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The logic of quantum programs

Alexandru Baltag∗ Sonja Smets†

Abstract

We present a logical calculus for reasoning about information flow in quantum pro-
grams. In particular we introduce a dynamic logic that is capable of dealing with
quantum measurements, unitary evolutions and entanglements in compound quantum
systems. We give a syntax and a relational semantics in which we abstract away from
phases and probabilities. We present a sound proof system for this logic, and we
show how to characterize by logical means various forms of entanglement (e.g. the
Bell states) and various linear operators. As an example we sketch an analysis of the
teleportation protocol.

1 Introduction

In this paper we elaborate on the ideas presented in [2, 3, 9] and give a full-fledgeddynamic
Logic for Quantum ProgramsLQP . It is well-known thatPDL (Propositional Dynamic
Logic) and its fragment the Hoare Logic are among the main logical formalisms used
in program verificationfor classical programs, i.e. in checking that a given (classical)
program meets the required specification. It is natural to ask for aquantumversion of
PDL, to be used in the verification of quantum programs. In our past work [3], we
presented several such logical systems, starting with alogic of quantum measurements
LQM for single quantum systems, and later extending this system into a dynamic logic
LQA of quantum actions(i.e. compositions of measurements and unitary evolutions). In
this paper, we extendLQA into a logic forcompoundquantum systems. We present a
self-contained version ofLQP such that no knowledge ofLQA or LQM is necessary to
understand the basic concepts. Note the difference between our logic and the approach
with a similar name in [4]: our dynamic logic goes much further in capturing essential
properties of quantum systems and quantum programs, as well as in recovering the ideas
of traditional quantum logic [6, 7].

2 Quantum Frames

In this section we introduce quantum frames for single quantum systems and quantum
frames for compound quantum systems; in the later case we restrict our attention ton
compound qubits.
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2.1 Single System Quantum Frames

A modal frameis a set ofstates, together with a family ofbinary relationsbetween states.

A (generalized)PDL frameis a modal frame(Σ, {S?→}S∈L, {
a→}a∈A), in which the rela-

tions on the set of statesΣ are of two types: the first, calledtestsand denoted byS?, are
labelled with subsetsS of Σ, coming from a given familyL ⊆ P(Σ) of sets, calledtestable
properties; the others, calledactions, are labelled with action labelsa from a given setA.
Given aPDL frame, there exists a standard way to give a semantics to the usual language
of propositional dynamic logic. ClassicalPDL can be considered as a special case of

such a logic, in which tests are given byclassical tests: s
S?→ t if and only if s = t ∈ S.

Observe thatclassical tests, if executable, do not change the current state.
In the context of quantum systems, a natural idea is to replace classical tests by “quan-

tum tests”, given byquantum measurementsof a given property. Such tests will obvi-
ously change the state of the system. To model them, we introduce a special kind of
PDL frames:quantum frames. The “tests” are essentially given byprojectorsin a Hilbert
space. In [3], we consideredPDL with the above-mentioned standard semantics, having
the same clauses in the classical case, but interpreted in quantum frames. What we ob-
tained is aquantum PDL, whose negation-free part with dynamic modalities for quantum
tests is equivalent to what is traditionally called “(orthomodular) quantum logic” [6, 7]. In
this paper, we extend the syntax of this logic to deal with unitary evolutions, entanglements
and some quantum protocols.

Definition 1. (Quantum Frame)
Given a Hilbert spaceH, the following steps construct aQuantum (PDL) Frame

Σ(H) := (Σ, {S?→}S∈L, {
U→}U∈U )

1. Let Σ be the set ofone dimensional subspacesof H, called the set ofstates. We
denote a states = x of H using any of the non-zero vectorsx ∈ H that generate
them. Note that any two vectors that differ only inphase(i.e. x = λy, with λ ∈ C
with |λ| = 1) will generate the same statex = y ∈ Σ.

2. Call two statess andt in Σ orthogonaland writes ⊥ t, if and only if ∀x ∈ s and
∀y ∈ t: x is orthogonal toy, i.e. if 〈x | y〉 = 0. Or, equivalently we can state that
s ⊥ t if and only if ∃x ∈ s, y ∈ t with x 6= 0, y 6= 0 and〈x | y〉 = 0. We put
S⊥ := {t ∈ Σ | t ⊥ s for all s ∈ S}; and we denote byS = S⊥⊥ := (S⊥)⊥ the
biorthogonal closure ofS. In particular, for a singleton{x}, we just writex for {x},
which agrees with the notationx used above to denote the state generated byx.

3. A set of statesS ⊆ Σ is called a(quantum) testable propertyiff it biorthogonally
closed, i.e. if if S = S. (Note thatS ⊆ S is always the case.) We denote byL ⊆
P (Σ) the family of all quantum testable properties. All theothersetsS ∈ P (Σ)\L
are callednon-testable properties.

4. There is a natural bijective correspondence between the familyL of all testable
properties and the familyW of all closed linear subspacesW of H, bijection given
by S 7→ WS =:

⋃
S. Observe that, under this correspondence, the image of the
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biorthogonal closureS of any arbitrary setS ⊆ Σ is the closed linear subspace⋃
S ⊆ H generated by the union

⋃
S of all states inS.

5. For each testable propertyS ∈ L, there exists a partial mapS? on Σ, called a
quantum test. If W = WS =

⋃
S is the corresponding subspace ofH, then the

quantum test is the map induced on states by theprojectorPW onto the subspace
W . In other words, it’s given by:

S?(x) := PW (x) ∈ Σ , if x 6∈ S⊥ ( i.e. if PW (x) 6= 0)
S?(x) := undefined, otherwise.

We denote by
S?→⊆ Σ × Σ the binary relation corresponding to the partial mapS?,

i.e. given by: s
S?→ t if and only if S?(s) = t. So we havea family of binary

relations indexed by the testable propertiesS ∈ L.

6. For each unitary transformationU onH, consider the corresponding binary relation
U→⊆ Σ × Σ, given by: s

U→ t if and only if U(x) = y for some non-zero vectors
x ∈ s, y ∈ t. So we obtaina family of binary relations indexed by the unitary
transformationsU ∈ U (whereU is the set of unitary transformations onH).

So a quantum frame is just aPDL frame built on top of a given Hilbert spaceH, using
projectors as “tests” and unitary evolutions as “actions”. Our notion of “state” in this
paper is closely connected to the way quantum logicians approach quantum systems; i.e.,
contrary to identifying states with unitary vectors (as customary in quantum computation),
we took them to beone dimensional subspacesgenerated by these vectors. This imposes
some limits to our approach, mainly that we will not be able to expressphase-related
properties. While it is possible to build up a quantum frame starting from unitary vectors
as the states, the resulting logical system will be much more complex1, and so we do not
elaborate on it in this paper.

Operators on states, adjoints and generalized tests.To generalize our notations in-
troduced earlier, observe that everylinear operatorF : H → H induces a partial map
F : Σ → Σ on states (i.e. subspaces), given byF (x) = F (x). (Note thatlinearity
ensures that this map on states is well-defined.) In particular, every mapF : Σ → Σ
obtained in this way has anadjoint F † : Σ → Σ, defined as the map on states induced
by the adjoint (“Hermitian conjugate”) of the linear operatorF onH. Observe that, for
unitary transformationsU , the adjoint is the inverse:U† = U−1 Also, one can naturally
generalizequantum teststo arbitrary, possiblynon-testable properties, S ⊆ Σ, by putting:
S? := S?. So we identify a test of a “non-testable” propertyS with the quantum test of
its biorthogonal closure. Observe thatS?† = S? (since projectors are self-adjoint).

Definition 2. (Non-orthogonality, or Measurement, Relation)For alls, t ∈ Σ, let s→ t

if and only if s
S?→ t for some propertyS ∈ L. In other words,s → t means that one can

reach statet by doingsome measurementon states.

1It would require the introduction of a propositionaltensoroperator.
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An important observation is thatthe measurement relation is the same as non-orthogona-
lity: s→ t iff s 6⊥ t. The non-orthogonality relation has indeed been used to introduce an
accessibility relation in the orthoframe semantics within quantum logic [7].

Definition 3. (Dynamic Modalities and Measurement Modalities) For any property
T ⊆ Σ and any partial mapF : Σ → Σ induced on states by a linear operatorF , let
[F ]T := F−1(T ) = {s ∈ Σ : F (s) ∈ T if defined} and 〈F 〉T := Σ\([F ](Σ\T )).
Similarly, put2T := {s ∈ Σ : ∀t(s→ t⇒ t ∈ T )} and 3T := Σ\(2(Σ\T )).

Observe that[F ]T expresses theweakest preconditionfor the “program”F and post-
conditionT . In particular,[S?]T expresses the weakest precondition ensuring the sat-
isfaction of propertyT in any state after the system passes a quantum test of propertyS.
Similarly, 〈S?〉T means that one can perform a quantum test of propertyS on the current
state, ending up in a state having propertyT . 2T means that propertyT will hold after
anymeasurement (quantum test) performed on the current state. Finally,3T means that
propertyT is potentially satisfied, in the sense that one can do some quantum test to reach
a state with propertyT .

Lemma 1. For every propertyS ⊆ Σ, we haveS⊥ = [S?]∅ = Σ \3S andS = 23S.

Proposition 1. For each propertyS ⊆ Σ, if T ∈ L (i.e., is testable), then2S, S⊥, [S?]T ∈
L (are testable), and more generally[F ]T ∈ L, for every (map on states induced by a)
linear operatorF .

Proposition 2. (Testable Properties) A propertyS ⊆ Σ is testable if and only if any of the
following conditions holds: (1)S = S; (2) S = 23P ; (3) ∃T ∈ Σ such thatP =
T⊥; (4) ∃T ∈ Σ such thatP = 2T . The familyL of testable properties is a complete
lattice with respect to inclusion, having as its meet set-intersectionS ∩ T , and as its join
the biorthogonal closure of set-unionS t T := S ∪ T , called the quantum join ofS and
T . For every states ∈ Σ, the singleton{s} ∈ L is testable. For any arbitrary property
S ⊆ Σ, we haveS =

⊔
{{s} : s ∈ S} =

⋂
{T ∈ L : S ⊆ T}, so the biorthogonal

closure ofS is the strongest testable property implied by (the property)S.

Theorem 1. In every quantum frameΣ(H) the following properties for quantum tests are
provable:

1. Partial functionality: Ifs
S?→ t ands

S?→ v thent = v.

2. Trivial tests:
∅?→= ∅ and

Σ?→= ∆Σ, where∆Σ = {(s, s) : s ∈ Σ} is the identity
relation onΣ× Σ.

3. Adequacy: Ifs ∈ S thens
S?→ s

4. Repeatability: IfS ∈ L is testable ands
S?→ t, thent ∈ S

5. Compatibility: IfS T ∈ L are testable andS?;T? = T?;S? thenS?;T? = (S ∩
T )?.
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6. Self-Adjointness: Ifs
S?→ w

T?→ t thent
S?→ v

W?→ s, for somev ∈ Σ andW ∈ L. In

other words: ifs
S?→ w→t thent

S?→ v→s, for somev ∈ Σ.

7. Universal Accessibility: For alls, t ∈ Σ, there exists a statew ∈ Σ such that
s→ w → t

Proofs: Partial functionality follows from the fact that projectors correspond to par-
tially defined maps inH. Trivial testsfollows from the fact that projecting on the empty
space yields the empty space and that projecting on the total space doesn’t change any-
thing. Adequacyfollows from the fact that for everyx ∈ W we have thatPW (x) = x.
Repeatabilityfollows from the fact thatPW (x) ∈ W for everyx ∈ H. Compatibility
follows from the fact that if two projectors commute, i.e.PW ◦ PV = PV ◦ PW , then
PW ◦ PV = PW∩V . Self-Adjointnessfollows from the more general Adjointness theorem
stated below, together with the factS?† = S?. Universal Accessibilitycan be proved by
cases: Ifs 6⊥ t, i.e. lets → t, thenw = s ⇒ s → s → t. If s ⊥ t, i.e. lets 6→ t then
let s = x, t = y with x, y ∈ H. Take the superpositionx + y ∈ H of x andy and note
thatx + y 6= 0 (since fromx + y = 0 ⇒ x = −y ⇒ s = t which contradictss 6⊥ t).
Next observe thatx 6⊥ (x + y) (Indeed, supposex ⊥ (x + y) then〈x | x + y〉 = 0 and
then〈x | x〉 + 〈x | y〉 = 0; butx ⊥ y implies〈x | x〉 = 0. So from〈x | x〉 = 0 follows
thatx = 0, which yields a contradiction). Similarly, we gety 6⊥ (x + y). Taking now
w = x+ y, we can see thatw ∈ Σ, s→ w andw → t.

Theorem 2. In every quantum frameΣ(H) the following properties for unitary transfor-
mations (stated for allU,U† ∈ U) are provable:

1. Functionality: For every states ∈ Σ we have∃!t : s U→ t

2. Inverse-adjoint (bijectivity):s
U→ t

U†

→ w impliess = w. Similarly,
U†

→ t
U→ w

impliess = w

Proofs: Functionalityfollows from the fact that unitary transformations are well-defined
on all states, i.e. the kernel of the linear map encoding the transformation is∅. Inverse-
adjoint follows from the fact that unitary operators on a Hilbert space have the property
thatU† = U−1.

Theorem 3. (Adjointness) LetF be a linear transformation and lets, w, t ∈ Σ be states:

If s
F→ w→t then there exists some statev ∈ Σ such thatt

F †

→ v→s.

•
F - •

•

6
.................

�.....................
F †

•
?

Proof: To prove this theorem we use the definition of adjointness in a Hilbert space:
〈Fx | y〉 = 〈x | F †y〉. From this, we get the equivalence:〈Fx | y〉 = 0 iff 〈x, F †y〉 = 0;
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or, otherwise stated,Fx ⊥ y iff x ⊥ F †y. Taking the negation of both sides and using
the fact that the measurement relations→t is the same as non-orthogonalitys¬ ⊥ t, we

obtain the equivalence:∃w(x F→ w → y) iff ∃v(y F †

→ v → x). This proves the adjointness
property. As a consequence:

Corollary 1. For every propertyP ⊆ Σ and every linear mapF we have: P ⊆
[F ]2〈F †〉3P

2.2 Compound System Quantum Frames

In this subsection we like to extend the quantum frame presented above for single systems
into a quantum frame for compound systems. LetH be a Hilbert space of dimension2 with
basis{| 0〉, | 1〉}. We fix a natural numbern ≥ 2 (although later we will restrict to the case
n ≥ 4), and we putN = {1, 2, . . . , n}. A compound-system quantum framewill be the
quantum frameΣ(Hn) build on a Hilbert spaceHn = H⊗n = H⊗H⊗...⊗H (n times) .

Notation. In fact, we consider all then copies ofH as distinct (although isomorphic)
and denote byH(i) the i-th component of the tensorH⊗n. Also, for any set of indices
I ⊆ N , we putHI = H

⊗
I =

⊗
i∈I H

(i). (So, in particular,HN = Hn = H.) We
denote byεi : H → H(i) the canonical isomorphism betweenH andH(i). This notation
can be extended to setsI ⊆ N of indices of length|I| = k, by puttingεI : H⊗k → HI

to be the canonical isomorphism between these spaces. Similarly, for each setI ⊆ N , we
denote byµI : HI ⊗ HN\I → H the canonical isomorphism between these two spaces.
For any vector| x〉 ∈ H, we denote by| x〉

⊗
I =

⊗
i∈I | x〉

⊗
I the corresponding vector

in HI (obtained by tensoring|I| copies of| x〉 ). Given a setI ⊆ N , we say that a state
s ∈ Σ(H) has itsI-qubits in states ∈ Σ(HI), and writesI = s′, if there exist vectors
ψ ∈ s, ψ′ ∈ HI andψ′′ ∈ HN\I such thatψ = µI(ψ′ ⊗ ψ′′). Note that the statesI , if it
exists, then it is unique(having the above property). In particular, whenI = {i}, we say
that states has as itsi-th coordinatethe statesi ∈ H{i} = H(i).

We will further denote the vector| 0〉+ | 1〉 by | +〉, and similarly denote| 0〉− | 1〉
by | −〉. For the states generated by the vectors in a two dimensional Hilbert space we
introduce the following abbreviations:+ := | +〉, − := | −〉 , 0 := | 0〉 , 1 := | 1〉. In
order to refer to the state corresponding to a pair of qubits, we similarly delete the Dirac
notation, e.g.00 := | 00〉 = | 0〉⊗ | 0〉.
The Bell states will be abbreviated as follows:β00 := | 00〉+ | 11〉 , β01 := | 01〉+ | 10〉,
β10 := | 00〉− | 11〉 , β11 = | 01〉− | 10〉 andγ := | 00〉+ | 01〉+ | 11〉+ | 10〉.

The following two results are well-known:

Proposition 3. LetH(i) andH(j) be two Hilbert spaces. There exists a bijective corre-
spondenceψ between the linear mapsF : H(i) → H(j) and the states ofH(i) ⊗ H(j).
Given the bases{ε(i)α }α and{ε(j)β }β of these spaces, the correspondenceψ is given by the

mappingF = Σαβ mαβ 〈ε(i)α | −〉.ε(j)β into the stateψ(F ) = Σαβ mαβ .ε
(i)
α ⊗ ε

(j)
β .

Proposition 4. LetH = H⊗n and letW = {x⊗ | 0〉⊗(n−1) : x ∈ H} be given. Any
linear mapF : H → H induces a linear mapF(1) : H → H in a canonical manner: it
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is defined as the unique map onH satisfyingF(1)(x) = PW ◦ F (x⊗ | 0〉⊗(n−1)). Con-
versely, any linear mapG : H → H can be represented asG = F(1) for some linear map
F : H → H.

Notation. The above results allow us to specify a compound state inH(i)⊗H(j) via some
linear mapF onH. Indeed, ifF : H → H is any such linear map, letF(1) : H → H be

the map in the above proposition; this induces a corresponding mapF
(ij)
(1) : H(i) → H(j),

by puttingF (ij)
(1) := εj ◦ F(1) ◦ ε−1

i , whereεi is the canonical isomorphism introduced

above (betweenH and thei-th componentH(i) of H⊗n ). Then we denote byF (ij) the
state

F (ij) := ψ(F (ij)
(1) )

given by the above mentioned bijective correspondenceψ betweenH(i) → H(j) and
H(i) ⊗H(j). The following result is also known from the literature:

Proposition 5. Let F : H → H be a linear map. Then the stateF (ij) is “entangled
according toF(1)”; i.e. if F(1)(| x〉) =| y〉 and if the state of a 2-qubit system isF (ij) ∈
H(i) ⊗H(j), then any measurement of qubiti resulting in a statexi collapses the qubitj
to stateyj .

Notation. The notationF (ij) can be further extended to define a property (set of states)
F ij ⊆ Σ = Σ(H), by defining it asthe set of all states having the{i, j}-qubits in the state
F (ij) :

F ij = {s ∈ Σ : s{i,j} = F (ij)}
= {µ{i,j}(ψ ⊗ ψ′) : ψ ∈ F (ij), ψ

′ ∈ HN\{i,j}} ⊆ Σ

whereµ{i,j} is as above the canonical isomorphism betweenH{i,j} ⊗HN\{i,j}. In other
words,F ij is simply the property of ann-qubit compound state of having itsi-th andj-th
qubits (separated from the others, and) in a state that is “entangled according toF(1)” .

Local properties . Given a setI ⊆ N , a propertyS ⊆ Σ is local in I if it corresponds
to a property of the subsystem formed by the qubits inI; in other words, if there exists
some propertyS′ ⊆ Σ(HI) such that:

S′ = {s ∈ Σ : sI ∈ S′}

or, more explicitly: S′ = {µI(ψ ⊗ ψ′) : ψ ∈ S′, ψ′ ∈ HN\I}. An exampleis the
propertyF ij , which is{i, j}-local. The family of local properties is closed under union,
intersection butnot under complementation.

Local transformations . GivenI ⊆ N , a linear mapF : H → H is I-local if it “affects
only the qubits inI “; in other words, if there exists a mapG : HI → HI such that:

F ◦ µI (ψ ⊗ ψ′) = µI (G(ψ)⊗ ψ′)
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A mapF : Σ → Σ is I-local if it is the map induced onΣ by anI-local linear map onH.
Examplesare: all the testsSI? of I-local properties; logic gates that affect only the qubits
in I, i.e. (maps onΣ induced by) unitary transformationsUI : H → H such that for all
ψ,ψ′ ∈ HI , we haveUI ◦ µI(ψ ⊗ ψ′) = µI(U(ψ) ⊗ ψ′), for someU : HI → HI . The
family of local maps is closed under composition.

Lemma 2. The main lemma in [5] states (in our notation) that, given a quadruple of
distinct indicesi, j, k, l, letF,G,H,U, V : H → H be single-qubit linear maps, then we
have:

Gjk ◦ Vk ◦ Uj [F ij ∩Hkl] ⊆ (H ◦N† ◦G ◦ V ◦ F )il

Using the formalism ofentanglement specification networksintroduced in [5], this can be
encoded in the following diagrammatic representation:

U V
F H

H o V†o G o U o F

G

[5] and [1] use this as the main tool in explaining teleportation, quantum gate teleportation
and many other quantum protocols. We will use this work in our logical treatment of such
protocols, by taking this lemma as one of our main axioms.

Observe that in the above Lemma, the order in which the operationsUj andVk are
applied is in factirrelevant. This is a consequence of the following important property of
local transformations:

Proposition 6. (Compatibility of local transformations affecting different sets of qubits)
If I ∩ J = ∅, FI is anI-local map andGJ is aJ-local map, then we have:

FI ◦GJ = GJ ◦ FI

Another important property of local maps (onstates) is:

Proposition 7. (“Agreement Property”) LetFI , GI : Σ → Σ be twoI-local maps on
states, having the same domain2 : dom(F ) = dom(G). Then their output-states agree on
all non-I qubits, i.e.:

F (s)J = G(s)J

for all s ∈ Σ and allJ such thatI ∩ J = ∅. (We take this equality to imply in particular
that the right-hand is defined iff the left-hand is also defined.)

2The domain of a map is defined bydom(F ) = {s ∈ Σ : F (s) is defined}. If F ′ is the corresponding
linear map onH, this means thatdom(F ) = {ψ : F ′(ψ) 6= 0}.
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Dynamic Characterizations of Main Unitary Transformations.

It is well-known that a linear operator on a vector space in a given Hilbert space isuniquely
determinedby the values it takes on the vectors of an (orthonormal) basis. An important
observation is that this fact is no longer “literally true” when we move to “states” as one-
dimensional subspaces instead of vectors. The reason is that “phase”-aspects (or, in partic-
ular, the signs “+” and “−”) are not “state” properties in our setting. In other words, two
vectors that differ only in phase, i.ex = λy whereλ is a complex number with| λ |= 1,
belong to the same subspaces, so they correspond to the same statex = y.

Example 1. (Counterexample) Consider a 2 dimensional Hilbert space in which we
denote the basis vectors by| 0〉 and| 1〉, a transformationI is given byI(α| 0〉+β| 1〉) =
α | 0〉 + β | 1〉; and a transformationJ is given byJ(α| 0〉 + β| 1〉) = α | 0〉 − β | 1〉.
AlthoughI andJ induce different operators on states , these operators map the basis states
to the same images:
I(0) = I(| 0〉) = 0 = J(| 0〉) = J(0), I(1) = I(| 1〉) = 1 = − | 1〉 = J(| 1〉) =
J(1). But of course we do distinguish the subspaces generated by different superpositions:
I(+) = | 0〉+ | 1〉 = + 6= − = | 0〉− | 1〉 = J(+).

Proposition 8. A linear operator on the state spaceΣ(H1) of a 2 dimensional Hilbert
space is uniquely determined by its images on the states:| 0〉, | 1〉, | +〉.

Corollary 2. A linear operator on the state spaceΣ(Hn) of the spaceHn is uniquely
determined by its images on the states:

{| x〉1 ⊗ ...⊗ | x〉n :| x〉i ∈ {| 1〉i, | 0〉i, | +〉i}}

In the definition of a quantum frame given above, we introduced the setU as the set
of unitary transformations for single systems. For compound systems the setU will be
extended with the kind of operators that are active on compound systems. Following the
quantum computation literature, we takeU = {X,Z,H,CNOT, ...} whereX,Z andH
are defined by the following table:

0 1 +

X 1 0 +
Z 0 1 -
H + - 0

The transformationCNOT is given by the table:

00 01 0+ 11 10 1+ +0 +1 ++
CNOT 00 01 0+ 11 10 1+ β00 β01 γ

3 Syntax ofLQP

The Basic Language ofLQP :

To build up the language ofLQP , we are given a natural numbern, and we putN =
{1, 2, . . . , n}. We start from a setQ of propositional variables, together with anarity
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map, i.e. everyp ∈ Q has an arityk ≤ n; a setC = {+, 1, ...} of propositional constants;
and a setU = {CNOT2, X1,H1, Z1, ...} of constants, denotingbasic programs, to be
interpreted asunitary transformations; each such program comes also with an arityk ≤
n. The syntax ofLQP is an extension of the classical syntax forPDL, with a set of
propositionalformulasand a set ofprograms, defined by mutual induction:

ϕ ::= pI | ci | πi,j | ¬ϕ | ϕ ∧ ϕ | [π]ϕ
π ::= > | ϕ? | UI | π† | π ∪ π | π;π | π∗

Here, we takeI to denote sequents of distinct indices inN = {1, 2, . . . , n}. In the above
syntax,pI andUI are well-formed terms iff the arityk of p, or ofU , matches the length
of the sequence, i.e.k = |I|. In the semantics we will interpretp to be a physical property
of a system of|I| qubits, and the sentencepI as saying that the qubits with indices inI
have the propertyp consisting ofk =| I | relevant basic states which are specifically the
ones labeled corresponding to the numbers in the subsetI. Similarly, in the semantics it
will become clear that every member ofU encodes a specific quantum logical gate and the
subscriptI in UI will then indicate on which qubits the gate is active. When the arity of a
variablep is n, then we skip the subscript, and simply writep instead ofpn.

For a given propositional constantc ∈ C, we interpret the sentenceci as saying that
“the i-th-qubit is in the state| c〉”. Note that1 as a logical (characterizing the qubit| 1〉) is
different from the propositional formula> (verum) which we formally introduce later in
this section, to denote the “top” element of the lattice of properties. This, in its turn, is also
different from theprogram>, introduced in the syntax above, which will simply denote
the trivial program, relating any two states.

Extending the Basic Language ofLQP :

We extend our language by defining the operations for aclassical disjunctionand aclas-
sical implicationin the usual way, i.e.ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ. We
introduce constantsverum> := 11 ∨ ¬11, andfalsum⊥ := 11 ∧ ¬11. We define the
classical dualof [π]ϕ in the usual way as〈π〉ϕ := ¬[π]¬ϕ ; themeasurement modalities
2 and3 that are known in the quantum logic literature can be defined inLQP by putting
3ϕ := 〈ϕ?〉> and2ϕ := ¬3¬ϕ. Theorthocomplementis defined as∼ ϕ := 2¬ϕ, or
equivalently as∼ ϕ := [ϕ?]⊥. By means of the orthocomplement we define new propo-
sitional constants0i :=∼ 1i and−i :=∼ +i, and a binary operation forquantum join
ϕ t ψ :=∼ (∼ ϕ∧ ∼ ψ). This expressessuperpositions: ϕ t ψ is true at any state which
is a superposition of states satisfyingϕ or ψ. We can also define thequantum dualof a
modality [π]ψ as〈π∼〉ψ :=∼ [π] ∼ ψ. Finally, we put〈π〉−1ψ := 〈(π†)∼〉ψ. As we’ll
see, this captures thestrongest post-conditionensured by applying programπ on a state
satisfying (a precondition)ψ.

Testable formulas. We call a programπ deterministicif π is constructed without the use
of choice∪ or iteration∗. Next we define the set oftestable formulasϕt of LQP to be a
subset of the above given language, constructed by induction in the following way:

ϕt ::= ⊥ | ci | πi,j | ϕt ∧ ϕt | [π]ϕt
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whereπ is anydeterministic program. Observe that the construction ofπ might involve
non-testable formulas. In particular, for an arbitrary (not necessarily testable) formulaϕ,
remark that[ϕ?]ψt is a testable formula.

Proposition 9. For any formulaϕ in LQP ,∼ ϕ and2ϕ are testable formulas.

Local formulas and local programs. We would like to isolatelocal formulas and pro-
grams, i.e. the ones that “affect only the qubits in a given setI ⊆ N ”. These formulas
will express local properties (in the sense defined above). When we want to stress that a
formula or program is local, we denote them withϕI or πI . The definition is:

ϕI ::= pJ | ci | πij | ϕI ∨ ϕI | ϕI ∧ ¬ϕI | ϕI ∧ [πI ]ϕI

πI ::= ϕI? | UJ | πI ;πI | πI ∪ πI | π∗I

with i, j ∈ I, J ⊆ I. Observe that local formulas are not closed under negation: this is
because the complement of a local property is not necessarily a local property. But instead
they are closed under set-theoretic difference, disjunction, and also conjunction: this is
becauseϕ ∧ ψ is equivalent toϕ ∧ ¬(ϕ ∧ ¬ψ).

Relabeling local formulas and programs . When we label a local formulaϕI or a
local programπI with a sequence of indicesI, we can of course take any other sequence
J of indices, with|J | = |I|, and substitute all theI indices in our formula (program) with
the correspondingJ indices; we denote byϕJ , and respectivelyπJ , the corresponding
formula, or program.

Notation. The unary map induced by a program:We want to capture in our syntax the
constructionF(1), by which a linear mapF onH⊗n was used to describe a unary map
F(1) on H. For this, we put:0i! := 0i? ∪ (1i?;Xi), and0I ! := 0i1 !; 0i2 !; · · · ; 0ik

!,
whereI = (i1, i2, . . . , ik). This maps any qubit inI to 0. Similarly, we put;0I? :=
(0i1 ∧ 0i2 ∧ · · · ∧ 0ik

)?. Finally we define:

π(i) := 0N\{i}!;π; 0N\{i}?

This is the map we need (which encodes a single qubit transformation). In fact, we shall
only useπ(1) in the rest of this paper.

4 Semantics ofLQP

An LQP -modelis a quantum frame equipped with a valuation function, mapping each
propositional variablep of arity k into a set|| p ||⊆ Σ(H⊗k) of k-qubit states. Given a
sequenceI of lengthi of indices, letε be the canonical isomorphism betweenH⊗k and
H⊗I .
We will use the valuation map to give an interpretation|| ϕ || ⊆ Σ to all our formulas, in
terms of properties of ourn qubit system, i.e. sets of states inΣ = Σ(H). In the same
time, we give an interpretation|| π || ⊆ Σ × Σ to all our programs, in terms of binary
relations between states. The two interpretations are defined bymutual recursion.
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Interpretation of the Programs: The basic programsUI , with |I| = k, come from a
list of correspondingk-bit unitary transformationsU : H⊗k → H⊗k. We take|| UI || to
be the (map on states induced by the) unique linear map onH such that:

|| UI || ◦µI (ψ ⊗ ψ′)) := µI(εI ◦ U ◦ ε−1
i (ψ) ⊗ ψ′)

for everyψ ∈ HI , ψ′ ∈ HN\I . Here, recall thatεI is the canonical isomorphism between
H⊗k andHI , andµI is the canonical isomorphism betweenHI ⊗HN\I andH.
As for the others:

|| > || := Σ× Σ , || ϕ? || := || ϕ ||?
|| π1 ∪ π2 || := || π1 || ∪ || π2 || , || π∗ || := || π ||∗
|| π1;π2 || := || π2 || ◦ || π1 || , || U†

I || := || UI ||−1

|| (π†)† || := || π || , || (π1;π2)† || := || π†2;π
†
1 ||

|| (π1 ∪ π2)† || := || (π1)† ∪ (π2)† || , || (π∗)† || := || (π†)∗ ||

whereR∗ is the reflexive-transitive closure of relationR. Note thatdeterministic programs
have as interpretations|| π || (maps on states which are induced by)linear mapsonH.
The interpretation|| π || allows us to extend the notation

π→ to all programs, by putting:
s

π→ t iff (s, t) ∈ || π ||.

Interpretation of the Formulas: We give the interpretation here first for all except
propositional variablespi and entangled state formulasπij :

|| ϕ ∧ ψ || = || ϕ || ∩ || ψ || ; || ¬ϕ || = Σ\ || ϕ ||
|| 1i || = 1i ; || +i || = +i

and finally || [π]ϕ || = {s ∈ Σ | ∀t : s π→ t⇒ t ∈ || ϕ ||}.
The last clause obviously definesthe weakest precondition[π]ϕ ensuring that (postcondi-
tion) ϕ will be satisfied after executing programπ. As for the propositional variables, we
put:

|| pI || = {s ∈ H : sI ∈ εI(|| p ||)}
= {µI(εI(ψ)⊗ ψ′) : ψ ∈|| p ||, ψ′ ∈ HN\I}

whereεI andµI are the above-mentioned canonical isomorphisms, andsI is (as defined
above) the state of the qubits inI. So the meaning ofpI is that the system of qubits with
indices inI is separated from (i.e. non-entangled with) the rest of the system, and that
moreover this system has the property expressed byp.

The interpretation ofπij , for deterministic programsπ, is given by the construction
F ij above. Since the interpretation|| π || of a deterministic program is a linear map onH,
we know, by the results mentioned above, that the mapF(1) can be used to specify a set of
compound statesF ij ⊆ H. This is our intended interpretation forπij :

|| πij ||:= || π ||ij

For the program>, we put:|| > ||:= {s ∈ Σ : s{i,j} is defined} = {µ{i,j}(ψ ⊗ ψ′) : ψ ∈
H{i j}, ψ

′ ∈ HN\{i,j}}, i.e. the property of having the{i, j}-qubits in a separated state
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from the others. This can be extended to other programs in the natural way, by putting e.g.
|| π ∪ π′ij ||:=|| πij ∪ π′ij || etc.

Proposition 10. The interpretation of any testable formula is a testable property. The
interpretation of anI-local formula (or deterministic program) is anI-local formula (or
linear map on states).

Lemma 3. ||∼ ϕ ||=|| ϕ ||⊥, || [ϕ?]ψ ||= [|| ϕ ||?] || ψ ||, || 2ϕ ||= 2 || ϕ ||,
|| ϕ || =|| 23ϕ ||

Proposition 11. The following are equivalent, for every formulaϕ:
1. || ϕ || is testable
2. ϕ is semantically equivalent to23ϕ
3. ϕ is semantically equivalent to some formula2ψ
4. ϕ is equivalent to some formula∼ ψ

5 Axioms for LQP

First, we admitall the axioms and rulesof classicalPDL, except for the one concerning
testsϕ?. In particular, we have a basic axiom and rule for sentences involvingmodalities
[π], stated for elementary sentences and basic programs:

Kripke Axiom. ` [π](p→ q) → ([π]p→ [π]q)
Necessitation Rule. if ` p then ` [π]p
Considering2p, we introduce the following axioms:

Test Generalization Rule. if p→ [q?]r for all q , then ` p→ 2r

Testability Axiom. ` 2p→ [q?]p
Testability can be stated in its dual form by means of〈q?〉p → 3p or equivalently as
〈q?〉p → 〈p?〉>. This dual formulation of Testability allows us to give a straightforward
interpretation: if the property associated top can be actualized by a measurement (yielding
an output state satisfyingp), then we can directly test the propertyp (by doing a measure-
ment forp). The Test Generalization Rule encodes the fact that2 is a universal quantifier
over all possible measurements.

OtherLQP -axioms are:
Partial Functionality. ` ¬[p?]q → [p?]¬q
Adequacy. ` p ∧ q → 〈p?〉q
Repeatability. ` [φt?]φt for all testableformulas φt

Universal Accessibility. ` 〈π〉22p→ [π′]p
Unitary Functionality. ` ¬[U ]q ↔ [U ]¬q
Unitary Bijectivity 1. ` p↔ [U ;U†]p
Unitary Bijectivity 2. ` p↔ [U†;U ]p
Adjointness. ` p→ [π]2〈π†〉3p

Substitution Rule. From ` Θ infer ` Θ[pI/ϕI ]
Compatibility Rule . For all testableformulasψ,ϕ and every variablep 6∈ ϕ,ψ:

From ` 〈ϕ?;ψ?〉p→ 〈ψ?;ϕ?〉p infer ` 〈ϕ?;ψ?〉p→ 〈(ϕ ∧ ψ)?〉p
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Proposition 12. (Quantum Logic, Weak Modularity or Quantum Modus Ponens) All the
axioms and rules of traditional Quantum Logic are satisfied by our testable formulas. In
particular, from our axioms one can prove “Quantum Modus Ponens”3 ϕ ∧ [ϕ?]ψ ` ψ.
In its turn, this rule is equivalent equivalent to the condition known in quantum logic as
Weak Modularity, stated as follows:ϕ ∧ (∼ ϕ t (ϕ ∧ ψ)) ` ψ.

Theorem 4. (Soundness, Expressivity, Completeness of the above axioms with respect to
PDL frames) In the presence of (axioms of classical logic, plus) Kripke’s Axiom, Necessi-
tation, Test Generalization, Testability and Substitution Rule, all the other axioms above
are sound and expressive with respect to the corresponding semantic conditions mentioned
in the Section 2 above. More precisely: any of these axioms is valid on a PDL frame iff the
corresponding semantic condition is satisfied by the frame. Moreover, the system given by
the above axioms is complete for the class of PDL frames satisfying all the corresponding
semantic conditions.

Proposition 13. The formula< π >−1 ϕ expresses the strongest testable postcondition
ensured by executing programπ on any state satisfying (precondition)ϕ. In other words:
for every testableψ, the following are equivalent:

1. `< π >−1 ϕ→ ψ

2. ` ϕ→ [π]ψ

Moreover, in the context of the other axioms, this equivalence is itself equivalent to the
Adjointness Axiom.

Basic Axioms for constants (0, 1,+,−).
The first axiom says thatci’s are “states” in the i-th part of the system, i.e. they are atomic
properties, which determine completely whether any other property is jointly satisfied. We
state in aweak, as well as instrongerversion:

Atomicity (weak version). For allc ∈ {0, 1,+,−}: ` ci ∧ pi → 22(ci → pi)
Atomicity (strong version). For allc ∈ {0, 1,+,−}:
`

∧
i∈I ci ∧ pI → 22(

∧
i∈I ci → pI)

The following axioms state that+i and−i are proper superpositions of0i and1i:

Proper Superposition Axioms: ` +i → 30i ∧31i and ` −i → 30i ∧31i.

Next two axioms assert that1 and+ aretestableproperties:

Constants are testable.` 231i → 1i and ` 23+i → +i.

Determinacy Axiom of Deterministic Programs. For deterministic programsπ, π′:

`
(
22

∧
(c(1),...,c(n))∈{0,1,+}n (〈π〉−1(c(1)1 ∧ . . . ∧ c(n)

n ) ↔ 〈π′〉−1(c(1)1 ∧ . . . ∧ c(n)
n ))

)
→ (〈π〉p↔ 〈π′〉p)
This expresses the above-mentioned property of linear operators onH of being uniquely
determined by their values on all the states| x〉1 ⊗ · · · | x〉n, with | x〉i ∈ {| 0〉i, | 1〉i, |
+〉i}.

3This explains why the weakest precondition[ϕ?]ψ has been taken as the basic implicational connective in

traditional Quantum Logic, under the name of “Sasaki hook”, denoted byϕ
S→ ψ.
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Agreement Axiom. If two I-local programsπ, π′ have the same domain, then their
output states agree on all non-I qubits: i.e. ifI ∩ J = ∅ then
22(〈πI〉> ↔ 〈π′I〉>) → (〈πI〉pJ ↔ 〈π′I〉pJ)

Compatibility of programs affecting different sets of qubits. If I ∩ J = ∅ then
` [πI ;πJ ]p↔ [πJ ;πI ]p

Entanglement Rule. From ` p1 → [π(1)]q1 infer ` πij → [pi?]qj
Entanglement Composition Axiom. For distinct indicesi, j, k, l, programsπ, π′, π′′ and
local{1}-programsσ1, ρ1 we have:

` πij ∧ π′kl → [σj ; ρk;π′′jk?](π;σ1;π′′; ρ
†
1;π′)il

Trivial Entanglement . ` pi,j → >ij This says that separation of thei, j-qubits implies
their trivial entanglement.

Theorem 5. (Teleportation Property). Ifϕ1 is a 1-local testable property and if̀ ϕ1 →
[π(1);σ(1)]q1, then` ϕ1 ∧ σ23 → [π12?]q3.

Proof: We apply the Entanglement Composition Axiom, takingi = 4, j = 1, k =
2, l = 3, and substituting the programs> for π, σ for π′, π for π′′, ϕ1? for σ1, and

id1 = X1;X1 for ρ1. We obtain:` >41 ∧ σ23 → [ϕ1?; id2;π12?](>; p1?;π; id†1;σ)43.
On the other hand, we have:̀ ϕ1 ∧ σ23 → [04!](p1 ∧ >41 ∧ σ23) (since04! is
4-local and has the same domain asid4, so by Agreement Axiom it agrees withid4

on non-4 qubits, thus preservingϕ1 and σ23; but also` [04!]04 and using the Triv-
ial Entanglement Axiom, we get the conclusion). From these two together, we obtain:

` ϕ1 ∧ σ23 → [04!][π12?](>;ϕ1?;π; id†1;σ)43. But on the other hand, we havè

(>;ϕ1?;π; id†1;σ)43 → [04?]q3. (This is because we assumed` ϕ1 → [π(1);σ(1)]q1,

from which it follows that̀ 01 → [>;ϕ1?;π(1); id
†
1;σ(1)]q1, using the fact thatid† = id

and` [ϕ1?]ϕ1, by Repeatability axiom and the testability ofϕ1. Apply now Entangle-
ment Rule, obtaining the above conclusion.) From these two, we get that:` ϕ1 ∧ σ23 →
[04!;π12?; 04?]q3. The desired conclusion follows from the Agreement Axiom and the fact
that04!;π12?; 04? andπ12? are{1, 2, 4}-local programs with the same domain.

Characteristic Formulas . In order to formulate our next axioms (dealing with special
logic gates), we give some characteristic formulas for binary states, considering two qubits
indexed byi andj:

States Characteristic Formulas

| 00〉ij = | 0〉i⊗ | 0〉j 〈0i?〉0j ∧ [1i?] ⊥
Bell states:
βi,j

xy = | 0〉i⊗ | y〉j + (−1)x | 1〉i ⊗ ỹ〉j 〈0i?〉yj ∧ 〈1i?〉ỹj ∧ 〈+i?〉(−)x
j

with 0̃ = 1 and1̃ = 0 , x, y ∈ {0, 1} where(−)x = − if x = 1
and(−)x = + if x = 0

γi,j = βi,j
00 + βi,j

01 =
| 00〉ij+ | 01〉ij+ | 10〉ij+ | 11〉ij 〈0i?〉+j ∧〈1i?〉+j ∧〈+i?〉+j
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Characteristic Axioms for Quantum GatesX andZ. In general, for all unitary trans-
formationsU ∈ U , we have as aconsequenceof the previous axioms that:̀ pK →
[UI ]pK , for I ∩K = ∅.
In addition to this, we require forX,Z,H:

` 0i → [Xi]1i ; ` 1i → [Xi]0i ; ` +i → [Xi]+i

` 0i → [Zi]0i ; ` 1i → [Zi]1i ; ` +i → [Zi]−i

` 0i → [Hi]+i ; ` 1i → [Hi]−i ; ` +i → [Hi]0i

Notation. Forx, y ∈ {0, 1} and distinct indicesi, j ∈ N , we make the following abbrevi-
ations for “Bell formulas”:βij

xy := (Zx
1 ;Xy

1 )ij .

Proposition 14. The Bell statesβi,j
xy are characterized by the logic Bell formulasβij

xy. In
other words, a state satisfies one of these formulas iff it coincides with the corresponding
Bell state.

Proof: It is enough to check that the formulasβij
xy imply the corresponding characteristic

formulas in the above table. For this, we use the Entanglement Axiom and the following
(easily checked) theorems:̀ 01 ↔< Zx

1 ;Xy
1 > y1, ` 11 ↔< Zx

1 ;Xy
1 > ỹ1, `

+1 →< Zx
1 ;Xy

1 > (−)x
1 .

Characteristic Axioms for CNOT . With the above notations, we put:

` 0i ∧ cj → [CNOTij ]cj ; ` 1i ∧ 0j → [CNOTij ]1j

` 1i ∧ 1j → [CNOTij ]0j ; ` 1i ∧+j → [CNOTij ]+j

` +i ∧ 0j → [CNOTij ]β
ij
00 ; ` +i ∧ 1j → [CNOTij ]β

ij
01

` +i ∧+j → [CNOTij ]γij where γij = 〈0i?〉+j ∧〈1i?〉+j ∧〈+i?〉+j

Proposition 15. For all x, y ∈ {0, 1}: ` (xi ∧ yj) → [Hi;CNOTi,j ]βij
xy

Corollary . If i, j, k are all distinct then
` 〈CNOTij ;Hj ; (xi ∧ yj)?〉pk ↔ 〈βi,j

xy?〉pk.

Proof: From the above andH† = H, CNOT † = CNOT , we get

` βij
xy → [CNOTi,j ;Hi](xi ∧ yi),

and so
` 〈CNOTij ;Hj ; (xi ∧ yj)?〉> ↔ 〈βij

xy?〉>.

The conclusion follows from this, together with the Agreement Axiom.

6 Correctness of the Teleportation Protocol

Following [8], quantum teleportation is the name of a technique that makes it possible to
teleport the state of a quantum system without using a channel that allows for quantum
communication, but with a channel that allows for classical communication. We are work-
ing inH ⊗H ⊗H, with H being the two-dimensional (qubit) space, and son = 3. We
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assume two agents, Alice and Bob who are separated in space and each has one qubit of
an entangled EPR pair that is represented byβ2,3

00 ∈ H(2) ⊗ H(3). Alice holds in addi-
tion to her part of the EPR pair also a qubitq1 ∈ H(1) in an unknown stateϕ1. Alice
“teleports” this state to Bob, i.e. she performs a program that will output a state satisfying
ϕ3. To do this, she first entanglesq1 with her partq2 of the EPR pair (i.e. she performs
aCNOT1,2 gate on the two qubits and then a Hadamard transformationH1 on the first
component). Bob’s qubit has suffered during the actions of Alice and when Alice will
measure her qubits she will destroy the entanglement of the EPR pair that she shares with
Bob. The initial state of Bob’s qubit is known and we can calculate which changes it has
gone through when we know the result that Alice obtains from the two measurements.
Moreover, the result that Alice obtains from the two measurements indicate the actions
that Bob has to perform in order to transfer his qubit intoq3 into the stateq1 was before
the protocol. It is enough for Alice to send Bob two classical bits encoding the resultx1 of
the first measurement and the resulty2 of the second measurement. This means that Bob
will have to applyy times theX-gate followed byx times theZ gate, if he wants to force
his qubitq3 into the stateϕ3.
In our syntax, the quantum program described here is:

π =
⋃

x,y∈{0,1}

CNOT12;H1; (x1 ∧ y2)?;Xy
3 ;Zx

3

and the validity expressing the correctness of teleportation is

` ϕ1 ∧ β2,3
00 → [π]ϕ3

for all testable1-local formulasϕ1. To show this, observe that by applying the above
Corollary (at the end of the last section) in which we takei = 1, j = 2, k = 3 and
then substitutep3 with [Xy

3 ;Zx
3 ]ϕ3, we obtain that the validity above (to be proved) is

equivalent to: ` ϕ1 ∧ β2,3
00 → [β1,2

xy ?][Xy
3 ;Zx

3 ]ϕ3.

Replacing the logical Bell formulas with their definitionsβij
xy := (Zx

1 ;Xy
1 )ij , we obtain

the following equivalent validity: ` ϕ1 ∧ id23 → [(Zx
1 ;Xy

1 )1,2?][X
y
3 ;Zx

3 ]ϕ3 , where
id = Z0

1 ;X0
1 is the identity. This last validity follows from applying the Teleportation

Property and the validitỳ ϕ1 → [Zx
1 ;Xy

1 ;Xy
1 ;Zx

1 ]ϕ1 (due toX−1 = X,Z−1 = Z).
Note. This proof of correctness can be easily adapted to cover logic-gate teleportation.
Moreover, the whole range of quantum programs covered by the “entanglement networks”
in [5] can be similarly treated using our logic.
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