..+ @) >l + ..o+ .2}] (see [4] for more details).

We say two flownomials F = (I + % + ...+ Ty)oe) P =%
monand F' = (In +2;4.... + &)o' )] T+t m— n are 1somorphic
if there is a bijection y : [k] — (k] such that

(i) @, = @ly, Vie[k];

(ii) eo (In + 'y) = (In + -y} o 0.

The isomorphism relation x is a congurence relation, hence the ope-
rations are well defined in the quotient structure Flyr/~. On the other
hand, two isomorphic flownomials have the same interpretation in a biflow,
hence the interpretation ¥ : Fly; — @ induces one ¢" :Flyz/x = @ on
isomorphism classes of flownomials.
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8. THE ALGEBRAIC STRUCTURE OF Fly v/

Suppose T is a biflow. A simple computation shows that Fly r,
-+ Io) is a monoid, (Fly,r, ¢, I,,) is a bimodule over Bj and (4.1.5.1) holds
in Fly 7. The identities (4.1.4) (4.1.5.3), (4.1.5.4), and (4.1.6) hold, when-
ever the gs morphisms arein 7. Moreover, (4.1.4), (£.1.5.3), (4£.1.5.4) hold
whenever fs morphisms are in Bi. In addition, the two sides in (4.1.2) give
isomorphic flownomials. By 4.4 these give the other half of the main result,
ie.

STRUCTURE PRESERVING LEMMA. [ f T i3 a biflow, then Flxr/~ is @

biflow. I}
9. THE MAIN RESULT

This shows why we have asserted that this calculus is similar to that
of polynomials. It follows from the above lemmag and thelast sentencein 7.

THEOREM. If T i3 a biflow, then Fler/~ is the coproduct of T amd
the biflow freely generated by X in BFI. ]

T—Flyr/~ «>X This means that Flrr is the biflow freely

w\ y generated by adding X to T.
P

X

1

!
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10. EXTENSIONS

The class of biflows T which extends Fn and fulfils ;
(10.1) 0y o f = 0, for f e T(m, n)
(10.2) (mVm)e f = (f+ f)o (n\/n), for fe T(m, n)
where 0, is the unique funection in Fn(O,m)and m v m
is the function in Fo(m + m, m) giv-n by z(m \/ m) =
“if # € [m] then x else 2 — m’ for z [m 4+ m]

equals the class of algebraic theories with iterate in [3].
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