
QPL 2005 Preliminary Version

Quantum programming with mixed states
(extended abstract)

Paolo Zuliani 1

Department of Computer Science

Princeton University

Princeton, NJ 08544, USA

Abstract

In this paper we offer a programming approach to quantum computation using
mixed states. Mixed-state quantum systems generalise standard (pure) quantum
systems by allowing the state of the system to be a probabilistic distribution of pure
states. We build on previous work by Aharonov et al. and generalise their results
from quantum circuits to probabilistic (and quantum) programs.

Key words: Quantum programming, mixed state, probabilistic
computation, quantum circuit.

1 Introduction

Mixed-state systems are a generalisation of standard quantum systems for
which the state is best described by a probability distribution over “pure”
quantum states. Mixed state systems find application in the description of
“real” quantum systems where, due to unavoidable causes (e.g. imperfections
in our apparatuses or interactions with the environment), the exact state of
the system cannot be specified. On the other hand, the standard model of
quantum circuits assumes only pure states [6]. The difficulty in building a
scalable quantum computer makes therefore even more important to have a
model for quantum computation as close as possible to reality. A recent work
by Aharonov et al. [1] extends the standard quantum circuit model by allowing
mixed states.

The standard approach for dealing with mixed states is the so called den-
sity matrix formalism, and that has been used in Aharonov et al.’s work.
In this paper we instead offer a programming approach based on qGCL, a
programming language for quantum computation.

1
Email: pzuliani@cs.princeton.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Zuliani

2 Quantum programming

We give here a short presentation of the features of qGCL (a full introduction
can be found in [8]).

2.1 Quantum types

We define the type
�

=̂ {0, 1}, which we will treat as booleans or bits, depend-
ing on convenience. A classical register of size n:� is a vector of n booleans.
The type of all registers of size n is then defined to be the set of boolean-valued
functions on {0, 1, . . . , n− 1}:

�n =̂ {0, 1, . . . , n− 1} −→ �
.

The quantum analogue of
�

n is the set of complex-valued functions on
�

n

whose squared modulus sum to 1:

q(
�n) =̂ {χ:

�n −→ � |
∑

x:�n

|χ(x)|2 = 1} .

An element of q(
�

) is called a qubit and that of q(
�

n) a qureg. Classical state
is embedded in its quantum analogue by the Dirac delta function:

δ:
�

n −→ q(
�

n)

δx(y) =̂ (y = x) .

The range of δ, {δx | x:�n}, forms a basis for quantum states, that is:

∀χ:q(
�n) • χ =

∑

x:�n

χ(x)δx .

The Hilbert space
�

n −→ � (with the structure making it isomorphic to �2n

)
is called the enveloping space of q(

�
n). The usual scalar product becomes the

application 〈·, ·〉:q(�n) × q(
�

n) → � defined by:

〈ψ, φ〉 =̂
∑

x:�n

ψ(x)∗φ(x)

where ∗ denotes complex conjugation. The length of ψ is defined ‖ψ‖ =̂ 〈ψ, ψ〉1

2 .

2.2 Quantum language qGCL

qGCL is an extension of pGCL [5], which in turn extends Dijkstra’s guarded-
command language with a probabilistic choice constructor in order to address
probabilism. A guarded-command language program is a sequence of assign-
ments, skip and abort manipulated by the standard constructors of sequential

170

Zuliani

composition, conditional selection, repetition and nondeterministic choice [3].
A quantum program is a pGCL program invoking quantum procedures and
the resulting language is called qGCL. Quantum procedures can be of three
different kinds: Initialisation (or state preparation) followed by Evolution and
finally by Finalisation (or observation).

Initialisation is a procedure which simply assigns to its qureg state the
uniform square-convex combination of all standard states

∀χ:q(
�n) • In(χ) =̂

(
χ :=

1√
2n

∑

x:�n

δx

)
.

Quantum-mechanical systems evolve over time under the action of unitary
transformations. Evolution thus consists of iteration of unitary transforma-
tions on quantum state. In qGCL unitary evolution may be introduced in two
forms: explicit (unitary) transformations on quantum state and procedures.
In this paper we shall use only the former, so for simplicity we do not describe
the latter. Evolution of qureg χ under unitary operator U is described via the
following assignment:

χ := U(χ).

The no-cloning theorem [9] forbids any assignment χ := U(ψ) if (syntactically)
χ 6= ψ.

The content of a qureg can be read (measured) through quantum procedure
Finalisation and suitable observables. An observable is defined from a family
of pairwise orthogonal subspaces which together span the enveloping space
of the qureg being read. The axioms of quantum mechanics assert that the
measurement “reduces” the qureg to lie in one of those subspaces with different
probabilities. The result of the measurement is a number which uniquely
identifies the “target” subspace.

Let O be an observable defined by the family of pairwise orthogonal sub-
spaces {Si | 0 6 i < m}. In our notation we write Fin(O, i, χ) for the
measurement of O on a quantum system described by state χ:q(

�
n), where i

stores the result determining the subspace to which state χ is reduced. Final-
isation is entirely defined using the probabilistic combinator of pGCL (see [8]
for an unabridged treatment); in our notation we write:

Fin (O, i, χ) =̂ ⊕
[(

i, χ := j,
PSj

(χ)

‖PSj
(χ)‖

)
@ 〈χ, PSj

(χ)〉 | 0 6 j < m

]

where PSj
is the projector onto subspace Sj.

In general, an observable is represented by a self-adjoint operator and
the measurable values are exactly the eigenvalues of that operator. It is a
generalisation, since by the well-known spectral theorem the eigenspaces of
a self-adjoint operator are pairwise orthogonal and complete the enveloping
space. That definition of Fin remains valid when an observable O is defined
by a self-adjoint operator O.

171

Zuliani

The BNF syntax for qGCL is as follows:

〈qprogram〉 ::= 〈qstatement〉{ # 〈qstatement〉}
〈qstatement〉 ::=χ := 〈unitary op〉(χ) |

Fin(〈identifier〉, 〈identifier〉, 〈identifier〉) |
In(〈identifier〉) |
skip | x := e | 〈loop〉 | 〈conditional〉 |
〈nondeterministic choice〉 |
〈probabilistic choice〉 | 〈local block〉

χ ::= 〈identifier〉
〈loop〉 ::=while 〈cond〉 do 〈qstatement〉 od

〈cond〉 ::= 〈boolean expression〉
〈conditional〉 ::= 〈qstatement〉 � 〈cond〉 � 〈qstatement〉

executes the LHS if predicate 〈cond〉 holds

〈nondeterministic choice〉 ::= 〈qstatement〉 2 〈qstatement〉
〈probabilistic choice〉 ::= 〈qstatement〉 p⊕ 〈qstatement〉

executes (LHS,RHS) with probability (p, 1 − p)

〈local block〉 ::=var • 〈qstatement〉 rav

where 〈unitary op〉(χ) is just some mathematical expression involving qureg χ
- such expression should of course denote a unitary operator. qGCL supports
procedures and specifications, which we omit here since we shall not use them.

Both probabilistic and nondeterministic choice may be written using a
prefix notation, in case the branches are more than two. Let [(Pj , rj) | 0 6

j < m] be a finite indexed family of (program, number) pairs with
∑

j rj = 1,
then the probabilistic choice in which Pj is chosen with probability rj is written
in prefix form: ⊕[Pj @ rj | 0 6 j < m]. For nondeterministic choice the
notation is similar.

3 Computing with mixed states

In this Section we compare and extend results of Aharonov et al. [1]. We
begin by generalising their Theorem 1, which established that the quantum
circuit model with mixed states is as efficient as the “standard” (i.e. unitary)
quantum circuit model. We argue that such efficiency extends to any reversible
and probabilistic program.

3.1 Equivalence of computing models

Aharonov et al. [1] proved that one could use quantum circuits with mixed
states, paying only a polynomial slowdown. We generalise this result by means
of the following theorem.

172

Zuliani

Theorem 3.1 Probabilistic (terminating) programs can be efficiently simu-
lated by reversible probabilistic programs.

Proof It is well known that deterministic computations can be efficiently
simulated by reversible machines [2]. In [10] we proved that any terminating
probabilistic program can be replaced by an equivalent but reversible (proba-
bilistic) program. In particular, one can reverse a binary probabilistic choice
using a boolean and a conditional as a reverse statement, as shown in the
following table:

statement S reversible statement Sr inverse statement Si

R p⊕ S push b # pop b #

(Rr # push T) p⊕ (Sr # push F) (Ri / b . Si)#

pop b

where v:D for some data type D and b is a boolean variable. 2

To see that Theorem 3.1 generalises Aharonov et al.’s Theorem 1 we note
that a quantum circuit with mixed states Q can be evidently implemented
as a probabilistic program PQ. Next, by virtue of Theorem 3.1, PQ can be
efficiently simulated by a reversible program, which could then be implemented
as a unitary transformation.

It is worth seeing how one could actually simulate a quantum program
with mixed states using just unitary evolution. In this case the problem is
of course how to simulate a measurement unitarily. The standard approach
to the problem uses the “superoperator” approach to Quantum Mechanics, in
which the state is no longer a complex vector but rather a particular kind of
complex matrix, the so-called density matrix. Then, admissible operations on
a quantum system (including measurements) are postulated to be a special
type of linear maps (also called superoperators) over matrices. In particular,
any quantum operation is represented by some completely positive and trace-
preserving superoperator. Finally, Stinespring-Kraus’ decomposition theorem
[4] establishes that any completely positive map is trace-preserving if and only
if it is implemented by a unitary operator over a larger space. Such operator
is called a dilation (or unitary embedding).

We now exemplify Stinespring-Kraus’ theorem in the special case of a
quantum measurement operator. Consider the measurement O represented by
the family of orthogonal finite Hilbert spaces {Hi | 0 ≤ i < m} decomposing
the Hilbert space H:

H =
⊕

0≤i<m

Hi

where ⊕ here denotes direct sum of subspaces. Such measurement is then
described by the following dilation:

D:H → H⊗HE

D(v) =̂
⊕

0≤i<m Pi(v) ⊗ δi

173

Zuliani

where Pi is the projector over Hi and HE is a Hilbert space of dimension m.
It can be shown that D is indeed unitary.

The Hilbert space HE can be thought as the “environment” and in such
case we have that any quantum system evolves unitarily together with its
environment, leading eventually to a complicated entanglement. Therefore,
we see that one of the main problems to the realisation of quantum computers,
i.e. decoherence, is mathematically equivalent to entanglement between the
computer and its environment. In the case of quantum computation we also
observe that the environment can be used as a “pointer” to the state of the
computation, as HE may describe the status of some macroscopic apparatus
returning visible measurements.

We now give an alternative, programming-oriented approach for unitary
finalisation. It cannot fully “simulate” finalisation, but it seems to be adequate
for all practical purposes. Suppose measurement O is non-degenerate; we
recall that Fin is the probabilistic choice:

Fin (O, r, χ) =̂ ⊕
[(

r, χ := j,
Pj(χ)

‖Pj(χ)‖

)
@ 〈χ, Pj(χ)〉 | 0 6 j < m

]

where Pj is the projector onto subspace Hj. In Theorem 3.1 we saw how to
reverse (binary) probabilistic choice: the multiple choice used by Finalisation
can be clearly handled by nested binary choices. Reversibility of assignments
are addressed via stack operations: r is a standard variable and this does
not pose any problem (the push operation can be implemented as a copy
using the CNOT quantum transformation); χ is a qureg and the no-cloning
theorem forbids copying of quregs. However, we show that Finalisation can
be performed unitarily by using swap operations and an extra qureg. Without
loss of generality we consider diagonal Finalisation, since basic results of linear
algebra show that any observation can be unitarily reduced to a diagonal
observation. It is possible to prove the following refinement:

Fin(∆, r, χ)

v
⊕ [r := j @ |χ(j)| | 0 6 j < m] # 2

[
r = i→ ψ, χ := δi,

χ(i)
|χ(i)|

δi | 0 6 i < m
]

where ψ:q(
�

m). The probabilistic choice over r can be reversed as discussed,
and the conditional does not evidently pose problems. For χ we note that
χ(i)
|χ(i)|

is a complex number of modulus 1 (also known as the global phase) and
Quantum Mechanics’ axioms consider χ and ψ as physically equivalent states,
in the sense that no subsequent measurement is able to distinguish them.
Therefore we can unitarily swap χ and ψ and let the computation going on
over χ.

174

Zuliani

A similar argument cannot be applied in the case of degenerate observables.
Suppose O is degenerate, then it is easy to show that:

Fin(O, r, χ)

=

⊕ [r := j @ 〈χ, Pj(χ)〉 | 0 6 j < m] # 2

[
r = i→ χ :=

Pj(χ)

‖Pj(χ)‖
| 0 6 i < m

]

and since the Pj ’s may project over l-dimensional subspaces (l > 1), we can-
not substitute χ with a physically equivalent qureg. Also, a projector does
not preserve traces, so Stinespring-Kraus’ implies that we cannot unitarily
implement each branch of the conditional.

We conclude by observing that one can always bring finalisation at the end
of a computation: this is the so called principle of deferred measurement [6].
In qGCL it translates as the following lemma.

Lemma 3.2 (Principle of deferred measurement) For χ:q(
�

n), r:
�

n,
observable O, and unitary operator U over χ, it holds:



Fin(O, r, χ)#

χ := U(χ)



 =



χ := U(χ)#

Fin(O′, r, χ)





where O′ is the observable corresponding to the self-adjoint operator UOU−1

(O corresponding to O).

Proof Omitted.

Therefore one could in principle avoid irreversible computations until it is
absolutely necessary, at the end of the computation (though it remains to be
understood if this can be done also for iterating computations, i.e. programs
using loops).

3.2 Probabilistic subroutines

In this Section we address Aharonov et al.’s [1] solution for the “subroutine
problem” in quantum computation: in general, the function computed by a
quantum circuit is a probabilistic one, therefore a problem arises when one
wants to use such functions as subroutines in a bigger quantum circuit, since
the standard theory of quantum circuits allows pure states only. Aharonov
et al. first show how to formalise probabilistic function in the mixed-state
model and then they show that such model is only polynomially faster than
the standard quantum circuit model. In particular, their Theorem 2 estab-
lishes that any probabilistic function can be “simulated” by a standard quan-
tum circuit using only a polynomially greater number of gates, with respect
to the mixed-state quantum circuit implementation. Theorem 2 states that

175

Zuliani

FQP FQP = FQP , where FQP is the set of probabilistic functions efficiently
computable by quantum circuits.

A probabilistic function is defined as a function which outputs a number
with probability depending on the input. More formally:

f :
�

m → [0, 1]�p

f(i) =̂ j with probability pi,j , ∀i:dom(f) •
∑

j pi,j = 1 .

It can be shown that any such function can be represented as a probabilistic
choice over a number of deterministic functions:

f = ⊕ [d @ wd | d:(
�m → �p)]

where wd =̂
∏

i pi,d(i) is of course the probability that (deterministic) function
d gets applied. Aharonov et al. use this decomposition to define a subroutine
gate that implements f as a mixed state in which the unitary version of all
the deterministic functions d’s are applied to the initial state with the induced
probability wd’s. Next, they show that the subroutine gate can be efficiently
implemented unitarily (the result mainly stems from the previous Theorem 1,
of course).

We now consider the same problem in qGCL. The subroutine gate which
implements function f =̂ ⊕ [fd @ wd | 0 ≤ d < t] is defined as:

G =̂ ⊕ [χ := Ud(χ) @ wd | 0 ≤ d < t]

where Ud is the unitary implementation of function fd. We argue that in qGCL
there is no “subroutine problem”, i.e. probabilistic functions are naturally
manipulated by the language. In fact, given the mixed state ρ = {(ψi, bi) |
0 ≤ i < n} it is easy to show that the evolution of ρ by G in qGCL is equivalent
to that offered by the subroutine gate. In qGCL it can be proved that:

(⊕ [χ := ψi @ bi | 0 ≤ i < n] #G) =

⊕ [χ := Ud(ψi) @ biwd | 0 ≤ i < n, 0 ≤ d < t]

which is exactly the action over ρ of the subroutine gate implementing f .

With respect to the unitary implementation of G we can show the following
refinement:

G v (⊕ [r := d @ wd | 0 6 d < t] # 2[r = d→ χ := Ud(χ) | 0 6 d < t])

which means that G can be implemented (as intuition suggests) via a classical
probabilistic choice and then a conditional. The probabilistic choice can be
of course realised as a quantum computation. Without loss of generality we
may suppose that ∃k | 2k = t and therefore with a qureg of size k we can
simulate the probabilistic choice above as the tossing of k biased coins. The

176

Zuliani

complexity of this method is parameterised by the number t of deterministic
functions composing f , and an efficient implementation is possible, as the k
quantum coins are independent and thus can be initialised and measured by
an operator acting on the whole qureg. Therefore an equivalent of Theorem
2 holds for qGCL. Actually, Theorem 3.1 allows us to state that:

Theorem 3.3 Probabilistic subroutines do not strengthen reversible compu-
tation, since they can be efficiently simulated by reversible programs.

3.3 Error propagation

Finally, we set the background for studying error propagation in quantum
programs with mixed states. Aharonov et al. [1] showed that in quantum
circuit with mixed states, errors add linearly. Their Theorem 3 states that
if a circuit using L gates, each with at most ε error, then the total error of
the circuit is at most O(Lε). The result is proved within the superoperator
approach, by defining an extension of the usual trace norm of operators.

Intuitively, a faulty gate F can be described in qGCL as:

F = (χ := Uε(χ) δ⊕ χ := U(χ))

where Uε is the unitary “error” operator, and δ is the probability that Uε is
applied, instead of the correct operator U . The error of such a gate could then
be just δε, where ε =̂ supχ ‖U(χ) − Uε(χ)‖. It seems that this model offers
some flexibility over the single-parameter model of Aharonov et al., since F
can model the difference between the correct and the perturbed state, but also
the probability of this happening. That might result useful when modelling
real mixed-state systems (this is actually the model used in [7]). The Uε being
unitary is an assumption which turns out to be handy in calculations, but
we recall that by the Stinespring-Kraus’ theorem we can replace any quantum
operation with a suitable unitary operator. This motivates such an assumption
of the unitarity of Uε.

However, one quickly realises that this error model is not adequate for
calculations, because of the explosion of the probabilistic choice branches. We
thus need a more compact formalism, and that is the task we start here.

We begin by defining mixed states, which can be thought as probability
distributions over finite sequences of pure states.

Definition 3.4 For a Hilbert space H we define

mixed(H) =̂ ∆(iseq(H))

where iseq(H) denotes the finite injective sequences of elements of H.

Any element of mixed(H) can be written as the matrix product σM , where
σ is the row vector of probabilities, and M is the matrix of the amplitudes
(each column corresponds to a vector state). We have the following lemma.

177

Zuliani

Lemma 3.5

σ|M |2:∆(H)

mixed(H1

⊕
H2) = mixed(H1) cc mixed(H2)

mixed(H1

⊗
H2) = mixed(H1) ⊗ mixed(H2)

where |M |2 is the matrix of the moduli and cc means convex combination.

Proof Omitted.

The ⊗ tensor product of sequences used in the last lemma can be easily
defined from the regular tensor product of vectors. We now define a unitary
evolution for mixed states.

Definition 3.6 For a unitary operator U over quregs in H we define U over
mixed states:

U : mixed(H) → mixed(H)

U(pi, χi; σ
′) =̂ pi, U(χ);U(σ′)

U([]) =̂ ([])

where [] denotes the empty sequence and σ ′ the tail of σ.

Lemma 3.7 Let H be a Hilbert space and U a unitary operator over H, then:

• mixed(H) is a Hilbert space;

• U is unitary.

Proof Omitted.

The faulty gate F can be generalised to work on mixed states.

Definition 3.8

F :mixed(H) → mixed(H)

F(pi, χi; σ
′) =̂ piδ, Uε(χi); pi(1 − δ), U(χi);F(σ′)

F([]) =̂ ([])

4 Conclusions

We offered a programming approach for a model of quantum computation
based on mixed states, and in doing so we obtained mild generalisations of
previous work. As a future work we hope to use this formalisation to analyse
the propagation of errors in a quantum computation involving mixed states.

178

Zuliani

We aim at proving bounds (and trade-offs, possibly) relating the probability
of faulty behaviour and the discrepancy from expected behaviour.

Acknowledgement

This work has been supported by a Marie Curie Outgoing International Fel-
lowship within the 6th Framework Programme of the European Commission.

References

[1] D. Aharonov, A. Kitaev, and N. Nisan. Quantum circuits with mixed states.
In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory

of computing, pages 20–30. ACM Press, 1998.

[2] Charles H. Bennett. Logical reversibility of computation. IBM Journal of

Research and Development, 17:525–532, 1973.

[3] E. W. Dijkstra. Guarded commands, nondeterminacy and the formal derivation
of programs. CACM, 18:453–457, 1975.

[4] Karl Kraus. State, Effects, and Operations, volume 190 of Lecture Notes in

Physics. Springer-Verlag, 1983.

[5] Carroll Morgan and Annabelle McIver. pGCL: formal reasoning for random
algorithms. South African Computer Journal, 22:14–27, 1999.

[6] Micheal A. Nielsen and Isaac L. Chuang. Quantum computation and quantum

information. Cambridge University Press, 2000.

[7] Asher Peres. Quantum Theory: Concepts and Methods. Kluwer Academic
Publishers, 1998.

[8] J. W. Sanders and P. Zuliani. Quantum programming. Mathematics of Program

Construction, Springer-Verlag LNCS, 1837:80–99, 2000.

[9] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature,
299(5886):802–803, 1982.

[10] Paolo Zuliani. Logical reversibility. IBM Journal of Research and Development,
45(6):807–818, 2001.

179

	Introduction
	Quantum programming
	Quantum types
	Quantum language qGCL

	Computing with mixed states
	Equivalence of computing models
	Probabilistic subroutines
	Error propagation

	Conclusions
	Acknowledgement
	References

