
QPL 2005 Preliminary Version

Simulating and compiling code for the
Sequential Quantum Random Access Machine

Rajagopal Nagarajan 1,3

Department of Computer Science

University of Warwick

Coventry CV4 7AL

United Kingdom

Nikolaos Papanikolaou 2,4

Department of Computer Science

University of Warwick

Coventry CV4 7AL

United Kingdom

David Williams 5

School of Informatics

City University

London EC1V 0HB

United Kingdom

Abstract

We present the SQRAM architecture for quantum computing, which is based on
Knill’s QRAM model. We detail a suitable instruction set, which implements a
universal set of quantum gates, and demonstrate the operation of the SQRAM with
Deutsch’s quantum algorithm. The compilation of high-level quantum programs
for the SQRAM machine is considered; we present templates for quantum assembly
code and a method for decomposing matrices for complex quantum operations. The
SQRAM simulator and compiler are discussed, along with directions for future work.

Key words: Quantum computation, quantum programming,
quantum simulators, QRAM, compilers.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Nagarajan, Papanikolaou, Williams

1 Introduction

The rapidly growing field of quantum computation and quantum information
is still in its infancy, largely due to the lack of a substantial, practical quan-
tum computing device. However, the theoretical potential of such devices is
widely acknowledged. Presently, the only realistic avenue of investigation for
an interested computer scientist is the use of quantum computer simulators.

Owing to the large state spaces of quantum–mechanical systems, a com-
plete simulator of subatomic phenomena cannot be implemented efficiently on
a classical computer. Nobel laureate Richard Feynman observed in 1985 that:

“. . . if a description of an isolated part of Nature with N particles requires a
general function of N variables and if a computer simulates this by actually
computing or storing this function then doubling the size of Nature (N →
2N) would require an exponentially explosive growth in the size of the
simulating computer.” (excerpt from [7])

Focusing on quantum mechanics in particular, Feynman points out that:

“. . . the full description of quantum mechanics for a large system with R
particles is given by a function ψ(x1, x2, . . . , xR, t) which we call the am-
plitude to find the particles at x1, x2, . . . , xR and therefore, because it has
too many variables, it cannot be simulated with a normal computer with a
number of elements proportional to R [. . .].”

Our goals in this paper are substantially more modest; we are interested
in local quantum computation on a finite number of quantum bits (qubits). In
particular, we will discuss the design of a hybrid classical–quantum computer
architecture, which we will call the Sequential Quantum Random Access Mem-
ory machine, or SQRAM for short. The SQRAM design is based on Knill’s
QRAM model [9]. In addition, we will define an instruction set for a hypo-
thetical implementation of the SQRAM, and illustrate the operation of such
a device when running Deutsch’s algorithm for determining the balancedness
of a boolean function [11]. We have implemented a simulator of the SQRAM
machine using the OpenQubit library [14].

In light of recent proposals for quantum languages, including for example
QPL [15], QCL [12], CQP [8] and qSpec [13], we feel it is in order to consider
compilation of high–level quantum programs; we discuss techniques for this
and present a compiler we have developed for a subset of QPL.

1 R. Nagarajan is supported by EPSRC grant GR/S34090 and the EU Sixth Framework
Programme (Project SecoQC: Development of a Global Network for Secure Communication

based on Quantum Cryptography).
2 N. Papanikolaou is supported by a Postgraduate Fellowship by the Department of Com-
puter Science, University of Warwick.
3 Email: biju@dcs.warwick.ac.uk
4 Email: nikos@dcs.warwick.ac.uk
5 Email: d.p.williams@city.ac.uk

92

Nagarajan, Papanikolaou, Williams

We begin with a summary of basic quantum computing concepts. We will
then proceed to describe the proposed SQRAM architecture and instruction
set; to illustrate the instruction set, we show how Deutsch’s algorithm would
be implemented in assembly language for the SQRAM. Finally, we will turn
to compilation of high–level quantum programs in QPL, a functional quantum
programming language.

2 Related Work

Currently several quantum simulators are available, including tools for an-
alyzing quantum circuits and interpreters for quantum programming lan-
guages [3,12]. The work presented here is also closely related to that described
in [2,12,15], which deals with the issues involved with the design of quantum
programming languages. Our work develops a more complete suite of tools
consisting of separate (but interacting) parts for compilation and simulation;
it also allows compiled code to be stored.

In [16], a multi-layer framework is defined, which models different levels of
abstraction for a quantum computer simulator; however, the authors account
for specific aspects of physical implementation; on the contrary, we simply rely
on the hypothesis that the proposed system architecture may be implemented
with present–day hardware, and do not concern ourselves with details of the
physics.

3 Quantum Computing Fundamentals

A few preliminaries are in order; we are assuming no prior knowledge of quan-
tum computing.

A quantum bit or qubit is a physical system which has two basis states,
conventionally written |0〉 and |1〉, corresponding to one-bit classical values.
These could be, for example, spin states of an electron or polarization states
of a photon, but we do not consider physical details. According to quan-
tum theory, a general state of a quantum system is a superposition or linear
combination of basis states. A qubit has state α|0〉 + β|1〉, where α and β
are complex numbers such that |α|2 + |β|2 = 1; states which differ only by a
(complex) scalar factor with modulus 1 are indistinguishable. States can be
represented by column vectors:

[

α
β

]

= α|0〉 + β|1〉 Formally, a quantum state
is a unit vector in a Hilbert space, i.e. a complex vector space equipped with
an inner product satisfying certain axioms.

The basis {|0〉, |1〉} is known as the standard basis. Other bases are some-
times of interest, especially the diagonal (or dual, or Hadamard) basis con-
sisting of the vectors

|+〉 =
1√
2
(|0〉+ |1〉) and |−〉 =

1√
2
(|0〉 − |1〉)

93

Nagarajan, Papanikolaou, Williams

Evolution of a closed quantum system can be described by a unitary trans-
formation. If the state of a qubit is represented by a column vector then a
unitary transformation U can be represented by a complex-valued matrix (uij)
such that U−1 = U∗, where U∗ is the conjugate-transpose of U (i.e. element
ij of U∗ is ūji). U acts by matrix multiplication:

α′

β ′

 =

u00 u01

u10 u11

α

β

A unitary transformation can also be defined by its effect on basis states,
which is extended linearly to the whole space. For example, the Hadamard
operator is defined by

|0〉 7→ |+〉 = 1√
2
|0〉+ 1√

2
|1〉

|1〉 7→ |−〉 = 1√
2
|0〉 − 1√

2
|1〉

which corresponds to the matrix H = 1√
2

1 1

1 −1

. The Pauli operators,

denoted by σ0, σ1, σ2, σ3, are defined by

σ0 =

1 0

0 1

 σ1 =

0 1

1 0

σ2 =

0 −i
i 0

 σ3 =

1 0

0 −1

Measurement plays a key role in quantum physics. If a qubit is in state
α|0〉 + β|1〉 then measuring its value gives the result 0 with probability |α|2
(leaving it in state |0〉) and the result 1 with probability |β|2 (leaving it in
state |1〉).

For example, if a qubit is in state |+〉 then a measurement (with respect
to the standard basis) gives result 0 (and state |0〉) with probability 1

2
, and

result 1 (and state |1〉) with probability 1
2
. If a qubit is in state |0〉 then a

measurement gives result 0 (and state |0〉) with probability 1.

To go beyond single-qubit systems, we consider tensor products of spaces
(in contrast to the Cartesian products used in classical systems). If spaces
U and V have bases {ui} and {vj} then U ⊗ V has basis {ui ⊗ vj}. In
particular, a system consisting of n qubits has a 2n-dimensional space whose
standard basis is |00 . . . 0〉 . . . |11 . . . 1〉. We can now consider measurements
of single qubits or collective measurements of multiple qubits. For example,
a 2-qubit system has basis |00〉, |01〉, |10〉, |11〉 and a general state is α|00〉 +
β|01〉 + γ|10〉 + δ|11〉 with |α|2 + |β|2 + |γ|2 + |δ|2 = 1. Measuring the first

94

Nagarajan, Papanikolaou, Williams

qubit gives result 0 with probability |α|2 + |β|2 (leaving the system in state
1√

|α|2+|β|2
(α|00〉 + β|01〉)) and result 1 with probability |γ|2 + |δ|2 (leaving

the system in state 1√
|γ|2+|δ|2

(γ|10〉 + δ|11〉)); in each case we renormalize

the state by multiplying by a suitable scalar factor. Measuring both qubits
simultaneously gives result 0 with probability |α|2 (leaving the system in state
|00〉), result 1 with probability |β|2 (leaving the system in state |01〉) and so on;
the association of basis states |00〉, |01〉, |10〉, |11〉 with results 0, 1, 2, 3 is just
a conventional choice. The power of quantum computing, in an algorithmic
sense, results from calculating with superpositions of states; all of the states in
the superposition are transformed simultaneously (quantum parallelism) and
the effect increases exponentially with the dimension of the state space. The
challenge in quantum algorithm design is to make measurements which enable
this parallelism to be exploited; in general this is very difficult.

The controlled not (CNOT) operator on pairs of qubits performs the map-
ping:

|00〉 7→ |00〉
|01〉 7→ |01〉
|10〉 7→ |11〉
|11〉 7→ |10〉

which can be understood as inverting the second qubit (the target) if and only
if the first qubit (the control) is set. The action on general states is obtained
by linearity.

Systems of two or more qubits may be in entangled states, meaning that
the states of the qubits are correlated. For example, consider a measurement
of the first qubit of the state 1√

2
(|00〉+ |11〉). The result is 0 (and the resulting

state is |00〉) with probability 1
2
, or 1 (and the resulting state is |11〉) with

probability 1
2
. In either case, a subsequent measurement of the second qubit

gives a definite, non–probabilistic result which is identical to the result of the
first measurement. This is true even if the entangled qubits are physically
separated. Entanglement illustrates the key difference between the use of the
tensor product (in quantum systems) and the Cartesian product (in classical
systems): an entangled state of two qubits is one which cannot be expressed as
a tensor product of single-qubit states. The Hadamard and CNOT operators
can be combined to create entangled states:

CNOT((H ⊗ I)|00〉) =
1√
2
(|00〉+ |11〉)

4 The SQRAM Machine

In this section we propose a system architecture for a hybrid classical–quantum
computer, consisting of a classical computing machine with control over a

95

Nagarajan, Papanikolaou, Williams

purely quantum–mechanical component. Such a device, termed a QRAM
machine, was proposed by Knill in [9].

The classical component comprises a Central Processing Unit (CPU), a
classical data store (DS) and a program store (PS). The quantum–mechanical
component is divided into a Quantum Hardware Interface (QHI), a quantum
memory register, and a means of manipulating its contents; note that our
discussion remains independent of particular hardware implementations and
associated physical details.

Figure 1 illustrates the overall design of the SQRAM machine, including
both the classical component and the quantum component. We will now
describe the details of this design, including its operating cycle and instruction
set.

4.1 The Classical Component

The classical component has two distinct memory locations, one for programs
and one for data. We have chosen to deviate slightly from the conventional
Von Neumann model, where programs are treated in the same way, and in
the same location, as the data they manipulate. The CPU keeps track of the
current instruction in a program through the program counter, which indexes
a location in the program store.

The CPU also contains an Arithmetic–Logic Unit, for evaluating classical
expressions, and a control unit, for other operations. The CPU does not
contain any registers, since all operations are performed within the data store.

The data store operates a stack–based model for evaluation of expressions
and the allocation of variables; this fits well with the functional programming
paradigm and simplifies code generation for the compiler. Global data (if
applicable) is stored from the address 0x0000 while the local base points to
the the beginning of the data local to the current function (this is modified
as functions are entered and left). Stack top points just after the end of the
valid data area.

Table 1 details the principal instructions used to control the classical com-
ponent of the SQRAM and describes the effect of each instruction in an al-
gorithmic notation. The notation includes the symbols st (the Stack Top), lb
(the Local Base), pc (the value of the Program Counter), DS[i] (the contents
of location i in the Data Store), and PS[i] (the contents of location i in the
Program Store).

The operating cycle of the SQRAM is as follows. Program execution be-
gins with the program counter, local base, and stack top all initialized to 0.
An instruction is retrieved from the location given by the program counter and
executed, the process is then repeated. Most instructions cause the program
counter to be incremented but some (such as jumping and halting instruc-
tions) have different effects for a listing of the available classical instructions).
Program execution is finished once the program counter goes past the end of

96

Nagarajan, Papanikolaou, Williams

Instruction Effect

ADD

st← st− 1

DS[st− 1]← DS[st− 1] +DS[st]

pc← pc+ 1

HALT pc← size(PS)

JUMPZ address

st← st− 1

if(DS[st− 1] = 0) :

pc← address

else :

pc← pc+ 1

LOAD offset

DS[st]← DS[lb + offset]

st← st + 1

pc← pc+ 1

LOADLvalue

DS[st]← value

st← st + 1

pc← pc+ 1

SAVE offset

st← st− 1

DS[lb + offset]← DS[st]

pc← pc+ 1

SUBTRACT

st← st− 1

DS[st− 1]← DS[st− 1]−DS[st]

pc← pc+ 1

Table 1
SQRAM Machine Classical Instruction Set

the program store.

4.2 The Quantum Component

The quantum component of the SQRAM consists of a quantum register and
a Quantum Hardware Interface (QHI), which receives instructions from the
CPU and manipulates qubits accordingly. Figure 2 illustrates the stages of a

97

Nagarajan, Papanikolaou, Williams

typical quantum algorithm.

In the first stage of Figure 2, the hardware resets the qubits to the |0〉
state and then applies some transformation to place them in the desired ini-
tial state. The second stage is where the manipulation of the quantum state
actually takes place. After the computation is complete, the result is mea-
sured; each measured qubit yields a binary value {0, 1} which is passed to the
CPU and can then be used for conditional control purposes. The final stage
checks the validity of the result and repeats the computation if necessary.
Incorrect results may occur, either due to hardware problems such as deco-
herence, which damages quantum states, or due to the probabilistic nature of
quantum algorithms.

Logic Unit
Arithmetic

Unit
Control

Counter
Program

Central Processing Unit

Key: Data store out of scope

Data store not yet allocated

Data store in use

Q
uantum

 R
egister

Local

Stack

0x0F

Top

Base

0x00

Read/
Write

Program
Store

Instructions

Quantum Component

Results Of Measurements

Operations

Quantum State
Interaction With

Classical Component

Quantum
Hardware
Interface

0x000F

0xFFF0

Local Base

StackTop

0x0000

0xFFFF

Data Store

Fig. 1. Design of the SQRAM machine

Repeat if Necessary

and Loading
Initialisation Quantum State

Evolution
Measurement

of State
Checking

Fig. 2. SQRAM Operating Cycle

98

Nagarajan, Papanikolaou, Williams

Instruction Effect

AQBIT

QR[qst]← |0〉
qst← qst+ 1

pc← pc+ 1

CNOT target

control invert

QR[target]← target× cnot(control, invert, . . .)
pc← pc+ 1

GATE target

a b c d

QR[target]← target× gate(a, b, c, d)
pc← pc+ 1

HDMD target
QR[target]← target× gate(1√

2
, 1√

2
, 1√

2
,− 1√

2
)

pc← pc+ 1

MSRE target

DS[st]← measure(target)

st← st + 1

pc← pc+ 1

PHASE target
QR[target]← target× gate(1, 0, 0, i)
pc← pc+ 1

PI target
QR[target]← target× gate(1, 0, 0, eiπ/4)

pc← pc+ 1

Table 2
SQRAM Machine Quantum Instruction Set

As was explained in Section 3, the state is transformed by applying a
sequence of operations to it; these may operate on an arbitrary number of
qubits and the only restriction is that they must be unitary. While this is
accurate from a theoretical point of view it is at the present time very difficult
to implement arbitrary operations on arbitrary numbers of qubits. Fortunately
it is known that there is a small set of operations (actually an infinite number
of such sets) which is universal in that it is able to approximate an arbitrary
operation to any given accuracy [11].

We now introduce the operations which make up one of these universal
sets (known as the standard set). The first operation is the Controlled–NOT
(CNOT), which we described previously. This operation can be combined with
arbitrary single qubit operations to exactly implement any quantum operation
on an arbitrary number of qubits.

To complete the standard set it is necessary to approximate arbitrary single
qubit operations. Within the standard set this is done with the Hadamard

99

Nagarajan, Papanikolaou, Williams

Operator (denoted by H), the Phase Operator (S) and the π/8 operator.
We use the standard set as the basis for the instruction set of the SQRAM,
along with instructions for measurement and initialisation, and a classical
set of instructions for control purposes. We also include an instruction for
performing arbitrary operations on single qubits. The ‘quantum instructions’
for the SQRAM are summarized in Table 2. Special notation used in this table
includes the symbols target (for target qubit), control (for control qubit), and
invert (indicates the CNOT is active when the control is in the state |0〉 rather
than |1〉); otherwise, the notation is mostly self–explanatory.

4.3 Deutsch’s Algorithm on the SQRAM Machine

We now present an example of a program written for the SQRAM machine.
We will be using Deutsch’s algorithm as given in [5]; that reference should be
consulted for further details of the algorithm, as the description given here
will be necessarily brief.

We are presented with a black–box which performs some function f(x) on
a single bit x. There are four possible functions which f(x) could perform,
these being f(x) = 0, f(x) = 1, f(x) = NOT (x), and f(x) = x. Of these the
first two are called constant because they always give the same result, while
the second two are called balanced because half the inputs result in 0 and half
result in 1. The problem is to determine, using as few function evaluations as
possible, whether f(x) is constant or balanced.

If done classically, this requires two function evaluations, one with an input
of 0 and the other with an input of 1, and a comparison of the results. However,
using Deutsch’s algorithm on a quantum computer it is possible to use just one
function evaluation. Note that if the function is constant then f(0)⊕f(1) = 0,
while if it is balanced then f(0)⊕ f(1) = 1. Using the circuit in Figure 3 it is
possible to evaluate f(0) ⊕ f(1) with out ever finding out the values of f(0)
and f(1).

H

H

Uf

|0>

|1>

H x

y

Fig. 3. A Circuit Implementing Deutsch’s Algorithm.

An implementation, for the SQRAM machine, of Deutsch’s algorithm for
testing the balancedness of the NOT gate is given in Figure 4. The NOT gate
is balanced, so the result of evaluating f(0)⊕ f(1) should be 1.

Compared to the circuit representation, this code involves additional ini-
tializations as all qubits are automatically placed in state |0〉. The second
qubit actually needs to be placed in state |1〉; this is achieved using the NOT
operation. Note that the NOT operation has been realized using the GATE

instruction; it could have been implemented just as well using a CNOT with
no controls. The operation Uf is a reversible form of an f(x)–controlled–NOT ;

100

Nagarajan, Papanikolaou, Williams

AQBIT ;allocate initial qubits

AQBIT

GATE 0x01 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 ;initialise second qubit to 1

HDMD 0x00 ;apply Hadamards

HDMD 0x01

CNOT 0x01 1 0 1 ;apply the CNOT gate

HDMD 0x00 ;the last Hadamard

MSRE 0x00 ;measure the result

SAVE 0x00 ;save to address 0x00 for later

Fig. 4. SQRAM Assembly Program Implementing Deutsch’s Algorithm for the
NOT gate

it performs the mapping |x〉|y〉 → |x, y ⊕ f(x)〉. The f(x)–controlled–NOT
operation is, in our example, a NOT–controlled–NOT which in turn is im-
plemented as a CNOT with its control inverted to trigger when in the state
|0〉.

The example mostly illustrates quantum instructions; the functions per-
formed by classical instructions should be familiar to most readers. The only
classical instruction used in this example is SAVE, which stores the result of
the measurement at the top of the classical stack. Further code could condi-
tionally jump based on this value to give feedback to the user.

4.4 Simulating the SQRAM

In order to evaluate and analyze the design of the SQRAM, we have developed
a software simulator. Simulation of quantum mechanical systems is known
to be a highly complex problem (as discussed in the Introduction), and so
our simulator handles only a relatively small number of qubits. There are,
of course, several known quantum algorithms which only make use of a few
qubits; these we have already succeeded in modelling.

The simulator makes use of the OpenQubit library [14]. This is an Open
Source C++ library designed to be used in projects involving the modelling
of quantum systems. It provides classes for representing the states of quan-
tum systems (which store large, complex–valued vectors), and a set of classes
representing transformations which can be applied to such states. Our simu-
lator implements the classical component and the fetch–execute cycle of the
SQRAM machine directly; it makes use of the OpenQubit library to simu-
late the quantum component. As much as possible, the architecture of the
simulated SQRAM machine matches the one presented earlier.

One key difference between the simulator and the design presented in Fig-

101

Nagarajan, Papanikolaou, Williams

ure 1 is an additional layer of abstraction placed between the quantum register
and the processor. The simulator provides a ‘universe’ of qubits and the quan-
tum register is actually a collection of references to qubits within the universe,
as shown in Figure 5.

q
4

q
3

q
2

q
1

q
0

q
nn−1qn−2q

Universe of Qubits

0x0 0xF0x1 0xE

SQRAM 1

Fig. 5. SQRAM machine accessing qubits via references

5 Compiling High-Level Languages for the SQRAM

It is impractical to write large programs by hand using the assembly language
instructions presented in the previous section; this is time consuming and
error prone. The emergence of quantum programming languages, which can
automatically be compiled into corresponding machine code, facilitates the
task of ‘quantum programming’ significantly.

A quantum programming language provides an elegant mixture of classical
control structures and quantum operations; this is something which is very
difficult, if not impossible, to implement in the standard quantum circuit
model. The use of quantum programming languages fits in well with the
model of computation used by our SQRAM machine (and by most quantum
algorithms). This computational model is more familiar to computer scientists
than the circuit model, and we expect it to greatly ease the development of
new quantum algorithms.

In this section, we consider high–level quantum programming languages
and how programs written in such languages may be translated into assembly
code for the SQRAM machine. We begin by identifying certain desirable
characteristics and particularities of such languages, and then we proceed to
discuss Selinger’s QPL [15], a functional quantum programming language. We
have implemented a translation from a subset of QPL to SQRAM assembly
code, which is also described briefly.

5.1 Quantum Language Requirements

According to [2,9,15], the desired features of high–level quantum programming
languages are:

Classical Characteristics: Many years of research on classical languages

102

Nagarajan, Papanikolaou, Williams

have identified properties such as a clean syntax and intuitive set of key-
words as being important for high–level languages.

Completeness: A quantum programming language should be universal, so
that it can represent all quantum algorithms. This gives it the same expres-
sive power as the quantum circuit model.

Expressivity: The language should present the programmer with a suffi-
cient set of primitives and constructs to allow quantum programs to be
constructed easily.

Separability: It should be simple to separate those parts of the program
which are quantum–mechanical in nature from those parts which are clas-
sical, as this can simplify compilation and execution of a given program.

Hardware Independence: A quantum programming language should be
portable, i.e., independent of a particular hardware platform. A language
should be kept as general as possible, perhaps even using the Quantum
Turing machine as its target platform.

Extension of Classical Languages: Quantum programming languages
which extend known classical languages are likely to find a wider user base
than completely new languages.

5.2 Particularities of Quantum Systems Affecting Language Designs

The inability to clone an unknown quantum state has a direct effect on the
behavior of statements which involve assignment; these include direct assign-
ment and passing values to functions. Because it is not possible to actually
copy the value many languages make use of references and hence have many
variables pointing to the same qubit. Other languages may forbid the direct
assignment of quantum variables.

Although, as noted previously, it is not possible to assign one qubit to
another, it is possible to assign a qubit to a classical bit; this involves an
implicit measurement. Unlike classical programming, this will modify the
variable on the right hand side of the assignment, and it is not possible to
restore the previous value.

It is possible for two qubits identified by separate variable names to become
entangled, so that the manipulation of one variable has an effect on the other.
There is no analogy to this in classical programming, but this is more of an
issue for the programmer than it is for the language designer.

5.3 A Functional Language: QPL

There are several languages which meet the requirements set out previously
to varying degrees [2,9,12]. Our work focuses on one in particular, Peter
Selinger’s QPL [15], due to its elegant design and its suitability for implemen-
tation on the SQRAM machine.

Selinger identifies the static type system as being one of the key features of

103

Nagarajan, Papanikolaou, Williams

QPLTerms P,Q :: = new bit b := 0

| new qbit q := 0

| discard x | b := 0 | b := 1

| q1, . . . , qn∗ = S | skip | P ;Q

| if b then P else Q

| measure q then P else Q

| while b do P

| proc X : Γ→ Γ′{P} in Q

| y1, . . . , ym = X(x1, . . . , xn)

Fig. 6. The syntax of Peter Selinger’s QPL, reproduced from [15].

QPL; this allows the syntax to enforce certain requirements of quantum theory,
such as the no–cloning theorem. As well as the usual control constructs, such
as loops and conditional statements, QPL allows the definition of recursive
functions. This is useful when operating on lists and trees, which in QPL, may
contain quantum as well as classical data. The syntax of QPL is reproduced
from [15] in Figure 6.

5.4 Code Templates for Quantum Operations

Code generation, for our purposes, is the process of producing machine in-
structions for each of the nodes in the abstract syntax tree corresponding to a
high–level program. We have designed code templates for the quantum con-
structs in the QPL language, and we have also considered the decomposition
of large operations, so they may be implemented directly using the limited
number of instructions available.

Code templates are used in compilers to provide a set of assembly instruc-
tions which correspond to a particular construct in the source program, such
as an expression, a loop, or a variable declaration. We will now define code
templates for those constructs which are quantum in nature; we will not give
details of classical constructs here. Specifically, we will cover the declaration
of quantum data, its manipulation and eventual measurement. The mapping
of a high–level QPL construct to the corresponding SQRAM assembly code is
expressed as a function

Translation : QPLTerms 7→ SQRAMTerms

In QPL, a new qubit is declared using the statement:

(new qbit q := 0)

104

Nagarajan, Papanikolaou, Williams

This allocates a new qubit, referred to by the variable name q, and initializes
it to the state |0〉. To implement this we simply use the AQBIT instruction:

Translation[(new qbit q:=0)] = AQBIT

A transformation is applied to a quantum data type using the ∗ = operator.
For example, the built-in unitary transformation U could be applied to q as
follows: (q∗ = U). There are two situations to consider here. Firstly U might
be a single qubit operation which we wish to implement directly using the
GATE instruction. This becomes:

Translation[(q∗ = U)] = GATE q U

Alternatively U might be a multi–qubit operation (in which case q would
need to be a multi–qubit data type), or it might be a single qubit operation
which we wish to decompose into gates from the universal set of operations.
Either way, we move into the decomposition process which is discussed in
Section 5.5.

Measurement is the most complex of the code templates (assuming we
don’t get involved with decomposition when manipulating quantum types).
QPL performs measurement by the following statement:

measure q then P else Q

A measurement is performed on the qubit q. If the result of the measure-
ment is |1〉 then the command corresponding to P is executed, otherwise the
command corresponding to Q is executed. The code template for this looks
as follows:

Translation[measure q then P else Q]=

MSRE q ; Perform the measurement

JUMPZ else ; If result is 0, jump to else

P ; Execute command P if result is not 0.

LOADL 0 ; Unconditionally jump to end,

JUMPZ end ; by loading 0 and jumping to 0.

else: Q ; Execute command Q.

end: ; End.

If the measurement of q gives a value of 1 then the JUMPZ instruction is
ignored and the program proceeds to execute P before unconditionally jump-
ing over the code to execute Q. On the other hand, if q is measured as 0 the
first JUMPZ jumps over the execution of P straight to the point where Q is
executed.

105

Nagarajan, Papanikolaou, Williams

U11 U12 U1n

U21

Un1

U22 U2n

Un2 Unn

Generate a
set of two

level unitary
matrices

implementation by controlled

Generate sequence
of CNOT gates to allow

single qubit operation

Implement controlled
unitary operation with
single qubit operations

and CNOT’s

X

Stage 1Input Stage 2

Stage 3 Stage 4 Output

Generate primitive
operations to

approximate single
qubit operation.

Fig. 7. Decomposition of an Arbitrary Unitary Matrix

5.5 Decomposition of Operator Matrices

In Section 4.2 we discussed the principle of universality, stating that any quan-
tum operation can be broken down and implemented in terms of a small set of
universal gates. Hence our SQRAM machine only provides operations corre-
sponding to these universal gates and it is the job of the compiler to perform
the decomposition. This decomposition is a complex process and work has
been done on it by a variety of different people and research groups. We bring
this work together to form a complete compilation process and provide an
analysis of its efficiency.

5.5.1 Overview

Decomposing a matrix into primitive operations is a multistage process (out-
lined in Figure 7); each of the stages shown is described in the following
sections. The mathematical proofs for the validity of each stage of the process
are well established and work has previously been done looking at the optimal
number of gates which can be used to approximate a given unitary matrix
[11]. Therefore this work focuses on designing algorithms to implement the
process and performing classical efficiency analysis on these algorithms. It is
to our knowledge the first system to implement the complete process from
arbitrary operations to quantum byte–code within a compiler.

A working compiler has been implemented to test the concepts presented in
the following sections but we will not discuss its implementation here. For de-
tails of this including design approaches, examples, and sample output please
refer to [18].

5.5.2 Generating Two-Level Unitary Matrices

Two-level unitary matrices are those which act non-trivially on only 2 vector
components of the system state; that is ,when the vector is multiplied by the
matrix only two elements are changed as most elements in the matrix are

106

Nagarajan, Papanikolaou, Williams

identity. Such a matrix has a structure as follows:

Rk =

. . .
...

...
...

...
...

...

· · · 1 0 0 · · · 0 0 0 · · ·
· · · 0 α 0 · · · 0 γ 0 · · ·
· · · 0 0 1 · · · 0 0 0 · · ·

...
...

...
. . .

...
...

...

· · · 0 0 0 · · · 1 0 0 · · ·
· · · 0 β 0 · · · 0 δ 0 · · ·
· · · 0 0 0 · · · 0 0 1 · · ·

...
...

...
...

...
...

. . .

(1)

The initial step is to decompose the original matrix U of side length s into
a sequence of two-level unitary matrices (also of side length s). The product
of the matrices in this sequence must be equal to the input matrix U , so
that applying them to the system in the correct order has the same effect as
applying U .

Performing this decomposition is not only necessary for the next stage, it
is also a result in its own right. A description of a technique for implementing
such transformations with beam–splitter devices is presented in [20], with the
result that simply performing this stage could bring arbitrary operations closer
to being realizable.

We will not go deeply into the mathematics involved as it can become
reasonably complicated; for a coverage of this see [20,18,11]. It has been
observed [11] that such a process will decompose the original matrix into at

most s(s−1)
2

two level matrices. However, no analysis of the efficiency of such
an algorithm was provided and it is a useful result to determine this. In [18]
we make some assumptions about the efficiency of variations and show the
complexity to be approximately Θ(n5). This is clearly not a fast algorithm,
and it should be noted that the previous analysis was with respect to the
size of the matrix (which is exponential in the size of the system). Hence the
algorithm requires exponential time overall, but it should also be remembered
that it will typically be operating on small values of n, corresponding to a
small number of qubits. Also, the difficulty in performing this decomposition
makes it clear that it is necessary to have a quantum byte–code which can be
stored as it too difficult to generate in real time.

107

Nagarajan, Papanikolaou, Williams

5.5.3 Generating Controlled Unitary and CNOT Gates

We obtain from the previous stage a set of two level unitary matrices, for
example a matrix of the form:

U =

α 0 0 γ

0 1 0 0

0 0 1 0

β 0 0 δ

(2)

A matrix such as this acts on two components of the system (in this partic-
ular case it acts on |00〉and |11〉), and leaves the other components unaffected
as follows:

|00〉
|01〉
|10〉
|11〉

U−→

α |00〉+ γ |11〉
|01〉
|10〉
β |00〉+ δ |11〉

(3)

We wish to implement this matrix in terms of a controlled single qubit
operation, or Controlled–U gate, but note that a single qubit operation cannot
act on both |00〉 and |11〉 as they differ by more than one bit. Therefore we
use a series of CNOT gates (in this simple case the series contains just one
gate) to swap states around such that the target states are adjacent to each
other. The Controlled-U is then applied to the one bit which still differs, and
the reverse series of CNOT gates is used to arrange the states back to their
original position.

To clarify this procedure, the operation given by Equation 2 is implemented
by the circuit in Figure 8, where T is the sub–matrix of U given by:

T =

α γ

β δ

 (4)

T

Fig. 8. Circuit implementing Equation 2.

Note that the CNOT gates are active when the control qubit is |0〉, rather
than the more conventional |1〉. The problem then is how to generate the series
of CNOT gates which rearrange the computational states in the appropriate
way. A solution involving the use of Gray codes is covered by [11] and a
description within the context of our compiler is provided by [18].

108

Nagarajan, Papanikolaou, Williams

5.5.4 Implementing Controlled Unitary Gates

The output from the procedure described in Section 5.5.3 consists of two types
of gates; Controlled–NOT gates and Controlled–U gates. Our SQRAM ma-
chine is able to directly implement Controlled–NOT gates through the CNOT
instruction, but Controlled–U gates require further decomposition. This sec-
tion shows briefly how this is done, building on work presented by Barenco et
al. in [1]. Note that we will only consider Controlled–U gates with a single
control; for details of how the techniques apply to more controls please consult
[18].

Barenco et al. make the observation that for any unitary matrix U of side
length 2 (i.e. operating on a single qubit) it is possible to find 3 more unitary
matrices A, B, and C such that:

A× B × C = I

and:

S × A×NOT × B ×NOT × C = U

where S is defined as:

S =

eiδ 0

0 eiδ

A controlled–S gate can be simulated by a unitary operator E acting on the
control bit, hence it is possible to produce an implementation of an arbitrary
operator U using a circuit such as the one shown in Figure 9. For unitary gates
controlled by multiple qubits the procedure is similar; we find a set of unitaries
which can either implement the original unitary matrix or can implement the
identity matrix, depending on the use of CNOT gates in between. However
the actual process of generating both the gates and the sequence of CNOTs
is considerably more complex (see [1,18]).

U A B C

E
=

Fig. 9. Implementation of an Arbitrary Unitary

The problem then becomes determining suitable values for the operators
A, B, C, and E, expressions for doing so are established in [1] though we will
not re–iterate them here.

6 Conclusions and Future Work

We have presented a simple machine architecture for practical quantum com-
putation, and shown, in broad terms, how high–level quantum programming

109

Nagarajan, Papanikolaou, Williams

languages may be compiled to assembly language targeted at this architecture.

We began by presenting a machine design based on the QRAM model
due to Knill. We discussed the instruction set and method of operation for
the classical component so that it could be used as a standalone processor
or as a control mechanism for a quantum component. We then discussed the
quantum component and its instruction set, which is universal for quantum
computation.

We entered into the issue of generating instructions for the SQRAM ma-
chine from a QPL program. Part of this involves creating ‘code templates’ for
the various constructs in the QPL language, and part of it involves decompos-
ing complex operations into those suitable for our SQRAM model.

We consider the work presented here a great success; there is potential for
much improvement and refinement.

6.1 SQRAM Model and Simulator

We stated that the instruction set provided was universal for quantum com-
puting; that is not to say it cannot be improved. There are different universal
sets available and there are also advantages to having a certain amount of re-
dundancy (as with the GATE instruction). An analysis of the advantages and
disadvantages of different instruction sets could yield a more efficient SQRAM
architecture. There is also scope for expanding the classical instruction set as
the current one is just a proof–of–concept allowing us to focus on the quan-
tum work. More sophisticated conditional control statements (as opposed to
simply using the JUMPZ instruction) would ease the development of com-
plex control structures and a greater range of instructions for manipulating
classical data would also be desirable.

A discussion of the actual physics involved in building a quantum computer
has been avoided in this paper and, as far as possible, in the SQRAM model.
In practice there are many physical matters which would affect the behavior of
a real SQRAM device. For example, when using the ion trap technique [4] it
is easier to perform operations on multiple qubits if they are adjacent to each
other. It would be interesting to integrate such constraints into our design.

A related idea is to model the effects of ‘quantum decoherence’ on the
SQRAM machine. Quantum decoherence is the process of errors arising due
to undesirable interaction with an external system (something which is im-
possible to avoid in practice). The QPL language was designed for ‘perfect’
hardware in which such interactions do not occur but, given the impossibil-
ity of building such hardware, it would be useful to introduce errors into the
results of the simulation so that techniques for combating them can be devel-
oped. Existing methods can also be tested and their effectiveness determined
within the context of the QPL/SQRAM system.

110

Nagarajan, Papanikolaou, Williams

6.2 The QPL Compiler

One of the distinguishing features of the QPL language is a static type checking
system which allows certain errors to be detected at compile time rather than
run time. For example, the static type system is able to enforce the no–
cloning principle of quantum mechanics within QPL programs. We have not
yet implemented such static type checking within our compiler but aim to
do so in the near future. This should look at type checking issues when
working with more complex quantum structures (lists, trees, etc.) and could
also consider type checking within the higher–order version of QPL currently
being developed by Peter Selinger.

The QPL compiler implements only a subset of QPL, the focus being on
those parts which were necessary to test ideas presented in this paper. More
work on the classical control structures would enable a wider range of programs
to be implemented and better data structures (currently only limited support
for lists is available) would allow more interesting algorithms. We also plan
to extend the compiler with features for concurrency and communication.

6.3 Communication and Concurrency

Williams’ thesis [18] describes a preliminary effort to integrate constructs for
communication and concurrency into the QPL language and SQRAM simu-
lator. Such constructs are available in the language CQP due to Gay and
Nagarajan [8], which allows the description of quantum protocols, such as
quantum key distribution and quantum teleportation. We aim to incorporate
support for CQP in the QPL compiler; the simulator has already had such
support added.

Acknowledgements

We gratefully acknowledge the feedback provided by the anonymous reviewers.

References

[1] Barenco, D., C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. Smolin and H. Weinfurter, Elementary gates for quantum

computation, Phys. Rev. A 52 (1995), p. 3457.

[2] Bettelli, S., T. Calarco and L. Serafini, Toward an architecture for quantum

programming, The European Physical Journal 25 (2003), pp. 181–200.

[3] Black, P. E. and A. W. Lane, Modeling quantum information systems (2004),
unpublished.

[4] Cirac, J. and P. Zoller, Quantum computations with cold trapped ions, Physical
Review Letters 74:4091 (1995).

111

Nagarajan, Papanikolaou, Williams

[5] Cleve, R., A. Ekert, C. Macchiavello and M. Mosca, Quantum algorithms

revisited, Proc. Royal Soc. London, Series A 454:1969 (1998), pp. 339–354.

[6] Dirac, P., “Principles of Quantum Mechanics,” Oxford Science Publications,
1958, fourth edition.

[7] Feynman, R., Simulating physics with computers, International Journal of
Theoretical Physics 21 (1982), pp. 467–488.

[8] Gay, S. and R. Nagarajan, Communicating quantum processes, in: POPL

’05: Proceedings of the 32nd ACM Symposium on Principles of Programming

Languages, Long Beach, California, 2005.

[9] Knill, E., Conventions for quantum pseudocode (1996), Technical Report
LAUR-96-2724, Los Alamos National Laboratory,
http://citeseer.ist.psu.edu/knill96conventions.html .

[10] Moore, G., Cramming more components onto integrated circuits, Electronics 38

(1965).

[11] Nielsen, M. and I. Chuang, “Quantum Computation and Quantum Informa-
tion,” Cambridge University Press, 2000.

[12] Omer, B., “A Procedural Formalism for Quantum Computing,” Master’s thesis,
Department of Theoretical Physics, Technical University of Vienna (1998).

[13] Papanikolaou, N., qSpec: A programming language for quantum communi-

cation systems design, in: Proceedings of PREP2004 Postgraduate Research

Conference in Electronics, Photonics, Communications & Networks, and

Computing Science (2004).

[14] Pritzker, Y., Simulation of quantum computation on Intel-based architectures,
http://citeseer.ist.psu.edu/217822.html.

[15] Selinger, P., Towards a quantum programming language, Mathematical Struc-
tures in Computer Science 14 (2004), pp. 527–586.

[16] Svore, K., A. Cross, A. Aho, I. Chuang and I. Markov, Toward a

software architecture for quantum computing design tools, Proceedings of the
2nd International Conference on Quantum Programming Languages (2004),
pp. 145–162.

[17] Turing, A., On computable numbers, with an application to the Entscheidungs-

problem, Proc. London Math. Soc 2 (1936), pp. 230–265.

[18] Williams, D., “Quantum Computer Architecture, Assembly Language and
Compilation,” Master’s thesis, Department of Computer Science, University
of Warwick (2004).

[19] Wootters, W. and W. Zurek, A single quantum cannot be cloned, Nature 299

(1982).

[20] Zeilinger, A., M. Reck, H. Bernstein and P. Bertani, Experimental realization

of any discrete unitary operator, Physical Review Letters 73 (1994), pp. 58–61.

112

http://citeseer.ist.psu.edu/knill96conventions.html
http://citeseer.ist.psu.edu/217822.html

	Introduction
	Related Work
	Quantum Computing Fundamentals
	The SQRAM Machine
	The Classical Component
	The Quantum Component
	Deutsch's Algorithm on the SQRAM Machine
	Simulating the SQRAM

	Compiling High-Level Languages for the SQRAM
	Quantum Language Requirements
	Particularities of Quantum Systems Affecting Language Designs
	A Functional Language: QPL
	Code Templates for Quantum Operations
	Decomposition of Operator Matrices

	Conclusions and Future Work
	SQRAM Model and Simulator
	The QPL Compiler
	Communication and Concurrency

	References

