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The logic of quantum programs

Alexandru Baltay Sonja Smetfs

Abstract

We present a logical calculus for reasoning about information flow in quantum pro-
grams. In particular we introduce a dynamic logic that is capable of dealing with
quantum measurements, unitary evolutions and entanglements in compound quantum
systems. We give a syntax and a relational semantics in which we abstract away from
phases and probabilities. We present a sound proof system for this logic, and we
show how to characterize by logical means various forms of entanglement (e.g. the
Bell states) and various linear operators. As an example we sketch an analysis of the
teleportation protocol.

1 Introduction

In this paper we elaborate on the ideas presentedin [2, 3, 9] and give a full-figylogeaiic

Logic for Quantum Program&Q P. It is well-known thatP D L. (Propositional Dynamic

Logic) and its fragment the Hoare Logic are among the main logical formalisms used
in program verificationfor classical programs, i.e. in checking that a given (classical)
program meets the required specification. It is natural to ask fpraatumversion of

PDL, to be used in the verification of quantum programs. In our past work [3], we
presented several such logical systems, starting withgig of quantum measurements
LQM for single quantum systems, and later extending this system into a dynamic logic
LQA of quantum actiongi.e. compositions of measurements and unitary evolutions). In
this paper, we extend QA into a logic forcompoundgquantum systems. We present a
self-contained version dfQ P such that no knowledge dfQ A or LQM is necessary to
understand the basic concepts. Note the difference between our logic and the approach
with a similar name in [4]: our dynamic logic goes much further in capturing essential
properties of quantum systems and quantum programs, as well as in recovering the ideas
of traditional quantum logic [6, 7].

2 Quantum Frames

In this section we introduce quantum frames for single quantum systems and quantum
frames for compound quantum systems; in the later case we restrict our attention to
compound qubits.
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2.1 Single System Quantum Frames

A modal framds a set ofstates together with a family obinary relationsbetween states.

A (generalizedPDL frameis a modal frameX, {5}565, {%}ac), in which the rela-

tions on the set of stata@s are of two types: the first, calleagstsand denoted by, are
labelled with subsetS of X, coming from a given family. C P(X) of sets, calledestable
properties the others, calledctions are labelled with action labelsfrom a given setA.

Given aP DL frame, there exists a standard way to give a semantics to the usual language
of propositional dynamic logic ClassicalP DL can be considered as a special case of

such a logic, in which tests are given blassical testss 5% ¢ if and onlyifs =t € S.
Observe thatlassical tests, if executable, do not change the current.state

In the context of quantum systems, a natural idea is to replace classical tests by “quan-
tum tests”, given byquantum measurementd a given property. Such tests will obvi-
ously change the state of the system. To model them, we introduce a special kind of
PDL frames:quantum framesThe “tests” are essentially given pyojectorsin a Hilbert
space. In [3], we considerddD L with the above-mentioned standard semantics, having
the same clauses in the classical case, but interpreted in quantum frames. What we ob-
tained is aquantum PDL.whose negation-free part with dynamic modalities for quantum
tests is equivalent to what is traditionally called “(orthomodular) quantum logic” [6, 7]. In
this paper, we extend the syntax of this logic to deal with unitary evolutions, entanglements
and some quantum protocols.

Definition 1. (Quantum Frame)
Given a Hilbert spac@t, the following steps construct@uantum (PDL) Frame

S(H) = (£, {2} ser, {2 ven)

1. LetX be the set obne dimensional subspacet?, called the set oftates We
denote a state = 7 of H using any of the non-zero vectarse H that generate
them. Note that any two vectors that differ onlyghase(i.e. = Ay, with A € C
with |A\| = 1) will generate the same state=7 € X.

2. Call two states andt in X orthogonaland writes | ¢, if and only if V2 € s and
Vy € t: xis orthogonal tay, i.e. if (z | y) = 0. Or, equivalently we can state that
s L tifandonlyif 3z € s,y € t withz # 0,y # 0and(z | y) = 0. We put
St:={tex|tLsfor allse S} andwe denote b = S++ := (S+)+ the
biorthogonal closure of. In particular, for a singletofiz }, we just writez for {z},
which agrees with the notatiaghused above to denote the state generatecl by

3. A set of states C X is called a(quantum) testable properiff it biorthogonally
closedi.e. ifif S = S. (Note thatS C S is always the case.) We denote ByC
P(X) the family of all guantum testable properties. All ththersetsS € P(X)\ £
are callechon-testable properties

4. There is a natural bijective correspondence between the faindy all testable
properties and the familyy of all closed linear subspacé¥ of H, bijection given
by S — Wg =:JS. Observe that, under this correspondence, the image of the
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biorthogonal closureS of any arbitrary setS C X is the closed linear subspace
U S € H generated by the unidn S of all states inS.

5. For each testable properfy € L, there exists a partial mafi? on 3, called a
quantum testIf W = Ws = |J S is the corresponding subspace7#f then the
guantum test is the map induced on states byptiogector Py, onto the subspace
W. In other words, it's given by:

S?°(7) = Pw(z)eX, ifT¢ St (ie. if Py(zx)#0)
S?(Z) := undefined, otherwise.

We denote bysig ¥ x ¥ the binary relation corresponding to the partial nt#p
i.e. given by:s 5% ¢ if and only if S7(s) = t. So we havea family of binary
relations indexed by the testable properties L.

6. For each unitary transformatiéhonH, consider the corresponding binary relation

Yecoxy, given by: s Y tifand only if U(z) = y for some non-zero vectors
x € s,y € t. So we obtaina family of binary relations indexed by the unitary
transformationd/ € U (wherel/ is the set of unitary transformations &t).

So a quantum frame is justRD L frame built on top of a given Hilbert spa@¢, using
projectors as “tests” and unitary evolutions as “actions”. Our notion of “state” in this
paper is closely connected to the way quantum logicians approach quantum systems; i.e.,
contrary to identifying states with unitary vectors (as customary in quantum computation),
we took them to b@ne dimensional subspacgenerated by these vectors. This imposes
some limits to our approach, mainly that we will not be able to expptsserelated
properties. While it is possible to build up a quantum frame starting from unitary vectors
as the states, the resulting logical system will be much more cofmaler so we do not
elaborate on it in this paper.

Operators on states, adjoints and generalized testsTo generalize our notations in-
troduced earlier, observe that evdiryear operator F' : H — H induces a partial map
F : ¥ — X on states (i.e. subspaces), givenB{E) = F(z). (Note thatlinearity
ensures that this map on states is well-defined.) In particular, everyfinapy — X
obtained in this way has adjoint Ff : ¥ — 3, defined as the map on states induced
by the adjoint (“Hermitian conjugate”) of the linear operatoron . Observe that, for
unitary transformation#/, the adjoint is the invers&:’ = U~! Also, one can naturally
generalizgguantum test# arbitrary, possiblyon-testable properties C X, by putting:

S? := S?. So we identify a test of a “non-testable” propefywith the quantum test of
its biorthogonal closure. Observe th#itT = S? (since projectors are self-adjoint).

Definition 2. (Non-orthogonality, or Measurement, Relatiorfjor all s, ¢t € X, lets — ¢

if and only if s 5% ¢ for some propertys € L. In other wordss — ¢ means that one can
reach state by doingsome measuremeon states.

11t would require the introduction of a propositiortehsoroperator.
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An important observation is th#the measurement relation is the same as non-orthogona-
lity: s — tiff s ¥ ¢. The non-orthogonality relation has indeed been used to introduce an
accessibility relation in the orthoframe semantics within quantum logic [7].

Definition 3.  (Dynamic Modalities and Measurement Modalities) For any property
T C ¥ and any partial mapF’' : ¥ — X induced on states by a linear operatér, let
[FIT == F7Y(T) = {s € ¥ : F(s) € Tifdefined} and (F)T := X\([F](Z\T)).
Similarly, putOT := {s € X : Vi(s = t =t € T)} and OT := X\ (O(Z\T)).

Observe thafF|T' expresses thaveakest preconditiofor the “program”F' and post-
conditionT'. In particular,[S?]T expresses the weakest precondition ensuring the sat-
isfaction of propertyl’ in any state after the system passes a quantum test of praerty
Similarly, (S?)T means that one can perform a quantum test of propfedy the current
state, ending up in a state having propefty 07T means that property will hold after

any measurement (quantum test) performed on the current state. Fiddllypeans that
propertyT is potentially satisfiedin the sense that one can do some quantum test to reach
a state with property'.

Lemma 1. For every propertyS C %, we haveS+ = [S?]) = ¥\ ©S andS = 00S.

Proposition 1. For each propertys C %, if T’ € L (i.e., istestable), thenS, S+, [S?]T €
L (are testable), and more generall§’|T" € L, for every (map on states induced by a)
linear operatorF.

Proposition 2. (Testable Properties) A propersyC X is testable if and only if any of the
following conditions holds: (1) = S; (2) S=00P; (3) 3T € ¥ such thatP =
T+; (4) 3T € ¥ such thatP = OT. The familyZ of testable properties is a complete
lattice with respect to inclusion, having as its meet set-intersedioril’, and as its join
the biorthogonal closure of set-unighl 7' := S U T, called the quantum join o$ and
T. For every states € 3, the singleton{s} € L is testable. For any arbitrary property
S C %, we haveS = | |{{s} : s € S} = {T € £: S C T}, so the biorthogonal
closure ofS is the strongest testable property implied by (the propesty)

Theorem 1. In every quantum framg () the following properties for quantum tests are
provable:

1. Partial functionality: Ifs 5 tands 2 v thent = v.

2. Trivial tests: Z= ¢ and Z= Ay, whereAy = {(s,s) : s € X} is the identity
relation on¥ x X.

3. Adequacy: Ik € S thens 57 s

4. Repeatability: IfS € L is testable and 51 t, thent € S

5. Compatibility: If ST € L are testable and?; T? = T?7; 57 thenS?; T? = (SN
T)?.
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6. Self-Adjointness: I 5w tthent 22 v ™ s, for somev € X andW € £. In
other words: ifs 2% w—t thent 2 v—s, for somev € .

7. Universal Accessibility: For alk,t € X, there exists a states € ¥ such that
s—w—t

Proofs  Partial functionality follows from the fact that projectors correspond to par-
tially defined maps iri{. Trivial testsfollows from the fact that projecting on the empty
space yields the empty space and that projecting on the total space doesn't change any-
thing. Adequacyfollows from the fact that for every € W we have thatPy (z) = =.
Repeatabilityfollows from the fact thatPy, (z) € W for everyxz € H. Compatibility
follows from the fact that if two projectors commute, i.€ o P,y = Py o Py, then
Py o Py = Pywny. Self-Adjointnesollows from the more general Adjointness theorem
stated below, together with the fast’ = S?. Universal Accessibilitgan be proved by
cases: Ifs Y ¢, i.e. lets — t,thenw =s = s — s — t. If s L ¢, i.e. lets 4 t then
lets = Z,t = y with z,y € H. Take the superpositian+ y € H of x andy and note
thatz + y # 0 (since fromz +y = 0 = z = —y = s = ¢ which contradicts [ t).
Next observe that [ (z + y) (Indeed, suppose L (z + y) then{z | z + y) = 0 and
then(z | z) + (z | y) = 0; butz L yimplies(z | ) = 0. So from(z | ) = 0 follows
thatz = 0, which yields a contradiction). Similarly, we ggt) (x + y). Taking now

w = + y, we can see that € ¥, s — w andw — ¢.

Theorem 2. In every quantum framg(H) the following properties for unitary transfor-
mations (stated for all/, UT € U/) are provable:

1. Functionality: For every state € > we havellt : s LA
. N v , Ut . . " ut , U
2. Inverse-adjoint (bijectivity):s — t — w impliess = w. Similarly, - t = w
impliess = w

Proofs Functionalityfollows from the fact that unitary transformations are well-defined
on all states, i.e. the kernel of the linear map encoding the transformatfoririserse-
adjoint follows from the fact that unitary operators on a Hilbert space have the property
thatUt = U1,
Theorem 3. (Adjointness) LefF be alinear transformation and let w, ¢ € ¥ be states:

T
If s £ w—t then there exists some state ¥ such thatt = v—s.

F

e @
®

Proof. To prove this theorem we use the definition of adjointness in a Hilbert space:
(Fzx | y) = (z | F'y). From this, we get the equivalenc@z | y) = 0iff (z, Fiy) = 0;
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or, otherwise stated'z L y iff 2 L F'y. Taking the negation of both sides and using
the fact that the measurement relationt is the same as non-orthogonality: L ¢, we

N
obtain the equivalencélw(z L w— y) iff Ju(y G SN T). This proves the adjointness
property. As a consequence:

Corollary 1.  For every propertyP C ¥ and every linear mapF we have: P C
[FIO(FtYoP

2.2 Compound System Quantum Frames

In this subsection we like to extend the quantum frame presented above for single systems
into a quantum frame for compound systems. Hdte a Hilbert space of dimensi@with

basis{| 0), | 1)}. We fix a natural numbet > 2 (although later we will restrict to the case

n > 4), and we putV = {1,2,...,n}. A compound-system quantum framil be the
quantum frame(H,, ) build on a Hilbert spacé{,, = H®" = H9 H®...®9H (n times).

Notation. In fact, we consider all the copies ofH as distinct (although isomorphic)
and denote by (") the i-th component of the tensdi®”. Also, for any set of indices
I C N,weputi; = H®! = ®,_, HY. (So, in particularHy = H, = H.) We
denote by; : H — H® the canonical isomorphism betweghand (). This notation
can be extended to sefsC N of indices of lengthI| = k, by puttinge; : H®* — H;
to be the canonical isomorphism between these spaces. Similarly, for edch g€t we
denote byu; : H; @ Hy\; — H the canonical isomorphism between these two spaces.
For any vectof z) € H, we denote by 2)® / = ®),_; | z)® ! the corresponding vector
in H; (obtained by tensoringf/| copies of| =) ). Given a sef C N, we say that a state
s € X(H) has itsI-qubits in states € X(H;), and writes; = ¢, if there exist vectors
Y € s, € Hyandy” € Hy\; such that) = pr(y)’ ®¢"). Note that the statey, if it
exists, then it is uniquéhaving the above property). In particular, when-= {i}, we say
that states has as itsi-th coordinatethe states; € Hy;y, = H.

We will further denote the vectdr0)+ | 1) by | +), and similarly denoté 0)— | 1)
by | —). For the states generated by the vectors in a two dimensional Hilbert space we
introduce the following abbreviations;: := | +), —:=| =) ,0:=]0),1:=]1). In
order to refer to the state corresponding to a pair of qubits, we similarly delete the Dirac
notation, e.g00 := | 00) = | 0)® | 0).
The Bell states will be abbreviated as followsj, := | 00)+ | 11) , Bo1 := | 01)+ | 10),
B10 :=| 00)— | 11) , 311 = | 01)— | 10) andy := | 00)+ | 01)+ | 11)+ | 10).

The following two results are well-known:

Proposition 3. Let H(Y) and HY) be two Hilbert spaces. There exists a bijective corre-
spondence) between the linear maps : H(¥ — HU) and the states of ) @ HU).

Given the basege&i)}a and{eg)}ﬁ of these spaces, the correspondetids given by the
MappingE = Sapmag (ef) | —).cy into the state)(F) = Sasmag .co) @y,

Proposition 4. LetH = H®" and letW = {z® | 0)2("~1) : ¢ H} be given. Any
linear mapF : H — H induces a linear mag,y : H — H in a canonical manner: it
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is defined as the unique map éhsatisfyingF(,)(z) = Py o F(z® | 0)®~1)). Con-
versely, any linear mapr : H — H can be represented & = F(;) for some linear map
F:H—H.

Notation. The above results allow us to specify a compound staf&(ihe H ) via some
linear mapF onH. Indeed, ifF" : H — H is any such linear map, Iét,, : H — H be
the map in the above proposition; this induces a correspondingﬁﬁé)p: H® — gO),

by puttingF((ff) := ¢; 0 F(1) o ¢!, whereg; is the canonical isomorphism introduced
above (betweerl and thei-th componentd () of H®" ). Then we denote bﬁm the
state

T o= w(F(ij))
(i) - (1)

given by the above mentioned bijective correspondendeetweend® — H) and
H® @ HU), The following result is also known from the literature:

Proposition 5. Let F' : H — 'H be a linear map. Then the staf§; is “entangled
according toF(,)"; i.e. if F(1)(| z)) =| y) and if the state of a 2-qubit systemAy; ;) €
H® @ HU), then any measurement of qubiesulting in a stater; collapses the qubit
to statey;.

Notation. The notation?(ij) can be further extended to define a property (set of states)
F;; € ¥ = X(H), by defining it aghe set of all states having tHe, j }-qubits in the state
Fijy -
Fij = {S €X: S{i,j} = F(”)}
= {ppjy(@eY) ¢ e Fup, ¢ € Hynt €%

wherep; ; is as above the canonical isomorphism betwagn;; @ Hy i, ;1. In other
words, F';; is simply the property of an-qubit compound state of having it¢h and;-th
qubits (separated from the others, and) in a state that is “entangled according'to

Local properties . Givenasetl C N, a propertyS C X islocal in [ if it corresponds
to a property of the subsystem formed by the qubit$;im other words, if there exists
some propertys’ C X(H;) such that:

S'={seX:s1€8}

or, more explicitly: S = {u;(v ®¢’) : ¥ € S, ¢ € Hn\r}. An exampleis the
property F';;, which is{i, j}-local. The family of local properties is closed under union,
intersection buhot under complementation

Local transformations . GivenI C N, alinear mapf’ : H — ‘H is I-local if it “affects
only the qubits in/ “; in other words, if there exists a map : H; — H; such that:

Four(p®v') = p (G) @)
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AmapF : 3 — YisI-localifiitis the map induced oix. by an/-local linear map orH.
Examplesre: all the test$; 7 of I-local properties; logic gates that affect only the qubits
in I, i.e. (maps or¥ induced by) unitary transformatioig; : H — H such that for all
P, € Hr, we havelUr o (v @ ¢') = ur(U(v) @ o), for someU : H; — H;. The
family of local maps is closed under composition.

Lemma 2. The main lemma in [5] states (in our notation) that, given a quadruple of
distinct indices, j, k, [, let F, G, H,U,V : H — H be single-qubit linear maps, then we
have:

ijOVkOUj[Fijﬂﬁkl] C (HONToGoVoF)Z.l

Using the formalism oéntanglement specification netwoik&roduced in [5], this can be
encoded in the following diagrammatic representation:

HO‘VTOGOUOF

[5] and [1] use this as the main tool in explaining teleportation, quantum gate teleportation
and many other quantum protocols. We will use this work in our logical treatment of such
protocols, by taking this lemma as one of our main axioms.

Observe that in the above Lemma, the order in which the operatipred V;, are
applied is in facirrelevant This is a consequence of the following important property of
local transformations:

Proposition 6. (Compatibility of local transformations affecting different sets of qubits)
If INJ =0, Fyisanl-local map and7; is a J-local map, then we have:

FI o GJ = GJ o F]
Another important property of local maps (state§ is:

Proposition 7. (“Agreement Property”) LetF;, Gy : ¥ — X be twol-local maps on
states, having the same dom&indom(F') = dom(G). Then their output-states agree on
all non-I qubits, i.e.:

F(s); =G(s)s

for all s € ¥ and all J such thatl N .J = (). (We take this equality to imply in particular
that the right-hand is defined iff the left-hand is also defined.)

2The domain of a map is defined lpm(F) = {s € = : F(s)is defined}. If F’ is the corresponding
linear map or#, this means thafom (F') = {¢ : F'(¢) # 0}.
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Dynamic Characterizations of Main Unitary Transformations.

Itis well-known that a linear operator on a vector space in a given Hilbert spana&jisely
determineddy the values it takes on the vectors of an (orthonormal) basis. An important
observation is that this fact is no longer “literally true” when we move to “states” as one-
dimensional subspaces instead of vectors. The reason is that “phase”-aspects (or, in partic-
ular, the signs 4" and “—") are not “state” properties in our setting. In other words, two
vectors that differ only in phase, izie= Ay where is a complex number with\ |= 1,

belong to the same subspaces, so they correspond to the same-stgte

Example 1. (Counterexample) Consider a 2 dimensional Hilbert space in which we
denote the basis vectors pg) and| 1), a transformatiord is given byl («| 0) + 3| 1)) =

a | 0) + 3| 1); and a transformatiod is given by J(a| 0) + 3| 1)) =« | 0) — 3 | 1).
Although! and.J induce different operators on states , these operators map the basis states
to the same images:

1(0) = I(|0)) = 0 = J(]0)) = J(0), I(1) = I(|1)) =1 =—[1) = J(1)) =
J(1). But of course we do distinguish the subspaces generated by different superpositions:
IH) =10+ h=+#-=[0)—[1) =J(+)

Proposition 8. A linear operator on the state spa¢#,) of a 2 dimensional Hilbert

space is uniquely determined by its images on the statgs] 1), | +).

Corollary 2. A linear operator on the state spacqH,,) of the spaceH,, is uniquely
determined by its images on the states:

{lzh @@ |a)n:| 2)i € {| is] 0)i, | +)i}}

In the definition of a quantum frame given above, we introduced thé{sa$ the set

of unitary transformations for single systems. For compound systems tie siitbe
extended with the kind of operators that are active on compound systems. Following the
quantum computation literature, we talde= {X, Z, H,CNOT, ...} whereX, Z and H

are defined by the following table:

[ofL]+
X[ 1][0]+
Z|o|1]-
H|+[-|0

The transformatiol N OT is given by the table:
[ 0001 [0+ [11]10[1+ | 40| +1 | ++
CNOT 0001 [0+ [11[10[1+ [ Boo | Bor |

3 Syntax of LQP

The Basic Language ofLQ P:

To build up the language dfQ P, we are given a natural number and we putVv =
{1,2,...,n}. We start from a se® of propositional variablestogether with ararity
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map i.e. everyp € Q has an arityk < n; asetC = {+, 1, ...} of propositional constants
and a set{ = {CNOT,, X1, H1, Z1, ...} of constants, denotinjgasic programsto be
interpreted asinitary transformationseach such program comes also with an akityg
n. The syntax ofLQP is an extension of the classical syntax 8D L, with a set of
propositionaformulasand a set oprograms defined by mutual induction:

o = pr | a | Ty | e | eAe | [nle

T ou= T | ¢ | U | «t | nux | mnm | =

Here, we takd to denote sequents of distinct indicesNn= {1,2,...,n}. In the above
syntax,py andU; are well-formed terms iff the arity of p, or of U, matches the length

of the sequence, i.é. = |I|. In the semantics we will interpretto be a physical property

of a system of| qubits, and the sentenge as saying that the qubits with indices in
have the property consisting oft =| I | relevant basic states which are specifically the
ones labeled corresponding to the numbers in the subs@imilarly, in the semantics it
will become clear that every memberigfencodes a specific quantum logical gate and the
subscript/ in Uy will then indicate on which qubits the gate is active. When the arity of a
variablep is n, then we skip the subscript, and simply writinstead ofp,, .

For a given propositional constante C, we interpret the senteneg as saying that
“the i-th-qubit is in the statéc)”. Note thatl as a logical (characterizing the qubit)) is
different from the propositional formuld (verun) which we formally introduce later in
this section, to denote the “top” element of the lattice of properties. This, inits turn, is also
different from theprogram T, introduced in the syntax above, which will simply denote
the trivial program, relating any two states.

Extending the Basic Language of.Q) P

We extend our language by defining the operations fdaasical disjunctiorand aclas-
sical implicationin the usual way, i.ep V ¢ := =(=p A =), o — ¥ 1= = V 3h. We
introduce constantgerumT := 1; V =1y, andfalsum_Ll := 1; A =1;. We define the
classical duabf [r]y in the usual way aér)y := —[r]—¢ ; themeasurement modalities
O and< that are known in the quantum logic literature can be definddy by putting
Op = (p?)T andOyp := =O—¢. Theorthocomplemeris defined as- ¢ := O-y, or
equivalently asv ¢ := [¢?] L. By means of the orthocomplement we define new propo-
sitional constant®; :=~ 1, and—; :=~ +;, and a binary operation fauantum join
p U =~ (~ oA ~ 7). This expressesuperpositionsy LI ¢ is true at any state which
is a superposition of states satisfyipgor ). We can also define thguantum duabf a
modality [7]y as(n™~)1) 1=~ [1] ~ 4. Finally, we put(n) = := ((z1)~)¢. As we'll
see, this captures tterongest post-conditioansured by applying programon a state
satisfying (a preconditiony.

Testable formulas We call a programr deterministidf 7 is constructed without the use
of choiceU or iteration«. Next we define the set eéstable formulas, of LQP to be a
subset of the above given language, constructed by induction in the following way:

o = Lol e | Tig | eenee | [7le
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wherer is anydeterministic program Observe that the construction ofmight involve
non-testable formulas. In particular, for an arbitrary (not necessarily testable) fogmula
remark thafy?]¢; is a testable formula.

Proposition 9. For any formulay in LQP, ~ ¢ andO¢ are testable formulas.

Local formulas and local programs We would like to isolatdocal formulas and pro-
grams, i.e. the ones that “affect only the qubits in a given/set N”. These formulas

will express local properties (in the sense defined above). When we want to stress that a
formula or program is local, we denote them with or 7;. The definition is:

or = p; | e | Ty | wrVer | erAN-er | e ANrrler
mr uw= @t | Uy | #mpmp | mpUnmp | @y

withi,5 € I, J C I. Observe that local formulas are not closed under negation: this is
because the complement of a local property is not necessarily a local property. But instead
they are closed under set-theoretic difference, disjunction, and also conjunction: this is
because A ¢ is equivalent tap A = (¢ A —1).

Relabeling local formulas and programs . When we label a local formul@; or a
local programr; with a sequence of indicels we can of course take any other sequence
J of indices, with|.J| = |I], and substitute all thé indices in our formula (program) with
the corresponding indices; we denote by, and respectivelyr;, the corresponding
formula, or program.

Notation. The unary map induced by a prograMie want to capture in our syntax the
constructionF|;), by which a linear mag’ on H®™ was used to describe a unary map
Fay on H. For this, we put:0;! := 0,7 U (1;7; X;), and0;! := 05,1504, ---;0;,!,
wherel = (iy,is,...,45). This maps any qubit id to 0. Similarly, we put;0;? :=
(0i; AO;, A--- A0;,)?. Finally we define:

Ty = 0N\ iy 5 O (3 7

This is the map we need (which encodes a single qubit transformation). In fact, we shall
only user ;) in the rest of this paper.

4 Semantics ofLQ) P

An LQP-modelis aquantum frame equipped with a valuation functiomapping each
propositional variable of arity k into a set|| p || X(H®F) of k-qubit states. Given a
sequencd of lengths of indices, lete be the canonical isomorphism betweH®* and
H®T,

We will use the valuation map to give an interpretatjp || C X to all our formulas, in
terms of properties of our qubit system, i.e. sets of statesdh= (). In the same
time, we give an interpretatiop = || C ¥ x X to all our programs, in terms of binary
relations between states. The two interpretations are definetubyal recursion
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Interpretation of the Programs: The basic program&;, with |I| = k, come from a
list of corresponding:-bit unitary transformation& : H®* — H®k. We take|| U; || to
be the (map on states induced by the) unique linear ma such that:

| Ur || opr (% @4)) := pr(eroUoe; (1) @ ¢)

for everyy € Hy, ¥ € Hy\ ;. Here, recall that; is the canonical isomorphism between
H®F andH;, andyu; is the canonical isomorphism betweln © Hy\r andH.
As for the others:

Tl = UxX el = lell?
|mumll = |[m U=l |7 ]] = =l
|| 715 o |] = Almllollm|l , U] = U7}
[ (7D ] =l A Gsm) ] = | ] |
| (mum)t ] = [l @)fu@E)t |, (=) ] = (@) |

whereR* is the reflexive-transitive closure of relatiéh Note thadeterministic programs
have as interpretations= || (maps on states which are induced hggar mapsonH.
The interpretatiori| 7 || allows us to extend the notatich to all programs, by putting:
s 5 tiff (s,t) €| 7|l

Interpretation of the Formulas: We give the interpretation here first for all except
propositional variableg; and entangled state formulas;:

HeAvll = dlellnllell 5 -l = S\l
[ L ] = L sl =
andfinally ||[r]e || = {s€X|Vt:s St=tc] o]}

The last clause obviously defintige weakest preconditighr]¢ ensuring that (postcondi-
tion) ¢ will be satisfied after executing program As for the propositional variables, we
put:

lprll = {SEHZSIGQ(HBH)}
= A{prles() @) Y €|l p|,¥" € Hya}

wheree; and iy are the above-mentioned canonical isomorphisms,sarisl (as defined
above) the state of the qubits In So the meaning gf; is that the system of qubits with
indices in/ is separated from (i.e. non-entangled with) the rest of the system, and that
moreover this system has the property expressed by

The interpretation ofr;;, for deterministic programsr, is given by the construction
F;; above. Since the interpretatitinr || of a deterministic program is a linear map&n
we know, by the results mentioned above, that the iigpcan be used to specify a set of
compound stateEj C H. This is our intended interpretation fot;:

7o 1= 117 [l

For the progranT, we put:|| T [|:= {s € ¥ : s(; ;1 is defined = {ug; (Y @ ') 1 €
Hyijy, ' € Ha\igy ) 1-€. the property of having th§i, j}-qubits in a separated state
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from the others. This can be extended to other programs in the natural way, by putting e.g.
| m U [[:=||7s; Un'i; || ete.

Proposition 10. The interpretation of any testable formula is a testable property. The
interpretation of an/-local formula (or deterministic program) is aftlocal formula (or
linear map on states).

Lemma3. ||~ ¢ [|=|l ¢ [I5 || [2 ll= [l ¢ 17711 ¢ [l [| D ll= 0 || ¢
Il [l =] Oo¢ ||

Proposition 11. The following are equivalent, for every formuta
1. || ¢ ||is testable

 is semantically equivalent <

 is semantically equivalent to some formuala

 is equivalent to some formuta v

=N

5 Axioms for LQP

First, we admitall the axioms and rulesf classicalPD L, except for the one concerning
testsp?. In particular, we have a basic axiom and rule for sentences invohadglities
[7], stated for elementary sentences and basic programs:

Kripke Axiom.  + [7](p — q) — ([7]p — [7]q)

Necessitation Rule. if + pthen [x]p

Consideringdp, we introduce the following axioms:

Test Generalization Rule. if p — [¢?]r forallq, then+ p — Or
Testability Axiom. + Op — [¢?]p

Testability can be stated in its dual form by meang@fp — <p or equivalently as
(¢")p — (p?)T. This dual formulation of Testability allows us to give a straightforward
interpretation: if the property associategitoan be actualized by a measurement (yielding
an output state satisfying, then we can directly test the propeytyby doing a measure-
ment forp). The Test Generalization Rule encodes the factthasta universal quantifier
over all possible measurements.

OtherLQ P-axioms are:

Partial Functionality. F o =[p?q — [p?—q

Adequacy. F pAg— (pl)g

Repeatability. F o [é¢?)o: for all testableformulas ¢
Universal Accessibility. F (x)00p — [7']p

Unitary Functionality. F =[Ulg < [Ul~q

Unitary Bijectivity 1. Fope [U;UNp

Unitary Bijectivity 2. o ope [ULUp

F

Adjointness. p — [#]0{(xT)Op
Substitution Rule. From + © infer F ©[p;/¢;]
Compatibility Rule . For alltestableformulasy, ¢ and every variable & ¢, v:

From F (p797)p — (V75 97)p infer E (p?797)p — (9 A)?)p
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Proposition 12. (Quantum Logic, Weak Modularity or Quantum Modus Ponens) All the

axioms and rules of traditional Quantum Logic are satisfied by our testable formulas. In
particular, from our axioms one can prove “Quantum Modus PonénsA [¢?]y I 1.

In its turn, this rule is equivalent equivalent to the condition known in quantum logic as
Weak Modularity, stated as followgi A (~ ¢ LI (¢ A1) 1.

Theorem 4. (Soundness, Expressivity, Completeness of the above axioms with respect to
PDL frames) In the presence of (axioms of classical logic, plus) Kripke's Axiom, Necessi-
tation, Test Generalization, Testability and Substitution Rule, all the other axioms above
are sound and expressive with respect to the corresponding semantic conditions mentioned
in the Section 2 above. More precisely: any of these axioms is valid on a PDL frame iff the
corresponding semantic condition is satisfied by the frame. Moreover, the system given by
the above axioms is complete for the class of PDL frames satisfying all the corresponding
semantic conditions.

Proposition 13. The formula< = >~"! ¢ expresses the strongest testable postcondition
ensured by executing programon any state satisfying (preconditiop) In other words:
for every testable), the following are equivalent:

LbE<a>"tp—
2.k o—[ny

Moreover, in the context of the other axioms, this equivalence is itself equivalent to the
Adjointness Axiom.

Basic Axioms for constants (, 1, +, —).
The first axiom says that’s are “states” in the i-th part of the system, i.e. they are atomic
properties, which determine completely whether any other property is jointly satisfied. We
state in aveak as well as irstrongerversion:
Atomicity (weak version). Forakt € {0,1,+,—}: F¢; Ap; — 0O0(¢; — pi)
Atomicity (strong version). Foralt € {0,1,+,—}:
F Nier i Apr — B0(N;jerci — pr)
The following axioms state that, and—; are proper superpositions @f and1;:
Proper Superposition Axioms: F +; — <C0; A CL; and F —; — O0; A O,
Next two axioms assert thatand-+ aretestableproperties:
Constants are testable.- O0¢1; — 1; and - O0+; — +;.
Determinacy Axiom of Deterministic Programs. For deterministic programs, 7'
- (mm Ao...coneorye (M1 ALY o @) AL A cé’”)))
= ((mp < (7)p)
This expresses the above-mentioned property of linear operatdisairbeing uniquely
determined by their values on all the stateg; ® - - - | ), with | z); € {| 0);,] 1),|
+)it-
3This explains why the weakest preconditifgr?]y has been taken as the basic implicational connective in
traditional Quantum Logic, under the name of “Sasaki hook”, denoted E»Sy .




The logic of quantum programs 53

Agreement Axiom. If two I-local programsr, 7’ have the same domain, then their
output states agree on all ndrgubits: i.e. if N J = () then

DO(r)T < () T) = (7r)ps < (77)pJ)

Compatibility of programs affecting different sets of qubits. If 7 N J = () then

F s mslp < [mrmrlp

Entanglement Rule From  py — [m(y]q infer =755 — [pi?]q;

Entanglement Composition Axiom For distinctindices, 5, k, [, programsr, 7/, 7'/ and

local {1}-programsry, p; we have:

F T AT — (o5 o T ) (w00 75 0l ),
Trivial Entanglement. + p; ; — T,; This says that separation of thgj-qubits implies
their trivial entanglement.

Theorem 5. (Teleportation Property). If; is a1-local testable property and if ¢; —
[ﬂ-(l); 0(1)]‘]1; thent o1 A Ga3 — [f12?]CI3.

Proof. We apply the Entanglement Composition Axiom, taking= 4,7 = 1,k =
2,1 = 3, and substituting the programs for =, o for «’, = for «”’, ¢©,? for o1, and
idy = Xl;Xl for P1- We obtain:+ ?41 N T3 — [@17,1(12,?12‘7](7',1)17,w,zdl{,a)%
On the other hand, we have: ¢; A Ga3 — [04!(p1 A Ta1 A Ta3)  (since0,! is
4-local and has the same domain i, so by Agreement Axiom it agrees witla,
on non-4 qubits, thus preserving; anda23; but also- [04!]04 and using the Triv-
ial Entanglement Axiom, we get the conclusion). From these two together, we obtain:
F @1 A Ta3 — [04!}[ﬁ12?}(T;<p1?;7r;z’d{;a)43. But on the other hand, we have
(T;<p1?;7r;idi;o)43 — [047]gs. (This is because we assumedp; — [7(1); 01)]q1,
from which it follows that- 0; — [T;¢17; w(l);idig o(1)lq1, using the fact thatd! = id
andt [p17]p1, by Repeatability axiom and the testability f. Apply now Entangle-
ment Rule, obtaining the above conclusion.) From these two, we getthat:A 5335 —

[04!;7127; 047]g3. The desired conclusion follows from the Agreement Axiom and the fact
that0,!; 7127; 047 andm,2? are{1, 2, 4}-local programs with the same domain.

Characteristic Formulas . In order to formulate our next axioms (dealing with special
logic gates), we give some characteristic formulas for binary states, considering two qubits
indexed byi andj:

States Characteristic Formulas
| 00);; =] 0);® | 0); (0:7)0; A[1;7] L
Bell states:

v =100 [y); + (=17 [1);®@7); | (0:2y; A(L7)G; A (+:7)(=)F
with0=1andl =0, z,y € {0,1} where(—)* = —ifz =1
and(—)* =+ifz=0

Y = By + Byl =
| 00)ij+ | 01)ij+ | 10)i5+ | 11)4; (0,7) +5 A(Li?) +5 A(+i7)+;
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Characteristic Axioms for Quantum Gates X and Z. In general, for all unitary trans-
formationsU € U, we have as @onsequencef the previous axioms that- px —
[Urlpk, forIN K = 0.

In addition to this, we require fokK, Z, H:

o= XL s B L= X0 5 B+ o X
o0 — [Zi]0; FoL—[Z])1 Fo+ = [Zi]—
Fo0; — [Hi]+i o1 = [Hi]— Foo+ — [Hi]0;

Notation. Forz,y € {0,1} and distinct indices, j € N, we make the following abbrevi-
ations for “Bell formulas™ 3y, := (Z{; XY),;.

Proposition 14. The Bell stateg;/ are characterized by the logic Bell formulag),. In
other words, a state satisfies one of these formulas iff it coincides with the corresponding
Bell state.

Proof. It is enough to check that the formulﬁ% imply the corresponding characteristic
formulas in the above table. For this, we use the Entanglement Axiom and the following
(easily checked) theorems: 07 —< Z{; X7 > v, B 11 o< Z5H XY > 41, F

+1 =< 2 XY > (H)F.

Characteristic Axioms for CNOT . With the above notations, we put:

H 01 N Cj — [CNOE]]C] N F 11 N Oj — [CNOE]]].]
FL;A 1j — [CNOT‘”]OJ ; [ 1; A +j — [CNOT”}-F]
F +iA+; — [CNOT;;|v7  where Y =(0;7) 45 A L) 45 AT+

Proposition 15. For all z,y € {0,1}: & (z; A y;) — [Hy; CNOT; ;18%,

Corollary. If 4, 7, k are all distinct then
- <CNOT”, Hj; (371 A yj)?>pk > < ;’57>pk

Proof. From the above anflt = H, CNOT' = CNOT, we get
~ By, — [ONOT, s Hil(xi A i),

and so
F(CNOTy; Hy; (x Ay)N) T < (B

The conclusion follows from this, together with the Agreement Axiom.

INT.

i
Ty

6 Correctness of the Teleportation Protocol

Following [8], quantum teleportation is the name of a technique that makes it possible to
teleport the state of a quantum system without using a channel that allows for quantum
communication, but with a channel that allows for classical communication. We are work-

ingin H ® H ® H, with H being the two-dimensional (qubit) space, ancise 3. We
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assume two agents, Alice and Bob who are separated in space and each has one qubit of
an entangled EPR pair that is representedifiy € H® @ H®). Alice holds in addi-

tion to her part of the EPR pair also a qupjt € H") in an unknown state;. Alice
“teleports” this state to Bob, i.e. she performs a program that will output a state satisfying
3. To do this, she first entangles with her partg, of the EPR pair (i.e. she performs
aCNOT; » gate on the two qubits and then a Hadamard transformafioon the first
component). Bob’s qubit has suffered during the actions of Alice and when Alice will
measure her qubits she will destroy the entanglement of the EPR pair that she shares with
Bob. The initial state of Bob’s qubit is known and we can calculate which changes it has
gone through when we know the result that Alice obtains from the two measurements.
Moreover, the result that Alice obtains from the two measurements indicate the actions
that Bob has to perform in order to transfer his qubit igfanto the state;; was before

the protocol. Itis enough for Alice to send Bob two classical bits encoding the rgsoit

the first measurement and the respliof the second measurement. This means that Bob
will have to applyy times theX -gate followed byr times theZ gate, if he wants to force

his qubitgs into the stateps.

In our syntax, the quantum program described here is:

m= |J ONOT;Hy; (21 Ay2)?; XY 23
z,y€{0,1}

and the validity expressing the correctness of teleportation is
F o1 A By — s

for all testablel-local formulasyp,. To show this, observe that by applying the above
Corollary (at the end of the last section) in which we take- 1,7 = 2,k = 3 and

then substituteys with LX;’ ; Z¥)3, we obtain that the validity above (to be proved) is
equivalent to: F o, A oy — [BL,27)[XY; Z8)ps.

Replacing the logical Bell formulas with their definitioﬁ% = (Z¢; Xf)ij, we obtain

the following equivalent validity: - o1 A idas — [(Z]; XY), ,7][X3; Z5]ps , where

id = Z9; X{ is the identity. This last validity follows from applying the Teleportation
Property and the validity- o1 — [Z7; X7; X7; Z¥]p1 (duetoX ! = X, 7271 = 2).

Note. This proof of correctness can be easily adapted to cover logic-gate teleportation.
Moreover, the whole range of quantum programs covered by the “entanglement networks”
in [5] can be similarly treated using our logic.
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