
Proc. QPL 2004, pp. 91–107

Communicating quantum processes

Simon J. Gay∗ Rajagopal Nagarajan†‡

Abstract

We define a language CQP (Communicating Quantum Processes) for modelling
systems which combine quantum and classical communication and computation. CQP
combines the communication primitives of the pi-calculus with primitives for mea-
surement and transformation of quantum state; in particular, qubits can be transmitted
from process to process along communication channels. CQP has a static type system
which classifies channels, distinguishes between quantum and classical data, and con-
trols the use of quantum state. We formally define the syntax, operational semantics
and type system of CQP, prove that the semantics preserves typing, and prove that
typing guarantees that each qubit is owned by a unique process within a system.

1 Introduction

Quantum cryptography is rapidly becoming a practical technology: secure communication
based on quantum principles has recently been demonstrated in a scenario involving bank-
ing transactions in Vienna [15], systems are commercially available from IdQuantique,
MagiQ Technologies and NEC, and plans have been reported to establish a nationwide
quantum communication network in Singapore. Communication systems exploiting quan-
tum cryptography offer security against any physically realizable attack, including those
based on possible future developments in quantum computing. Secure quantum commu-
nication will undoubtedly become a fundamental part of the technological infrastructure
of society.

However, secure quantum communication is not a solved problem. The existence of a
perfect cryptographic technique does not in itself guarantee the security of a system which
uses it. The protocols for creation, distribution and use of cryptographic keys and en-
crypted messages must be considered carefully. Even when protocols have been formally
proved to be secure, it is notoriously difficult to achieve robust and reliable implemen-
tations of secure systems: security can be compromised by flaws at the implementation
level or at the boundaries between systems. Computer scientists have developed an im-
pressive armoury of techniques and tools for formal modelling, analysis and verification of
classical security protocols and communication systems which use them [16]. These tech-
niques have been remarkably successful both in establishing the security of new protocols

∗Department of Computing Science,University of Glasgow,UK; simon@dcs.gla.ac.uk
†Department of Computer Science, University of Warwick,UK; biju@dcs.warwick.ac.uk
‡Nagarajan is partially supported by EPSRC (GR/S34090) and the EU (Project SecoQC).

92 S. J. Gay R. Nagarajan

and in demonstrating flaws in protocols which had previously been believed to be secure.
The state of the art in verification of quantum security systems is limited to mathematical
proofs of correctness of particular protocols (for example, Mayers’ analysis [11] of the
Bennett-Brassard protocol (BB84) [3] for quantum key distribution) and there are not yet
techniques or automated tools for the analysis of general systems. Furthermore, practi-
cal quantum communication systems will contain classical components: initially at least,
communication will take place between classical computers; and protocols such as BB84
typically contain classical communication and computation as well as quantum cryptogra-
phy. Therefore there is a need for formal verification of systems which combine quantum
and classical components and protocols; moreover, formal models must be flexible enough
to facilitate re-analysis of variations in design. A modelling language with a precisely-
defined semantics is an essential first step towards formal analysis and verification. It is
not sufficient to assume the security of quantum cryptography and incorporate it axiomati-
cally into classical security analysis, because we also want to analyze the protocols which
constructquantum cryptographic keys.

We define a language CQP (Communicating Quantum Processes) for modelling sys-
tems which combine classical and quantum communication and computation. CQP com-
bines the communication primitives of the pi-calculus [12, 18] with the quantum infor-
mation-processing primitives of Selinger’s language QPL [19]. CQP is similar in some
respects to the quantum process algebra proposed by Jorrand and Lalire [8] but introduces
an important extension: quantum state (qubits) can be sent along communication channels
and transferred from process to process. CQP has a static type system which classifies
communication channels (at the very least, distinguishing between classical and quantum
data) and controls the use of quantum state. If processP sends qubitq to processQ,
thenP must not accessq subsequently, and this restriction can be enforced by static type-
checking. The ability to send qubits along communication channels is necessary in order
to model quantum cryptographic protocols such as BB84 and quantum communication
protocols such as dense coding. We define an operational semantics for CQP in terms of
non-deterministic transitions from processes to probability distributions over processes,
and probabilistic transitions from probability distributions to processes. We prove that the
invariants of the static type system (for example, unique ownership of quantum state) are
preserved by the semantics.

Related Work

There has been a great deal of interest in quantum programming languages, resulting in a
number of proposals in different styles, for example [5, 9, 13, 17, 19, 20]. Such languages
can express arbitrary quantum state transformations and could be used to model quantum
protocols in those terms. However, our view is that any model lacking an explicit treatment
of communication is essentially incomplete for the analysis of protocols; certainly in the
classical world, standard programming languages are not considered adequate frameworks
in which to analyze or verify protocols. The closest work to our own is thequantum
process algebraof Jorrand and Lalire [8], which also combines process-calculus-style
communication with transformation and measurement of quantum state. Several aspects of
our language CQP are similar to their process algebra; the distinctive features of CQP are

Communicating quantum processes 93

Alice(x :Qbit, c :̂ [0..3], z :Qbit) =
{z, x ∗= CNot} . {z ∗= H} . c![measure z, x] .0

Bob(y :Qbit, c :̂ [0..3]) = c?[r :0..3] . {y ∗= σr} .Use(y)

System(x :Qbit, y :Qbit, z :Qbit) =
(new c :̂ [0..3])(Alice(x, c, z) | Bob(y, c))

Figure 1:QUANTUM TELEPORTATION IN CQP

that it allows quantum state to be transmitted between processes, which is essential in order
to model BB84 and other protocols, and that it has a static type system which classifies
data and communication channels and enforces physical invariants such as non-duplication
of quantum state. The work of Abramsky and Coecke [1] is also relevant. They define a
category-theoretic semantic foundation for quantum protocols which supports reasoning
about systems and exposes deep connections between quantum systems and programming
language semantics, but they do not define a formal syntax in which to specify models. It
will be interesting to investigate the relationship between CQP and the semantic structures
which they propose.

2 Informal Examples

Before formally defining the syntax and semantics of CQP, we describe models of two
communication protocols which exhibit a mixture of quantum and classical features. The
first is quantum teleportation [4], which is a procedure for transmitting a quantum state
via a non-quantum medium. This protocol is particularly important: not only is it a funda-
mental component of several more complex protocols, but it is likely to be a key enabling
technology for the development of thequantum repeaters[6] which will be necessary in
large-scale quantum communication networks. The second example, dense coding [2], is
the converse of teleportation; a single quantum bit is used to transmit two classical bits of
information.

2.1 Modelling Teleportation in CQP

Figure 1 shows a simple model of the quantum teleportation protocol. Alice and Bob each
possess one qubit (x for Alice, y for Bob) of anentangled pairwhose state is1√

2
(|0〉|0〉+

|1〉|1〉). At this point we are assuming that appropriate qubits will be supplied to Alice and
Bob as parameters of the system. Alice is also parameterized by a qubitz, whose state is
to be teleported. She applies (z, x ∗= CNot) theconditional nottransformationCNot to z
andx and then applies (z ∗= H) theHadamardtransformationH to z, finally measuring
z andx to yield a two-bit classical value which she sends (c![measure z, x]) to Bob on the
typed channelc :̂[0..3] and then terminates (0). Bob receives (c?[r :0..3]) this value and

94 S. J. Gay R. Nagarajan

Alice ′(s :̂ [Qbit], c :̂ [0..3], z :Qbit) = s?[x :Qbit] .Alice(x, c, a)

Bob′(t :̂ [Qbit], c :̂ [0..3]) = t?[y :Qbit] .Bob(y, c)

Source(s :̂ [Qbit], t :̂ [Qbit]) =
(new x :Qbit, y :Qbit)({x ∗= H} . {x, y ∗= CNot} . s![x] . t![y] .0)

System ′(z :Qbit) =
(new c :̂ [0..3], s :̂ [Qbit], t :̂ [Qbit])

(Alice ′(s, c, z) | Bob′(t, c) | Source(s, t))

Figure 2:QUANTUM TELEPORTATION WITH AN EPRSOURCE

uses it to select aPauli transformationσ0 . . . σ3 to apply (y ∗= σr) to y. The result is that
Bob’s qubity takes on the state ofz, without any quantum state having been transmitted
from Alice to Bob. Bob may then usey in his continuation processUse(y).

The definition of the complete system shows the use ofnew for declaration of channels,
and parallel composition (Alice(. . .) | Bob(. . .)). Most of the syntax of CQP is based
on pi-calculus. Quantum state transformations such asx, y ∗= CNot are described in a
syntax similar to that of Selinger’s QPL [19], and converted into actions by means of
{. . .}. Measurements such asmeasure z, x also use the syntax of QPL and are treated as
expressions, executed for their value as well as for side-effects on quantum state. Alice
and Bob are parameterized by their parts of the entangled pair and by the channelsa and
c. This is similar to Jorrand and Lalire’s [8] model with added type information, but now
we can go further by introducing what is known in the physics literature as anEPR source
(computer scientists might regard it as anentanglement server). This process constructs
the entangled pair (by using the Hadamard and controlled not transformations) and sends
its components to Alice and Bob on the typed channelss, t :̂ [Qbit] (this syntax is found in
several presentations of typed pi-calculus, for example [14]). Figure 2 shows the revised
model.

It is desirable to ensure that each qubit in the system is owned by a unique process,
even though qubits may be transmitted along channels. This corresponds to the reality that
a qubit is a physical object and cannot simply be duplicated in the manner of a classical
data value. We guarantee this by introducing techniques of linear typing [7], which have
already been applied to the pi-calculus [10], into our type system. IfSource had a non-
trivial continuationC, instead of0, then the qubitsx andy would be removed from the
type environment before checkingC. This point will be discussed further in Section 4.

2.2 Modelling Dense Coding in CQP

The dense coding protocol achieves transmission of two classical bits by transmitting a
single qubit, thus increasing the information-carrying capacity of a channel. Our model is
shown in Figure 3.

Communicating quantum processes 95

Alice(x :Qbit, q :̂ [Qbit], n :0..3) = {x ∗= σn} . q![x] .0

Bob(y :Qbit, q :̂ [Qbit]) =
q?[x :Qbit] . {x, y ∗= CNot} . {x ∗= H} .Use(measure x, y)

System(x :Qbit, y :Qbit, n :0..3) =
(new q :̂ [Qbit])(Alice(x, q, n) | Bob(y, q))

Figure 3:DENSE CODING INCQP

T ::= Int | Unit | Qbit |̂[T̃] | Op(1) | Op(2) | . . .
v ::= x | 0 | 1 | . . . | unit | H | . . .
e ::= v | measure ẽ | ẽ ∗= e | e+e
P ::= 0 | (P | P) | e?[x̃ : T̃] . P | e![ẽ] . P | {e} . P |

(new x :T)P | (qbit x)P

Figure 4:SYNTAX OF CQP

Alice and Bob share an entangled pairx, y of qubits and Alice wishes to send a two-bit
classical value, interpreted as an integern in the range 0–3, to Bob. Alice applies a Pauli
transformationσn to x and then sends the transformedx to Bob on a quantum channel.
Bob applies the controlled not transformation tox andy and then applies the Hadamard
transformation tox. These transformations correspond to a change of basis: it would be
desirable to specify changes of basis, and measurements with respect to different bases,
more abstractly; this is a challenge for a general theory of quantum data. Finally Bob
measuresx andy to obtain a two-bit classical value which is the same asn.

The complete system is parameterized on the entangled qubitsx andy; again we can
make it self-contained by introducing an EPR source.

3 Syntax and Operational Semantics

We now formally define the syntax and operational semantics of the core of CQP, ex-
cluding named process definitions and recursion; these features can easily be added. An
example at the end of this section illustrates the execution of the teleportation protocol
(Figure 2) according to the operational semantics.

3.1 Syntax

The syntax of CQP is defined by the grammar in Figure 4. TypesT consist of data
types such asInt andUnit (others can easily be added), the typeQbit of qubits, chan-
nel typeŝ [T1, . . . , Tn] (specifying that each message is ann-tuple with component types

96 S. J. Gay R. Nagarajan

v ::= . . . | q | c
E ::= [] | measure E, ẽ | measure v,E, ẽ | . . . | measure ṽ, E |

E, ẽ ∗= e | v,E, ẽ ∗= e | . . . | ṽ ∗= E | E+e | v+E
F ::= []?[x̃ : T̃] . P | []![ẽ] . P | v![[], ẽ] . P | v![v, [], ẽ] . P | . . . |

v![ṽ, []] . P | {[]} . P

Figure 5:INTERNAL SYNTAX OF CQP

T1, . . . , Tn) and operator typesOp(n) (the type of a unitary operator onn qubits). We
use the notatioñT = T1, . . . , Tn and ẽ = e1, . . . , en. Valuesv consist of variables (x,
y, z etc.), literal values of data types (0, 1, . . . andunit) and unitary operators such as the
Hadamard operatorH. Expressionse consist of values, measurementsmeasure e1, . . . , en,
applications of unitary operatorse1, . . . , en ∗= e, and expressions involving data opera-
tors such ase + e′ (others can easily be added). Note that although the syntax refers to
measurements and transformation of expressionse, the type system will require these ex-
pressions to refer to qubits. ProcessesP consist of the null (terminated) process0, parallel
compositionsP | Q, inputse?[x̃ : T̃] . P (notation: x̃ : T̃ = x1 :T1, . . . , xn :Tn, declaring
the types of all the input-bound variables), outputse![ẽ] . P , actions{e} . P (typically e
will be an application of a unitary operator), channel declarations(new x :T)P and qubit
declarations(qbit x)P . In inputs and outputs, the expressione will be constrained by the
type system to refer to a channel.

The grammar in Figure 5 defines theinternalsyntax of CQP, which is needed in order
to define the operational semantics. Values are extended by two new forms: qubit names
q, and channel namesc. Evaluation contextsE[] (for expressions) andF [] (for processes)
are used in the definition of the operational semantics, in the style of Wright and Felleisen
[21]. The structure ofE[] is used to define call-by-value evaluation of expressions; the
hole [] specifies the first part of the expression to be evaluated. The structure ofF [] is
used to define reductions of processes, specifying which expressions within a process must
be evaluated.

Given a processP we define its free variablesfv(P), free qubit namesfq(P) and free
channel namesfc(P) in the usual way; the binders (ofx or x̃) arey?[x̃ : T̃], (qbit x) and
(new x :T).

3.2 Operational Semantics

The operational semantics of CQP is defined by reductions (small-step evaluations of ex-
pressions, or inter-process communications) alternating with probabilistic transitions. The
general form of a reduction ist −→ �i pi • ti wheret and theti are configurations con-
sisting of expressions or processes with state information. The notation�i pi • ti denotes
a probability distribution over configurations, in whichΣipi = 1; we may also write this
distribution asp1 • t1 � · · · � pn • tn. If the probability distribution contains a single
configuration (with probability1) then we simply writet −→ t′. Probability distributions
reduce probabilistically to single configurations:�i pi • ti

pi−→ ti (with probabilitypi, the

Communicating quantum processes 97

(σ;φ;u+v) −→v (σ;φ;w) if u andv are integer literals andu+ v = w (R-PLUS)

(q0, . . . , qn = α0|ψ0〉+ · · ·+ α2n−1|ψ2n−1〉;φ;measure q0, . . . , qr−1) −→v

�06m<2rpm • (q0, . . . , qn = αlm

pm
|ψlm〉+ · · ·+ αum

pm
|ψum

〉;φ;m)
wherelm = 2n−rm, um = 2n−r(m+ 1)− 1, pm = |αlm |2 + · · ·+ |αum |2

(R-MEASURE)

(q0, . . . , qn = |ψ〉;φ; q0, . . . , qr−1 ∗= U) −→v

(q0, . . . , qn−1 = (U ⊗ In−r)|ψ〉;φ; unit)
(R-TRANS)

(q0, . . . , qn−1 = |ψ〉;φ; e) −→v (qπ(0), . . . , qπ(n−1) = Π|ψ〉;φ; e)
whereπ is a permutation andΠ is the corresponding unitary operator

(R-PERM)

(σ;φ; e) −→v �i pi • (σi;φi; ei)
(σ;φ;E[e]) −→e �i pi • (σi;φi;E[ei])

(R-CONTEXT)

Figure 6:REDUCTION RULES FOR EXPRESSION CONFIGURATIONS

distribution�i pi • ti reduces toti).
The semantics of expressions is defined by the reduction relations−→v and −→e

(Figure 6), both on configurations of the form(σ;φ; e). If n qubits have been declared
thenσ has the formq0, . . . , qn−1 = |ψ〉 where|ψ〉 = α0|ψ0〉 + · · · + α2n−1|ψ2n−1〉 is
an element of the2n-dimensional vector space with basis|ψ0〉 = |0 . . . 0〉, . . . , |ψ2n−1〉 =
|1 . . . 1〉. The remaining part of the configuration,φ, is a list of channel names. Reductions
−→v are basic steps of evaluation, defined by the rules R-PLUS (and similar rules for

any other data operators), R-MEASUREand R-TRANS. Rule R-PERM allows qubits in the
state to be permuted, compensating for the way that R-MEASUREand R-TRANS operate
on qubits listed first in the state. Reductions−→e extend execution to evaluation contexts
E[], as defined by rule R-CONTEXT. Note that the probability distribution remains at the
top level.

Figure 7 defines the reduction relation−→ on configurations of the form(σ;φ;P).
Rule R-EXPR lifts reductions of expressions toF [] contexts, again keeping probability
distributions at the top level. Rule R-COM defines communication in the style of pi-
calculus, making use of substitution, which is defined in Figure 8 (we assume that bound
identifiers are renamed to avoid capture). Rule R-ACT trivially removes actions; in gen-
eral the reduction of the action expression tov will have involved side-effects such as
measurement or transformation of quantum state. Rules R-NEW and R-QBIT create new
channels and qubits, updating the state information in the configuration. Note that this
treatment of channel creation is different from standard presentations of the pi-calculus;
we treat both qubits and channels as elements of a global store. Rule R-PAR allows re-
duction to take place in parallel contexts, again lifting the probability distribution to the
top level, and rule R-CONG allows the use of a structural congruence relation as in the
pi-calculus. Structural congruence is the smallest congruence relation (closed under the

98 S. J. Gay R. Nagarajan

(σ;φ; e) −→e �i pi • (σi;φi; ei)
(σ;φ;F [e]) −→ �i pi • (σi;φi;F [ei])

(R-EXPR)

(σ;φ; c![ṽ] . P | c?[x̃ : T̃] . Q) −→ (σ;φ;P |Q{ṽ/x̃}) if |ṽ| = |x̃| (R-COM)

(σ;φ; {v} . P) −→ (σ;φ;P) (R-ACT)

(σ;φ; (new x :T)P) −→ (σ;φ, c;P{c/x}) wherec is fresh (R-NEW)

(q0, . . . , qn = |ψ〉;φ; (qbit x)P) −→ (q0, . . . , qn, q = |ψ〉 ⊗ |0〉;φ;P{q/x})
whereq is fresh

(R-QBIT)

(σ;φ;P) −→ �i pi • (σi;φi;Pi)
(σ;φ;P |Q) −→ �i pi • (σi;φi;Pi |Q)

(R-PAR)

P ′ ≡ P (σ;φ;P) −→ �i pi • (σi;φi;Pi) ∀i.(Pi ≡ P ′i)
(σ;φ;P ′) −→ �i pi • (σi;φi;P ′i)

(R-CONG)

�i pi • (σi;φi;Pi)
pi−→ (σi;φi;Pi) (R-PROB)

Figure 7:REDUCTION RULES FOR PROCESS CONFIGURATIONS

v{ṽ/x̃} = v if v is not a variable
x{ṽ/x̃} = vi if x = xi

x{ṽ/x̃} = x if x 6∈ x̃
(measure ẽ){ṽ/x̃} = measure ẽ{ṽ/x̃}

(ẽ ∗= e){ṽ/x̃} = ẽ{ṽ/x̃} ∗= e{ṽ/x̃}
(e+ e′){ṽ/x̃} = e{ṽ/x̃}+ e′{ṽ/x̃} etc.

0{ṽ/x̃} = 0
(P |Q){ṽ/x̃} = P{ṽ/x̃} |Q{ṽ/x̃}

(e?[ỹ : T̃] . P){ṽ/x̃} = (e{ṽ/x̃})?[ỹ : T̃] . P{ṽ/x̃}
(e![ẽ] . P){ṽ/x̃} = (e{ṽ/x̃})![ẽ{ṽ/x̃}] . P{ṽ/x̃}
({e} . P){ṽ/x̃} = {e{ṽ/x̃}} . P{ṽ/x̃}

((new y :T)P){ṽ/x̃} = (new y :T)(P{ṽ/x̃})
((qbit y)P){ṽ/x̃} = (qbit y)(P{ṽ/x̃})

Figure 8:SUBSTITUTION

P | 0 ≡ P (S-NIL)

P |Q ≡ Q | P (S-COMM)

P | (Q |R) ≡ (P |Q) |R (S-ASSOC)

Figure 9:STRUCTURAL CONGRUENCE

Communicating quantum processes 99

process constructions) containingα-equivalence and closed under the rules in Figure 9.

3.3 Example: Execution of Teleportation

Figure 10 shows the execution of the teleportation protocol from Figure 1, as far as the
measurement (measure z, x) which introduces a probability distribution over configura-
tions. The initial statex, y, z = 1√

2
|000〉+ 1√

2
|110〉 provides the entangled pair of qubits

which are needed as parameters forSystem, and the qubitz (in this case|0〉) which Alice
teleports.

Once the probability distribution is reached, the next step is a probabilistic transition:
to one of the four configurations, with equal probability. Reductions then continue, in all
cases resulting inUse(y) where the qubits are in a pure state withy = |0〉.

4 Type System

The typing rules defined in Figure 11 apply to the syntax defined in Figure 4. Environments
Γ are mappings from variables to types in the usual way. Typing judgements are of two
kinds.Γ ` e : T means that expressione has typeT in environmentΓ. Γ ` P means that
processP is well-typed in environmentΓ. The rules for expressions are straightforward;
note that in rule T-TRANS, x1, . . . , xn must be distinct variables of typeQbit.

In rule T-PAR the operation+ on environments (Definition 1) is the key to ensuring
that each qubit is controlled by a unique part of a system. An implicit hypothesis of T-PAR

is thatΓ1 + Γ2 must be defined. This is very similar to the linear type system for the pi-
calculus, defined by Kobayashiet al. [10].

Definition 1 (Addition of Environments)
The partial operation of adding a typed variable to an environment,Γ + x :T , is defined
by

Γ + x :T = Γ, x :T if x 6∈ dom(Γ)
Γ + x :T = Γ if T 6= Qbit andx :T ∈ Γ
Γ + x :T = undefined, otherwise

This operation is extended inductively to a partial operationΓ + ∆ on environments.

Rule T-OUT allows output of classical values and qubits to be combined, but the qubits
must be distinct variables and they cannot be used by the continuation of the outputting
process (note the hypothesisΓ ` P). The remaining rules are straightforward.

According to the operational semantics, execution of(qbit) and(new) declarations
introduces qubit names and channel names. In order to be able to use the type system to
prove results about the behaviour of executing processes, we introduce the internal type
system (Figure 12). This uses judgementsΓ;Σ;Φ ` e : T andΓ;Σ;Φ ` P whereΣ
is a set of qubit names andΦ is a mapping from channel names to channel types. Most
of the typing rules are straightforward extensions of the corresponding rules in Figure 11.
Because references to qubits may now be either variables or explicit qubit names, the rules
represent them by general expressionse and impose conditions thate is either a variable or
a qubit name. This is seen in rules T-TRANS and T-OUT. Note that in T-PAR, the operation
Σ1 + Σ2 is disjoint union and an implicit hypothesis is thatΣ1 andΣ2 are disjoint.

100 S. J. Gay R. Nagarajan

(x, y, z = 1√
2
|000〉+ 1√

2
|110〉; ;System(x, y, z))

↓
x, y, z = 1√

2
|000〉+ 1√

2
|110〉 ; ;

(new c :̂ [0..3])(Alice(x, c, z) | Bob(y, c)

↓
x, y, z = 1√

2
|000〉+ 1√

2
|110〉 ; c ;

Alice(x, c, z) | Bob(y, c)

↓
x, y, z = 1√

2
|000〉+ 1√

2
|110〉 ; c ;

{z, x ∗= CNot} . {z ∗= H} . c![measure z, x] .0
| c?[r :0..3] . {y ∗= σr} .Use(y)

↓
x, y, z = 1√

2
|000〉+ 1√

2
|110〉 ; c ;

{z, x ∗= CNot} . {z ∗= H} . c![measure z, x] .0
| c?[r :0..3] . {y ∗= σr} .Use(y)

↓
z, x, y = 1√

2
|000〉+ 1√

2
|011〉 ; c ;

{z, x ∗= CNot} . {z ∗= H} . c![measure z, x] .0
| c?[r :0..3] . {y ∗= σr} .Use(y)

↓
z, x, y = 1√

2
|000〉+ 1√

2
|011〉 ; c ;

{z ∗= H} . c![measure z, x] .0 | c?[r :0..3] . {y ∗= σr} .Use(y)

↓
z, x, y = 1

2 |000〉+ 1
2 |011〉+ 1

2 |100〉+ 1
2 |111〉 ; c ;

c![measure z, x] .0 | c?[r :0..3] . {y ∗= σr} .Use(y)

↓
1
4 • ((z, x, y = |000〉; a, c; c![0] .0 | c?[r :0..3] . {y ∗= σr} .Use(y)))

� 1
4 • ((z, x, y = |011〉; a, c; c![1] .0 | c?[r :0..3] . {y ∗= σr} .Use(y)))

� 1
4 • ((z, x, y = |100〉; a, c; c![2] .0 | c?[r :0..3] . {y ∗= σr} .Use(y)))

� 1
4 • ((z, x, y = |111〉; a, c; c![3] .0 | c?[r :0..3] . {y ∗= σr} .Use(y)))

Figure 10:EXECUTION OF THE TELEPORTATION PROTOCOL

Communicating quantum processes 101

Γ ` v : Int if v is an integer literal (T-INTL IT)

Γ ` unit : Unit (T-UNIT)

Γ ` H : Op(2) etc. (T-OP)

Γ, x :T ` x : T (T-VAR)

Γ ` e : Int Γ ` e′ : Int

Γ ` e+e′ : Int
(T-PLUS)

Γ ` ẽ : Q̃bit

Γ ` measure ẽ : Int
(T-MEASURE)

∀i.(xi :Qbit ∈ Γ) x1 . . . xn distinct Γ ` U : Op(n)
Γ ` x1, . . . , xn ∗= U : Unit

(T-TRANS)

Γ ` 0 (T-NIL)

Γ1 ` P Γ2 ` Q
Γ1 + Γ2 ` P |Q

(T-PAR)

Γ ` x :̂[T1, . . . , Tn] Γ, y1 :T1, . . . , yn :Tn ` P
Γ ` x?[y1 :T1, . . . , yn :Tn] . P

(T-IN)

Γ ` x :̂[T1, . . . , Tm,Qbit, . . . ,Qbit] ∀i.(Ti 6= Qbit)
∀i.(Γ ` ei : Ti) y1, . . . , yn distinct Γ ` P
Γ, y1 :Qbit . . . , yn :Qbit ` x![e1, . . . , em, y1, . . . , yn] . P

(T-OUT)

Γ ` e : T Γ ` P
Γ ` {e} . P

(T-ACTION)

Γ, x :̂ [T1, . . . , Tn] ` P
Γ ` (new x :̂ [T1, . . . , Tn])P

(T-NEW)

Γ, x :Qbit ` P
Γ ` (qbit x)P

(T-QBIT)

Figure 11:TYPING RULES

102 S. J. Gay R. Nagarajan

Γ;Σ;Φ ` v : Int if v is an integer literal (T-INTL IT)

Γ;Σ;Φ ` unit : Unit (T-UNIT)

Γ;Σ;Φ ` H : Op(2) etc. (T-OP)

Γ, x :T ; Σ;Φ ` x : T (T-VAR)

Γ;Σ, q; Φ ` q : Qbit (T-IDQ)

Γ;Σ;Φ, c :T ` c : T (T-IDC)

Γ;Σ;Φ ` e : Int Γ;Σ;Φ ` e′ : Int

Γ;Σ;Φ ` e+e′ : Int
(T-PLUS)

Γ;Σ;Φ ` ẽ : Q̃bit

Γ;Σ;Φ ` measure ẽ : Int
(T-MEASURE)

∀i.(Γ;Σ; Φ ` ei : Qbit) Γ;Σ; Φ ` U : Op(n)
eachei is eitherxi or qi, all distinct

Γ;Σ;Φ ` e1, . . . , en ∗= U : Unit
(T-TRANS)

Γ;Σ;Φ ` 0 (T-NIL)

Γ1; Σ1; Φ ` P Γ2; Σ2; Φ ` Q
Γ1 + Γ2; Σ1 + Σ2; Φ ` P |Q

(T-PAR)

Γ;Σ;Φ ` e :̂[T1, . . . , Tn] Γ, y1 :T1, . . . , yn :Tn; Σ;Φ ` P
Γ;Σ;Φ ` e?[y1 :T1, . . . , yn :Tn] . P

(T-IN)

Γ;Σ;Φ ` e :̂[T̃ , Q̃bit] ∀i.(Ti 6= Qbit) ∀i.(Γ;Σ; Φ ` ei : Ti)
∀i.(Γ;Σ; Φ ` fi : Qbit) Γ; Σ;Φ ` P
f̃ consists of distinct variables̃fx and distinct qubit names̃fq

Γ, f̃x : Q̃bit; Σ, f̃q : Q̃bit; Φ ` e![e1, . . . , em, f1, . . . , fn] . P
(T-OUT)

Γ;Σ;Φ ` e : T Γ;Σ;Φ ` P
Γ;Σ;Φ ` {e} . P

(T-ACTION)

Γ, x :̂ [T1, . . . , Tn]; Σ; Φ ` P
Γ;Σ;Φ ` (new x :̂ [T1, . . . , Tn])P

(T-NEW)

Γ, x :Qbit; Σ;Φ ` P
Γ;Σ;Φ ` (qbit x)P

(T-QBIT)

Figure 12:INTERNAL TYPING RULES

Communicating quantum processes 103

5 Soundness of the Type System

We prove a series of standard lemmas, following the approach of Wright and Felleisen
[21], leading to a proof that typing is preserved by execution of processes (Theorem 1).
We then prove that in a typable process, each qubit is used by at most one of any parallel
collection of sub-processes (Theorem 2); because of type preservation, this property holds
at every step of the execution of a typable process. This reflects the physical reality of the
protocols which we want to model.

Lemma 1 (Typability of Subterms in E)
If D is a typing derivation concludingΓ;Σ;Φ ` E[e] : T then there existsU such that
D has a subderivationD′ concludingΓ;Σ;Φ ` e : U and the position ofD′ in D corre-
sponds to the position of the hole inE[].

Proof: By induction on the structure ofE[]. �

Lemma 2 (Replacement inE)
If

1. D is a typing derivation concludingΓ;Σ;Φ ` E[e] : T

2. D′ is a subderivation ofD concludingΓ;Σ;Φ ` e : U

3. D′ occurs inD in a position corresponding to the hole inE[]

4. Γ;Σ;Φ ` e′ : U

thenΓ;Σ;Φ ` E[e′] : T .

Proof: ReplaceD′ in D by a derivation ofΓ;Σ;Φ ` e′ : U . �

Lemma 3 (Type Preservation for −→v)
If Γ;Σ;Φ ` e : T and (σ;φ; e) −→v �ipi • (σi;φi; ei) and Σ = dom(σ) and φ =
dom(Φ) then∀i.(σi = σ) and∀i.(φi = φ) and∀i.(Γ;Σ;Φ ` ei : T).

Proof: Straightforward from the definition of−→v by examining each case. �

Lemma 4 (Type Preservation for −→e)
If Γ;Σ;Φ ` e : T and (σ;φ; e) −→e �ipi • (σi;φi; ei) and Σ = dom(σ) and φ =
dom(Φ) then∀i.(σi = σ) and∀i.(φi = φ) and∀i.(Γ;Σ;Φ ` ei : T).

Proof: (σ;φ; e) −→e �ipi • (σi;φi; ei) is derived by R-CONTEXT, so for someE[] we
havee = E[f] and∀i.(ei = E[fi]) and(σ;φ; f) −→v �ipi • (σi;φi; fi). FromΓ;Σ;Φ `
E[f] : T , Lemma 1 givesΓ;Σ;Φ ` f : U for someU , Lemma 3 gives∀i.(Γ;Σ; Φ `
f − i : U) and∀i.(σi = σ) and∀i.(φi = φ), and Lemma 2 gives∀i.(Γ;Σ; Φ ` E[fi] : T).
�

Lemma 5 (Typability of Subterms in F)
If D is a typing derivation concludingΓ;Σ;Φ ` F [e] then there existsT such thatD has
a subderivationD′ concludingΓ;Σ;Φ ` e : T and the position ofD′ in D corresponds to
the position of the hole inF [].

104 S. J. Gay R. Nagarajan

Proof: By case-analysis on the structure ofF []. �

Lemma 6 (Replacement inF)
If

1. D is a typing derivation concludingΓ;Σ;Φ ` F [e]

2. D′ is a subderivation ofD concludingΓ;Σ;Φ ` e : T

3. D′ occurs inD in a position corresponding to the hole inF []

4. Γ;Σ;Φ ` e′ : T

thenΓ;Σ;Φ ` E[e′].

Proof: ReplaceD′ in D by a derivation ofΓ;Σ;Φ ` e′ : T . �

Lemma 7 (Weakening for Expressions)
If Γ;Σ;Φ ` e : T andΓ ⊆ Γ′ andΣ ⊆ Σ′ andΦ ⊆ Φ′ thenΓ′; Σ′; Φ′ ` e : T .

Proof: Straightforward induction on the derivation ofΓ;Σ;Φ ` e : T . �

Lemma 8
If Γ;Σ;Φ ` e : T thenfv(e) ⊆ dom(Γ) andfq(e) ⊆ Σ andfc(e) ⊆ dom(Φ).

Proof: By induction on the derivation ofΓ;Σ;Φ ` e : T . �

Lemma 9
If Γ;Σ;Φ ` P thenfv(P) ⊆ dom(Γ) andfq(P) ⊆ Σ andfc(P) ⊆ dom(Φ).

Proof: By induction on the derivation ofΓ;Σ;Φ ` P . �

Lemma 10 (Substitution in Expressions)
Assume thatΓ, x̃ : T̃ ; Σ;Φ ` e : T and letṽ be values such that, for eachi:

1. if Ti = Qbit thenvi is either a variable or a qubit name

2. if Ti = Qbit andvi = yi (a variable) thenyi 6∈ Γ, x̃ : T̃

3. if Ti = Qbit andvi = qi (a qubit name) thenqi 6∈ Σ

4. if Ti 6= Qbit thenΓ;Σ;Φ ` vi : Ti.

Let ỹ be the variables of typeQbit from ṽ (corresponding to condition (2)) and assume
that they are distinct; let̃q be the qubit names from̃v (corresponding to condition (3)) and
assume that they are distinct. ThenΓ, ỹ : Q̃bit; Σ, q̃; Φ ` e{ṽ/x̃} : T .

Proof: By induction on the derivation ofΓ, x̃ : T̃ ; Σ;Φ ` e : T . �

Lemma 11 (Substitution in Processes)
Assume thatΓ, x̃ : T̃ ; Σ;Φ ` P and letṽ be values such that, for eachi:

Communicating quantum processes 105

1. if Ti = Qbit thenvi is either a variable or a qubit name

2. if Ti = Qbit andvi = yi (a variable) thenyi 6∈ Γ, x̃ : T̃

3. if Ti = Qbit andvi = qi (a qubit name) thenqi 6∈ Σ

4. if Ti 6= Qbit thenΓ;Σ;Φ ` vi : Ti.

Let ỹ be the variables of typeQbit from ṽ (corresponding to condition (2)) and assume
that they are distinct; let̃q be the qubit names from̃v (corresponding to condition (3)) and
assume that they are distinct. ThenΓ, ỹ : Q̃bit; Σ, q̃; Φ ` P{ṽ/x̃}.

Proof: By induction on the derivation ofΓ, x̃ : T̃ ; Σ;Φ ` P . The key cases are T-PAR and
T-OUT.

For T-PAR the final step in the typing derivation has the form

Γ1; Σ1; Φ ` P Γ2; Σ2; Φ ` Q
Γ, x̃ : T̃ ; Σ;Φ ` P |Q

whereΓ1 + Γ2 = Γ, x̃ : T̃ andΣ1 + Σ2 = Σ. Each variable of typeQbit in Γ, x̃ : T̃ is in
exactly one ofΓ1 andΓ2. Because the free variables ofP andQ are contained inΓ1 and
Γ2 respectively, substitution intoP |Q splits into disjoint substitutions intoP andQ. The
induction hypothesis gives typings forP{ṽ/x̃} andQ{ṽ/x̃}, which combine (by T-PAR)
to giveΓ, ỹ : Q̃bit; Σ, q̃; Φ ` P |Q{ṽ/x̃}. �

Lemma 12 (Structural Congruence Preserves Typing)
If Γ;Σ;Φ ` P andP ≡ Q thenΓ;Σ;Φ ` Q.

Proof: By induction on the derivation ofP ≡ Q. �

Lemma 13 (Embedding in the Internal Type System)
If Γ ` e : T thenΓ; ∅; ∅ ` e : T . If Γ ` P thenΓ; ∅; ∅ ` P .

Theorem 1 (Type Preservation for −→)
If Γ;Σ;Φ ` P and(σ;φ;P) −→ �ipi • (σi;φi;Pi) andΣ = dom(σ) andφ = dom(Φ)
then∀i.(σi = σ) and∀i.(φi = φ) and∀i.(Γ;Σ;Φ ` Pi).

Proof: By induction on the derivation of(σ;φ;P) −→ �ipi • (σi;φi;Pi), in each case
examining the final steps in the derivation ofΓ;Σ;Φ ` P . �

Theorem 2 (Unique Ownership of Qubits)
If Γ;Σ;Φ ` P |Q thenfq(P) ∩ fq(Q) = ∅.

Proof: The final step in the derivation ofΓ;Σ;Φ ` P |Q has the form

Γ1; Σ1; Φ ` P Γ2; Σ2; Φ ` Q
Γ;Σ;Φ ` P |Q

whereΓ = Γ1 + Γ2 andΣ = Σ1 + Σ2. By Lemma 9,fq(P) ⊆ Σ1 and fq(Q) ⊆ Σ2.
The implicit hypothesis of the typing rule T-PAR is thatΣ1 + Σ2 is defined, meaning that
Σ1 ∩ Σ2 = ∅. Hencefq(P) ∩ fq(Q) = ∅. �

106 S. J. Gay R. Nagarajan

6 Conclusions and Future Work

We have defined a language, CQP, for modelling systems which combine quantum and
classical communication and computation; in particular, qubits can be sent from process
to process on communication channels. CQP has a formal operational semantics, and a
static type system which guarantees that sending a qubit corresponds to a physical transfer
of ownership.

The syntax and semantics of CQP are based on a combination of the pi-calculus and
an expression language which includes measurement and transformation of quantum state.
We have presented the syntax and semantics in a style which makes it easy to enrich the
language. Purely classical features such as functions and assignable variables should be
straightforward to add. Extensions which combine quantum data with enhanced classical
control structures require more care; we have not yet considered functions of quantum
data.

We intend to use CQP as the basis for analysis of quantum protocols using a variety of
techniques including model-checking, simulation and type theory.

References

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In
Proceedings, Nineteenth Annual IEEE Symposium on Logic in Computer Science.
IEEE Computer Society Press, 2004.

[2] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani. Dense quantum coding
and a lower bound for 1-way quantum finite automata. Quantum Physics Archive:
arXiv:quant-ph/9804043 , April 1998.

[3] C. H. Bennett and G. Brassard. Quantum Cryptography: Public-key Distribution and
Coin Tossing. InProceedings of the IEEE International Conference on Computer,
Systems and Signal Processing, Bangalore, India, pages 175–179, December 1984.

[4] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. Tele-
porting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen
channels.Phys. Rev. Lett., 70:1895–1899, 1993.

[5] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum program-
ming. Eur. Phys. J. D, 25:181–200, 2003.

[6] H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin. Long
distance quantum teleportation in a quantum relay configuration.Phys. Rev. Lett.,
92(4), 2004.

[7] J.-Y. Girard. Linear Logic.Theoretical Computer Science, 50(1):1–102, 1987.

[8] P. Jorrand and M. Lalire. Toward a quantum process algebra. Quantum Physics
Archive: arXiv:quant-ph/0312067 , December 2003.

Communicating quantum processes 107

[9] E. Knill. Conventions for quantum pseudocode. Technical Report LAUR-96-2724,
Los Alamos National Laboratory, 1996.

[10] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the Pi-Calculus.ACM
Transactions on Programming Languages and Systems, 21(5):914–947, September
1999.

[11] D. Mayers. Unconditional Security in Quantum Cryptography.Journal of the ACM,
48(3):351–406, May 2001.

[12] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.Infor-
mation and Computation, 100(1):1–77, September 1992.

[13] B. Ömer. Quantum programming in QCL. Master’s thesis, Technical University of
Vienna, 2000.

[14] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.Mathe-
matical Structures in Computer Science, 6(5), 1996.

[15] A. Poppe, A. Fedrizzi, T. Lor̈unser, O. Maurhardt, R. Ursin, H. R. Böhm, M. Peev,
M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger. Practical
quantum key distribution with polarization entangled photons. Quantum Physics
Archive: arXiv:quant-ph/0404115 , April 2004.

[16] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe.Modelling and
Analysis of Security Protocols. Addison-Wesley, 2001.

[17] J. W. Sanders and P. Zuliani. Quantum programming. InMathematics of Program
Construction, volume 1837 ofSpringer LNCS, 2000.

[18] D. Sangiorgi and D. Walker.Theπ-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

[19] P. Selinger. Towards a quantum programming language.Mathematical Structures in
Computer Science, 2004. To appear.

[20] A. van Tonder. Quantum computation, categorical semantics and linear logic. Quan-
tum Physics Archive:arXiv:quant-ph/0312174 , December 2003.

[21] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.Information
and Computation, 115(1):38–94, 1994.

