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Quantum weakest preconditions

Ellie D’Hondt ∗ Prakash Panangaden†‡

Abstract

We develop a notion of predicate transformer and, in particular, the weakest pre-
condition, appropriate for quantum computation. We show that there is a Stone-type
duality between the usual state-transformer semantics and the weakest precondition
semantics. Rather than trying to reduce quantum computation to probabilistic pro-
gramming we develop a notion that is directly taken from concepts used in quantum
computation. The proof that weakest preconditions exist for completely positive maps
follows from the Kraus representation theorem. As an example we give the semantics
of Selinger’s language in terms of our weakest preconditions.

1 Introduction

Quantum computation is a field of research that is rapidly acquiring a place as a significant
topic in computer science. To be sure, there are still essential technological and con-
ceptual problems to overcome in building functional quantum computers. Nevertheless
there are fundamental new insights into quantum computability [Deu85, DJ92], quantum
algorithms [Gro96, Gro97, Sho94, Sho97] and into the nature of quantum mechanics it-
self [Per95], particularly with the emergence of quantum information theory [NC00].

These developments inspire one to consider the problems of programming full-fledged
general purpose quantum computers. Much of the theoretical research is aimed at using
the new tools available - superposition, entanglement and linearity - for algorithmic effi-
ciency. However, the fact that quantum algorithms are currently done at a very low level
only - comparable to classical computing 60 years ago - is a much less explored aspect
of the field. The present paper is situated in the nascent area of quantum programming
methodology and the design and semantics of quantum programming languages. More
precisely we consider the well-known paradigm ofweakest-preconditions[Dij76] as the
basis of a goal-directed programming methodology and as a semantics for programming
languages. We formulate the quantum analogue of predicate transformers and, in particu-
lar, the weakest precondition.

Rather than reducing quantum computation to probabilistic computation and using
well-known ideas from this setting [Koz81, Koz85] we develop the ideas directly for the
quantum setting. It turns out that the same beautiful Stone-type duality between state-
transformer (forwards) and predicate-transformer (backwards) that one has seen in the
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traditional [Smy83, Plo83] and the probabilistic settings [Koz85] appears in the quantum
setting.

The influence of Dijkstra’s work on weakest preconditions [Dij76] has been deep and
pervasive and has even led to textbook level expositions of the subject [Gri81]. The main
point is that it leads to agoal-directedprogram or algorithm development strategy. Hith-
erto quantum algorithms have been invented by brilliant new insights. As more and more
algorithms accumulate and a stock of techniques start to accumulate there will be need for
a systematic program development strategy. It is this that we hope will come out of the
present work.

A second goal is to present a semantical paradigm for quantum computation. Quan-
tum programming languages have started to appear. Perhaps the best known is one due
to Selinger [Sel03] which is based on the slogan: “Quantum data and classical control.”
While this is not the final word on the subject, it is an excellent start with a clean seman-
tics and a clear conceptual basis. We give a semantics for this language based on our
notion of weakest precondition. It should be noted, however, that the definition of weakest
preconditions and the basic existence results arelanguage independent.

There is a remarkable duality [Smy83] between the forward operational semantics
- expressed as state transformers - and the backwards predicate transformer semantics.
This duality is part of a web of dualities known to mathematicians as Stone-type duali-
ties [Joh82], the prototype of which is the duality between boolean algebras and certain
topological spaces called Stone spaces. In categorical terms such a duality is captured by
an adjoint equivalence mediated by a pairing. In this case the pairing is the satisfaction
relation between states and predicates. Kozen - following suggestions of Plotkin - found
such a duality in the context of probabilistic programs [Koz85]. In the present paper we
show that such a duality exists in the quantum setting as well.

In the present paper we make two contributions:

• we develop the appropriate quantum analogue of weakest-precondition semantics
and develop the duality theory, and

• we write the detailed weakest-precondition semantics for Selinger’s language in-
cluding iteration and recursion.

We are fortunate in that we can prove existence of weakest preconditions for com-
pletely positive maps in a very general way using a powerful mathematical result called
the Kraus representation theorem; see for example, chapter 8 section 2 in the recent book
by Nielsen and Chuang [NC00].

The structure of this paper is as follows. In Sec. 2 the general setup is laid out, in
particular quantum state transformers and quantum predicates. Next, in Sec. 3 we define
quantum weakest preconditions and healthy predicate transformers. We also prove their
existence for every completely positive map and every observable. Sec. 4 summarizes
the basic structure of Selinger’s language, and in Secs. 5 and 6 we develop its weakest
precondition semantics. We develop an application to Grover’s algorithm in Sec. 7. We
conclude with Sec. 8.

In this short version we omit all proofs and calculations. A full version of the paper
can be downloaded from the authors’ web pages at, respectively
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rl.cs.mcgill.ca/˜prakash/pubs.html
www.vub.ac.be/CLEA/ellie/homepage/PDFdirectory/weakest_long.pdf

2 General setup

In the operational semantics for a traditional imperative language one has a notion of
state, such that the commands in the language are interpreted as state transformers. If the
language is deterministic the state transformation is given by a function, and composition
of commands corresponds to functional composition. The flow is forwards through the
program. This type of semantics is intended to give meaning to programs that have already
been written. It is useful for guiding implementations of programming languages and is,
perhaps, less useful for program development.

By contrast, in a predicate transformer semantics the meaning is constructed by flow-
ing backwards through the program, starting from the final intended result and proceeding
backwards to determine what must be true of the original program. This type of semantics
is useful forgoal-directedprogramming. Of course the two types of semantics are inti-
mately related, as they should be! In a sense to be made precise later they are dual to each
other.

In the world of probabilistic programs one sees the same duality in action. Here the
role of state is played bydistributions. There are, of course, states as before but, though
in a particular execution there is only one state at every stage, in order to describe all the
possible outcomes (and their relative probabilities) one keeps track of the probability dis-
tribution over the state space and how it changes during program execution. What plays
the role of “predicates”? Kozen has argued [Koz85] that predicates are measurable func-
tions – or random variables, to use the probability terminology. A special case of random
variables are characteristic functions, which are more easily recognizable as the analogues
of predicates (in fact theyarepredicates). Rather than “truth” one has “expectation” value
and “truth values” now lie in[0, 1] rather than in{0, 1}. The pairing between measurable
functions and distributions is given by the integral just as the pairing between predicates
and states is given by satisfaction.

For the quantum world we again need a notion of state - or distribution over possible
states - a notion of predicate and a pairing. Our choices are very much guided by the
probabilistic case, but we are absolutely not claiming that quantum computation can be
seen as a subcase of classical probabilistic computation. There are crucial differences that
we discuss briefly below.

Typically a quantum system is described by a Hilbert space, physical observables are
described by hermitian operators on this space and transformations of the system are ef-
fected by unitary operators [Per95]. However, we need to describe not only so-called
“pure” states but also mixed states. These arise as soon as one has to deal with “partial
information” in a quantum setting. For example, a system may be prepared as a statistical
mixture, it may be mixed as a result of interactions with a noisy environment (decoher-
ence) or by certain parts of the system being unobservable. For all these reasons we need
to work with distributions over the states in a Hilbert space.

We take density matrices to be the analogue of distributions. These describe proba-
bilistic mixtures of quantum states. A good expository discussion appears in Nielsen and
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Chuang’s book [NC00]. For predicates we take (a certain restricted class of) hermitian op-
erators. These will then be “observables” of the system. In discussions of quantum logic
and foundations of quantum theory the actual numerical values of the observables are not
important, what matters is what subspace of the Hilbert space is being observed or tested.
We thus take as our observables not all conceivable hermitian operators but (essentially)
ones that describe subspaces of the Hilbert space. This is very much in the spirit of a
“predicate as a description of a subspace of the state space.” The third notion we need is
that of a pairing. Given a density matrixρ and an observableM the expectation value of
M in ρ is given byTr(Mρ); where theTr stand for the usual trace from linear algebra.
Throughout this paper we will work with finite-dimensional Hilbert spaces and one can
think ofM andρ as matrices. The situation is summarized in the following table:

Deterministic Probabilistic Quantum
s µ ρ
p f M

s |= p
∫
fdµ Tr(Mρ)

2.1 Quantum state transformers

In a quantum setting, forward semantics is described by aquantum-statetransformer. The
properties of such state transformers are now well understood. A quantum state is rep-
resented by a density matrixρ on a Hilbert spaceH, which is apositive operator, i.e.
∀x ∈ H.〈x, ρx〉 ≥ 0, such thatTr(()ρ) ≤ 11. A physical transformation must take a
density matrix to a density matrix. Let us not worry about the trace for the moment and
focus on the positivity requirement. A linear map that takes a positive operator to a posi-
tive operator is called apositive map. It seems reasonable to require that physical effects
correspond to positive maps. However, a remarkable thing happens. It is possible for a
positive map to be tensored with another positive map - even an identity map - and for the
result to fail to be positive.

Physically this is a disaster. IfE1 is a physical transformation of a system in stateρ and
we formally regard this system as part of another far away system which we do not touch
(i.e. to which we apply the identity) then suddenly we have an unphysical transformation.
A simple example is provided by the transpose operation; it is a positive map but its tensor
with an identity will not be. We impose the stronger requirement that a physical effect
corresponds to acompletely positive mapwhich are defined as follows.

Definition 2.1 A completely positive mapE is a linear map such thatE(ρ) is a density
matrix for all density matricesρ, and such that

∀ρ ∈ DM(H).(IH1 ⊗ E)(ρ) ∈ DM(H) (1)

whereIH1 is the identity onH1, E ∈ CP(H2) andH = H1 ⊗H2.

CP(H) denotes the set of all completely positive maps operating on a Hilbert space
H. We frequently rely on the Kraus representation theorem for completely positive maps,
which goes as follows.

1In most books they insist thatTr(()ρ) = 1 but we will not assume that everything is always normalized so
we allow the trace to be less than1.
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Theorem 2.2 The mapE is a completely positive map, such thatTr(E(ρ)) ≤ 1 for all
statesρ, if and only if

∀ρ ∈ DM(H).E(ρ) =
∑

i

EiρE
†
i (2)

for some set of operators{Ei} which map the input Hilbert space to the output Hilbert
space, with

∑
iE

†
iEi ≤ I.

The condition on theEi assures us that trace of the density matrix will never increase.
Eq.(2) is also known as theoperator-sum representation. The proof to this theorem can be
found, for example, in [NC00]. Note there is nothing in the theorem that says that theEi

are unique.

2.2 Quantum Predicates

In this section, we formally define quantum predicates and the associated order structure
required for the development of our theory. Concretely, we need an ordering on predicates
so as to defineweakestpreconditions, and this order should becontinuousin order to deal
with programming language aspects such as recursion and iteration.

As argued above, quantum predicates are given by hermitian operators. More precisely,
we have the following definition.

Definition 2.3 A predicateis a Hermitian operator with trace bounded in absolute value
by someB ∈ R, where we takeB = 1 without loss of generality.

The reason for taking predicates to beboundedhermitian operators is clarified below.
We denote the set of all predicates on a Hilbert spaceH byP(H).

Definition 2.4 For matricesM andN in Cn×n we defineM v N if N −M is positive.

This order is known in the literature as theLöwner partial order[L öw34]. Note that
this definition can be rephrased in the following way, whereDM(H) denotes the set of
all density matrices.

Proposition 2.5 M v N if and only if∀ρ ∈ DM(H).Tr(M.ρ) ≤ Tr(N.ρ)

Put otherwise,M v N if and only if the expectation value ofN exceeds that ofM .
With the above definitions, we have the following result.

Proposition 2.6 The poset(P(H),v) is a directed complete partial order (DCPO), i.e. it
contains least upper bounds of increasing sequences.

This follows immediately from the above definitions and the fact that(DM(H),v), where
DM(H) is the set of all density matrices, is a DCPO [Sel03].

In discussions of quantum logic and foundations of quantum theory it is common prac-
tice to consider only the subspace of the Hilbert space that is being observed, rather than
the actual numerical values of the observables. In this spirit, we define predicates as essen-
tially those hermitian operators that describe subspaces of the Hilbert space. However, tak-
ing predicates to beboundedhermitian operators also leads to the above Prop.2.6, which
guarantees the existence of fixpoints and thus allows for the formal treatment of iteration
and recursion (see Sec.6).
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3 Quantum weakest preconditions and duality

3.1 Definition

In a quantum setting, the role of the satisfaction relation is taken over by theexpectation
valueof an observableM , just as for probabilistic computation. The quantum expectation
value of a predicateM is given by the trace expressionTr(Mρ). So preconditions for a
quantum programQ, describing a hitherto unspecified quantum evolution, are defined as
follows.

Definition 3.1 The predicateM is said to be apreconditionfor the predicateN , with
respect to a quantum programQ, denotedM{Q}N , if

∀ρ ∈ DM(H).Tr(Mρ) ≤ Tr(NQ(ρ)) (3)

The exact form of the quantum programQ is being kept vague deliberately , as we
want to state these definitions without committing to any particular framework.

From this we define weakest preconditions in the usual way.

Definition 3.2 The weakest preconditionfor a predicateM with respect to a quantum
programQ, denotedwp(Q)(M), is such that for all preconditionsL{Q}N impliesL v
wp(Q)(M).

Note thatweakestin this context is equal tolargest; indeed, a larger predicate holds for
more initial statesρ, and thus corresponds to a weaker constraint. To any given quantum
programQ corresponds a weakest precondition predicate transformerwp(Q) : P(H) →
P(H).

3.2 Healthiness conditions

In analogy with [Dij76], we want to formulatehealthiness conditionsfor quantum predi-
cate transformers. These are important because they characterise exactly those programs
that can be given an alternative weakest precondition semantics, which is then dual to the
forwards state transformer semantics embodied by the program. Moreover, healthiness
conditions allow one to prove general laws for reasoning about programs. For standard
(i.e. classical nonprobabilistic) programs the healthiness conditions are conjunctivity, fea-
sibility, monotonicity, disjunctivity and continuity. We propose the following in the quan-
tum case, whereX is a predicate transformer,α, β ∈ C andM,N ∈ P(H). As we shall
see in the following section these conditions all hold in the framework where quantum
programs correspond to completely positive maps.

• linearity:
X(αM + βN) = αX(M) + βX(N) (4)

Linearity is the generalisation of conjunctivity, and is certainly a requirement in the
inherently linear context of quantum mechanics.
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• monotonicity:
M v N ⇒ X(M) v X(N) (5)

• continuity:

M1 vM2 v ... vMi v ...⇒ X(tiMi) = tiX(Mi) (6)

These last two conditions together imply order continuity.

The last condition pertains to composite systems. SupposeH = H1 ⊗H2, with⊗ the
usual tensor product on vector spaces, such thatIH1 is the identity onH1 andX ∈ P(H2).
The fifth healthiness condition is then

• monoidal:
(IH1 ⊗X)(M) ∈ P(H) (7)

The requirement in Cond.(7), i.e. that predicate transformers bemonoidalonP(H),
is a very natural one. Indeed, ifX is a predicate transformer, which acts only on part of
a composite Hilbert spaceH, then composing it with the identity predicate transformer
working on the rest of the Hilbert space should still result in a valid predicate transformer.

So we have the following definition.

Definition 3.3 A healthypredicate transformerα : P(H) → P(H) is a predicate trans-
former satisfying the healthiness conditions (4)–(7). We denote the space of all healthy
predicate transformers on a Hilbert spaceHasPT (H).

We equipPT (H) with an order structure by extending the Löwner order on predicates
in the obvious way, thus obtaining the following result.

Proposition 3.4 The poset(PT (H),v) is a DCPO.

Note that the DCPO structure as defined on predicatesP(H) and associated predicate
transformersPT (H) is completely analogous to that for density matricesDM(H) and
associated completely positive mapsCP(H), as defined in [Sel03].

Furthermore, for healthy predicate transformers, we have the following generalization
of Kraus’s theorem.

Theorem 3.5 The operatorα is a healthy predicate transformer if and only if one has that

∀M ∈ P(H).α(M) =
∑

u

A†uMAu (8)

for some set of linear operators{Au} such that
∑

uA
†
uAu ≤ I.

The proof is completely analogous to that of Kraus’s theorem for completely positive
maps, which crucially uses the spectral theorem on the one hand and complete positivity
on the other hand. Since the spectral theorem holds for predicates also, the only thing we
really require is something analogous to complete positivity, i.e. Cond.(6).
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3.3 Predicate transformers for completely positive maps

Let us now consider the following framework: every quantum program is described by
a completely positive mapE ∈ CP(H). In this section we prove an existence theorem
of weakest preconditions for completely positive maps, and show that they satisfy the
healthiness conditions given in Sec.3.2, i.e. that they are healthy predicate transformers.

Proposition 3.6 ∀E ∈ CP(H) andN ∈ P(H), wp(E)(N) exists and is unique. Further-
more, we have that

∀ρ.Tr(wp(E)(N)ρ) = Tr(NE(ρ)) (9)

The proof follows fairly easily from the Kraus representation theorem.
We now prove weakest preconditions for completely positive maps satisfy the healthi-

ness conditions (4) – (7). In order to do this we need the following lemma.

Lemma 3.7 Tr is continuous onP(H).

Proposition 3.8 For all E ∈ CP(H), wp(E) ∈ PT (H), i.e. it satisfies the healthiness
conditions (4) – (7).

As an aside, note that we also have the following continuity result.

Proposition 3.9 Weakest precondition predicate transformerswp(�) are continuous on
CP(H).

3.4 Duality

In this section, we investigate the duality between the forward axiomatic semantics of
completely positive maps as state transformers, and the backwards axiomatic semantics
of healthy predicate transformers. Concretely, we define an isomorphism between the set
of all completely positive mapsCP(H) and the set of all healthy predicate transformers
PT (H). Associating a healthy predicate transformer with every effectE follows imme-
diately from Prop.3.6. Indeed, we associate with every effectE its weakest precondition
predicate transformerwp(E). To complete the duality, we need to associate an effect
A ∈ CP(H) with a predicate transformerα ∈ PT (H). Using the operator-sum represen-
tation for predicate transformers as given in Eq.(8), we have that

Tr(α(M)ρ) = Tr((
∑

uA
†
uMAu)ρ)

= Tr(M.(
∑

uAuρA
†
u) (10)

If we then take
A(ρ) =

∑
u

AuρA
†
u (11)

we obtain
Tr(α(M)ρ) = Tr(MA(ρ)) (12)

thus associating an state transformer with every healthy predicate transformer. Analo-
gously to the above, one could say that this expression defines the “strongest poststate”
A(ρ) for a stateρ, with respect to a predicate transformerα ∈ PT (H).



Quantum weakest preconditions 83

To see this as a duality more clearly, suppose we define the notationρ |=r M to mean
thatTr(Mρ) ≥ r. Thus we think of this as a quantitative satisfaction relation with the real
numberr providing a “threshold” above which we deem thatρ satisfiesM . Then we have

E(ρ) |=r M

ρ |=r wp(E)M
.

The fact that we have an order isomorphism between the domain of predicate transformers
and the domain of state transformers is clear. This can be expressed categorically of course
and made to look just like the usual Stone-type dualities but we omit that in the present
paper as it would involve setting up too much more machinery.

4 A Summary of the Quantum Flowchart Language

The quantum flowchart language, also known as QPL (for Quantum Programming Lan-
guage), is a programming language for quantum computation in the spirit of quantum data
with classical control [Sel03]. It is formally defined in a categorical context and has a
denotational semantics. Concretely, the denotation of a program state is given by a tuple
of density matrices. The tuple dimension stems from the present classical bits, i.e. each
member of the tuple corresponds to a classical control path, whereas the density matrices
correspond to registers of qubits. Program transformations are represented formally as
tuples of completely positive maps (calledsuperoperatorsin [Sel03]), which as such can
act upon program states.

Syntactically, programs in QPL are represented either by flowcharts or by QPL terms.
Several basic language components are present in the syntax, such as allocating or discard-
ing bits or qubits, assignment, branching, merge, measurement and unitary transformation.
One can then build more complex programs from these atomic flowchart components
through context extension, vertical and horizontal composition, iteration and recursion.
The categorical structure ensures that these compositions are well-defined.

Concretely, QPL is described within the categoryQ , which has signatures (which
define complex vector spaces) as its objects and effects as its morphisms. This category is
equipped with a CPO-structure, a co-pairing map⊕, a tensor product⊗ and a categorical
tracetr(). All the basic flowchart components are morphisms of this category. Context
extension, vertical and horizontal composition correspond to tensor product, composition
and co-pairing of morphisms respectively, while iteration is interpreted via the monoidal
trace. Specifically, suppose that an effectE : σ⊕τ → σ′⊕τ ′, whereσ andτ are signatures,
has been decomposed into componentsE11 : σ → σ′, E12 : σ → τ ′, E21 : τ → σ′

andE22 : τ → τ ′. The effect obtained fromE by iterating overτ is then given by the
categorical trace ofE , which is defined as follows:

tr(E) = E11 + E12;
∞∑

i=0

E i
22; E21 (13)

The existence of this limit is ensured by the well-definedness of the categorical trace.
Recursion is also well-defined in QPL, as follows. Suppose we have a recursively defined
effectE = F (E), for some flowchartF . In this case,F defines a Scott-continuous function
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ΦF on morphisms, such that the interpretation ofE is given as the least fixed point ofΦF .
This fixpoint can be calculated as follows:

E = tiFi with F0 = 0 andFi+1 = ΦF (Fi) (14)

= tiΦi
F (0) (15)

where0 is the zero completely positive map, which corresponds to the divergent program.
Again, the existence of these fixed points is ensured by the categorical structure.

In what follows we derive a weakest precondition semantics for all components of the
quantum flowchart language in the case that there are no classical bits. In other words, our
program states are given by (1-tuples of) density matrices.

5 Predicate Transformers for Loop-free Flowcharts

In our approach we uniformly consider all basic flowcharts components to be effects in
the operator-sum representation [NC00]. As such Prop.3.6 already provides a weakest
precondition semantics for these atomic flowcharts. Weakest precondition relations for all
of the constructs of QPL are presented below.

Sequential Composition Suppose we take the sequential composition of two effectsE1

andE2, as shown in the figure below.

!1

!2

wp(ε1)(wp(ε2)(M))

wp(ε2)(M)

M

ε1;ε2
wp(ε1;ε2)(M)

M

For the composed effectE1; E2, and arbitrary predicateM , we have that

Tr(M.(E1; E2)(ρ)) = Tr(wp(E1; E2)(M).ρ) (16)

On the other hand, if we calculate weakest preconditions for both effects separately and
then compose them sequentially, we obtain after some easy calculations that

wp(E1; E2) = wp(E2); wp(E1) (17)

Notice that the order in which predicates are to be transformed is inverse to the order in
which the associated effects are applied.

Parallel Composition Suppose we take the parallel composition of two effectsE1 and
E2, as shown in the figure below. For the composed effect, given byE1 ⊕ E2, we have that

Tr((M1 ⊕M2).(E1 ⊕ E2)(ρ1 ⊕ ρ2)) = Tr(wp(E1 ⊕ E2)(M1 ⊕M2).(ρ1 ⊕ ρ2)) (18)
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Another short calculation shows that we get:

wp(E1 ⊕ E2) = wp(E1)⊕ wp(E2) (19)

!1 ε1⊕ ε2
wp(ε1⊕ ε2)(M1⊕M2)

M1⊕M2M1

wp(ε1)(M1)

M2

wp(ε2)(M2)

ε2⊕

Block Structure This is omitted in the extended abstract.

6 Iteration and Recursion

Iteration Consider a flowchart that is obtained from an effectE by introducing a loop,
as shown in the figure below.

M

wp(tr(ε))(M)

ε22

ε11

ε21

ε12

tr(ε)

       ε

As explained in Sec.4, the semantics of the flowchart is given by taking the categorical
trace overE , denotedtr(E). For a predicateM and effecttr(E), we have that

Tr(M.(tr(E))(ρ)) = Tr(wp(tr(E))(M).ρ) (20)

On the other hand, by iterating explicitly we eventually obtain that the weakest predicate
transformer for an iterated effecttr(E) is obtained as

wp(tr(E)) = wp(E11) + wp(E21);
∞∑

i=o

wp(E22)
i; wp(E12) (21)

Moreover, the existence of the limit in Eq.(21) is guaranteed due to Prop.3.4.

Recursion Consider an effect which is defined recursively, i.e. an effectE satisfying
the equationE = F (E), whereF is a flowchart. The required fixpoint solution to this
recursive equation is given by Eqs.(14) and (15). Using Prop.3.6 for such a recursive
flowchart, we obtain

Tr(M.E(ρ)) = Tr(wp(E)(M).ρ) (22)
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On the other hand, if we work out the weakest precondition relations using Eq.(14), we
obtain

Tr(M.E(ρ)) = Tr(M.(tiFi)(ρ))
= Tr(wp(tiFi)(M).ρ) (by Prop.3.6)

= Tr((tiwp(Fi))(M).ρ) (by Prop.3.9) (23)

Comparing Eqs.(22) and (23), we obtain that the weakest precondition predicate trans-
former for a recursively defined effectE = F (E) is obtained as

wp(E) = tiwp(Fi) = tiwp(Φi
F (0)) (24)

The existence of the least upper bound in Eq.(24) is guaranteed due to Prop.3.4. This
result depends of course on the concrete recursive specification considered. Specifically,
one needs to determineΦF in order to determine the weakest precondition predicate trans-
former corresponding to an effectE , defined recursively asE = F (E).

7 Examples

In this section we look at some specific situations and their weakest precondition predicate
transformers.

Special Cases Suppose we transform a density matrix by a unitaryU , the associated
effectEU is given byEU = UρU†. The weakest precondition with respect toEU for an
arbitrary predicateM is then given bywp(EU )(M) = U†MU .

Let us now look at the situation where we apply a projectionP . The effectEP acting on
ρ is EP = PρP †. The weakest precondition with respect toEP for an arbitrary predicate
M is then given bywp(EP )(M) = P †MP .

P

P1

|ψ〉

PP1P|ψ〉

Now suppose the predicateM is itself a projection operator, denotedP1. Then there are
two possibilities, eitherP1 andP commute[P, P1] = 0, or they do not. If[P, P1] = 0,
then wp(EP )(P1) = PP1 = P1P , which is again a projector. If[P, P1] 6= 0, then
wp(EP )(P1) = P †P1P , which is not, in general, even a projector. A specific instance is
provided by the situation whereP andP1 project along subspaces that are at45◦ to each
other, as is shown in the figure above.
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Grover’s Algorithm We now look at a less trivial example, namely that of Grover’s
algorithm, also known as the database search algorithm [Gro96]. Suppose we transform a
density matrix unitarily, such that the associated effectEU is given by

EG = Gnρ(Gn)† (25)

where the Grover operatorG is given by

G = (2|ψ〉〈ψ| − I)O (26)

HereO is a quantum oracle, which labels solutions to the search problem, while(2|ψ〉〈ψ|−
I) is theinversion about meanoperation. Geometrically, the Grover operator is a rotation
in the two-dimensional space spanned by the states

|α〉 =
1√

N −K

∑
x/∈{solutions}

|x〉 (27)

|β〉 =
1√
K

∑
x∈{solutions}

|x〉 (28)

whereN is the dimension of the state space andK is the number of solutions to the search
problem in question. More specifically,G can be decomposed as

G =
(

cos θ − sin θ
sin θ cos θ

)
with sin θ =

2
√
K(N −K)
N

(29)

Applying the weakest precondition for a unitary, we obtain as weakest precondition with
respect toEG for an arbitrary predicateM

wp(EG)(M) = (Gn)†MGn (30)

Now suppose we takeM to be a projector on the solution space, that is

M = |β〉〈β| (31)

Using (29), we see that(Gn)†|β〉 corresponds ton rotations over an angle of−θ in the state
space spanned by|α〉 and|β〉. In other words, through repeated applications ofwp(EG) to
|β〉〈β|, one can approximate arbitrary preconditions2. This property is the dual of the one
that states that Grover’s algorithm is successful for arbitrary initial states, after a suitable
number of iterations [BBB+98].

8 Conclusion

In this article, we have developed the predicate transformer and weakest precondition for-
malism for quantum computation. We have done this by first noting that the quantum

2To decrease the error, one can always enlarge the state space, thus obtaining a smaller rotation angleθ.
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analogue to predicates are expectation values of quantum measurements, given by the ex-
pressionTr(Mρ). Then we have defined the concept of weakest preconditions within this
framework, proving that a weakest precondition exists for arbitrary completely positive
maps and observables. We have also worked out the weakest precondition semantics for
the Quantum Programming Language (QPL) developed in [Sel03]. QPL is the first model
for quantum computation with a denotational semantics, and as such the first serious at-
tempt to design a quantum programming language intended for programming quantum
algorithms compositionally.

One can now investigate how properties transform during a quantum computation, as
for example (dis)entanglement, amplitude distributions and so forth. These are exactly the
properties that lie at the basis of quantum computation. However, currently it is not at
all clear how one should exploit them systematically when designing quantum algorithms.
Therefore, we feel that this work can contribute significantly in the research towards the
quantum programming paradigm in general. What is important to note is that we can write
useful specifications - as in the Grover search algorithm - in terms of our predicates.

With this development in place one can envisage a goal-directed programming method-
ology for quantum computation. Of course one needs more experience with quantum
programming idioms and the field is not yet ready to produce a “quantum” Science of
Programming3. It seems to us that in the field of communication protocols, such as those
based on teleportation, we now have a good stock of ideas and examples which could be
used as the basis of methodologies in this context. We are actively thinking about this.

The most closely related work - apart from Selinger’s work on his programming lan-
guage - is the work by Sanders and Zuliani [SZ00] which develops a guarded command
language used for developing quantum algorithms. This is a very interesting paper and
works seriously towards developing a methodology for quantum algorithms. However,
they use probability and nondeterminism to capture probabilistic aspects of quantum al-
gorithms. Ours is anintrinsically quantumframework. The notion of weakest precondi-
tion that we develop here is not related to anything in their framework. There are other
works [BS04] - as yet unpublished - in which a quantum dynamic logic is being developed.
Clearly such work will be related though they use a different notion of pairing. Also the
work in [Eda04] is related and merits further investigation. Edalat uses the interval domain
of reals rather than the reals as the values of the entries in his density matrices. This seems
a good way to deal with uncertainty in the values.

There is a large literature on probabilistic predicate transformers including several pa-
pers from the probabilistic systems group at Oxford. A forthcoming book [MM04] gives
an expository account of their work. We hope to develop an analogous theory of refine-
ment and work out laws and healthiness conditions in the purely quantum setting as they
did for the probabilistic setting. Of course that is a major enterprise.

One pleasant aspect of the present work is that it is language independent; though we
have used it to give the semantics of QPL the weakest precondition formalism stands on
its own. We can therefore apply it to other computational models that are appearing and
for which language ideas have not yet emerged.

3a classic text by Gries [Gri81] on developing imperative programs.
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