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Abstract

The aim of this paper is to introduce a general model of quantum computation, the quantum calculus: both
unitary transformations and projective measurements are allowed; furthermore a complete classical control,
including conditional structures and loops, is available. Complementary to its operational semantics, we
introduce a pure denotational semantics for the quantum calculus. Based on probabilistic power domains [4],
this pure denotational semantics associates with any description of a computation in the quantum calculus
its action in a mathematical setting. Adequacy between operational and pure denotational semantics is
established. Additionally to this pure denotational semantics, an observable denotational semantics is
introduced. Following the work by Selinger, this observable denotational semantics is based on density
matrices and super-operators. Finally, we establish an exact abstraction connection between these two
semantics.
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1 Introduction

In the quantum gate array model, the computational part of a quantum information

processing task is performed by unitary transformations. In the one-way quantum

computer [9], computations rely upon one-qubit projective measurements followed

by unitary Pauli corrections. The measurement calculus [3] has been introduced as

a formal model for one-way quantum computation. The aim of this paper is to intro-

duce a unified and generalized model of quantum computation, the quantum calcu-

lus: unified because both unitary transformations and one-qubit measurements (i.e.

the main ingredients of one-way quantum computations) are allowed, and general-

ized in terms of quantum operations and in terms of classical control. The quantum

calculus allows any admissible transformation or general measurement (including

unitary transformations and multi-qubit projective measurements). Classical con-

trol and conditional structures depending on classical outcomes of measurements

are also allowed, including loops.
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Beyond unification and generalization, one of the aims of the quantum calculus

is to provide a formal framework to deal not only with unitary-based and one-

way quantum computations, but also with measurement-only quantum computation

[7,8], where only projective measurements are allowed during the main three stages

of a computation:

Initialization → Transformations → Observation

In quantum circuits, the transformation stage is realized by means of unitary

transformations whereas observation requires measurements; in one-way quantum

computations, transformations are by means of one-qubit measurements, and uni-

tary transformations are grouped in the initial preparation of the cluster state,

and in corrections at the end of the transformation stage; finally, in measurement-

only quantum computation, no unitary transformations are allowed at any stage,

all transformations are realized by means of projective measurements. In terms of

classical control, a quantum circuit is an unconditional sequence of unitary trans-

formations, whereas the measurement calculus requires adaptive measurements (i.e

the measurement basis depends on previously obtained classical outcomes), but no

iteration is possible. The classical control within the measurement calculus can

therefore be represented in a finite tree, where each path from the root corresponds

to a possible sequence of classical outcomes obtained during the computation. In

the case of measurement-only quantum computation, since loops depending on the

classical outcomes of measurements are required, the classical control can take the

form of a graph instead of a tree.

Contrary to quantum circuits and measurement-calculus, the quantum calcu-

lus allows representations of these three different models of quantum computations.

Moreover a restriction of the quantum calculus where only projective measurements

are allowed, the measurement-only quantum calculus turns out to be an adequate

formal framework for measurement-only quantum computations. This formal frame-

work is helpful for proving the universality of some families of projective measure-

ments in measurement-only quantum computation.

In this paper we introduce the quantum calculus and its restriction to projective

measurements, the measurement-only quantum calculus. Complementary to its op-

erational semantics, we introduce a denotational semantics of the quantum calculus,

based on probabilistic power domains [4], in order to associate with any descrip-

tion of a computation in the quantum calculus its action in a mathematical setting.

Adequacy between the operational and denotational semantics is established. This

denotational semantics does not take into account quantum properties like indistin-

guishability of some probability distributions over quantum states 3 , contrary to the

solutions developed by Kashefi [5] and Selinger [10]. Thus, following the work by

Selinger, we introduce another denotational semantics based on density matrices.

Moreover we establish an exact abstraction connection between these two semantics.

3 It is well-known that distribution probability 1/2 on state |0〉 and 1/2 on state |1〉 is indistinguishable

from distribution probability 1/2 on state |+〉 = (|0〉 + |1〉)/
√

2 and 1/2 on state |−〉 = (|0〉 − |1〉)/
√

2
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2 Quantum Calculus Patterns

The basics of quantum computing are not given in this extended abstract. The

reader may refer to [6] for an introduction to quantum computing.

2.1 Definitions

Following the terminology of the measurement calculus, computations in the quan-

tum calculus are described by means of quantum calculus patterns (often simply

called patterns in the rest of this paper). First we introduce the notion of quantum

action on a given Hilbert space H:

Let L(H,H′) be the set of morphisms from H to H′. An action a from H to H′

is:

a := M |M,a

where M ∈ L(H,H′).

Definition 2.1 (Quantum Calculus Pattern) A quantum calculus pattern P is

a quadruplet (K, I, F,R), where K is a finite set of processes, I, F ⊆ K are sets of

respectively initial and final processes, and R is a finite set of process definitions of

the form:

q = [a].q (+ [a].q)∗

where each q ∈ K \ F appears exactly once in the left hand side position,

moreover every process appearing in R is in K. Finally, there exists a set of Hilbert

spaces {Hq, q ∈ K} such that, for each process definition q =
∑

i[ai].qi of R, each

ai is an action from Hq to Hqi
, moreover the completeness condition

∑

i a
‡
i = IdHq

has to be verified, where a‡ is a map acting on morphisms, defined as:

M ‡ = M †M

(M,a)‡ = M ‡ + a‡

Example 2.2 For any unitary transformation U over H, let PU =({i, f}, {i}, {f}, R),

with R :

i = U.f

One can show that the completeness condition is verified, so PU is a quantum

calculus pattern.

Definition 2.3 (Measurement-only Pattern) A Measurement-only Quantum

Calculus Pattern M = (K, I, F,R) is a Quantum Calculus Pattern where actions

are projective measurements only.

Example 2.4 Let P = ({i, q, f}, {i}, {f}, R), with R:

i = [|0〉〈0|].f + [|1〉〈1|].q

q = [|+〉〈+| , |−〉〈−|].i
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2.2 Operational semantics

A natural state space for the operational semantics of such a model of computation

is S = {〈q, |φ〉〉 | q ∈ K ∧ |φ〉 ∈ H1
q}, where H1

q = {|φ〉 ∈ Hq | || |φ〉 || = 1} . The

probabilistic operational semantics over S is defined as follows:

〈q, |φ〉〉 −−−−−−−→
〈φ|M†M |φ〉

〈

q′,
M |φ〉

√

〈φ|M †M |φ〉

〉

where −→
p

denotes a probabilistic transition which occurs with probability p when-

ever the system is in state 〈q, |φ〉〉. The above transition occurs if a process definition

of the form q = . . .+ [. . . ,M, . . .].q′ + . . . appears in R.

3 Denotational Semantics

3.1 Pure denotational semantics

The definition of a denotational semantics for the quantum calculus patterns follows

the traditional approach to that form of semantics (see, e.g., [1]).

A directed complete partial order (DCPO) is a partial order (D,v) such that

every directed subset X of D has a least upper bound tX. If D,E are two DCPOs,

a function f : D → E is continuous if it is monotonic and for every directed subset

X ⊆ D, f(tX) = tf(X).

Theorem 3.1 (Fixed point theorem) Let D be a DCPO with bottom, and let

f : D → D be continuous. Then f has a least fixed point, that is the set of d ∈ D

for which f(d) = d is nonempty and has a minimum.

Since quantum calculus patterns have a probabilistic evolution, the denotational

semantics is based on probabilistic power domains of valuations [4].

Definition 3.2 A discrete valuation on a set X is a function ν : X → R+.

A discrete valuation uniquely defines a (continuous) valuation : ∀Y ⊆ X, ν(Y ) =
∑

y∈Y ν(y).

For any x ∈ X, ηx : X → R+ is defined as follows:

ηx(y) =

{

1 if x = y

0 otherwise

We write V ≤1(X) the set of discrete valuations ν over X satisfying ν(X) ≤ 1.

For any ν, µ ∈ V ≤1(X), ν v µ iff ∀Y ⊆ X, ν(Y ) ≤ µ(Y ). The purpose is to have

V ≤1(X) contain the probability distributions over X.

Property 1 [4] (V ≤1(X),v) is a DCPO with bottom element the constant valua-

tion 0.

Definition 3.3 (Kleisli extension) Given f : X → V ≤1(Y ), the function f � :
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V ≤1(X) → V ≤1(Y ) is defined as

f� = λν.λy.
∑

x∈X

ν(x).f(x)(y)

The denotational semantics [[.]] defined in this section is a pure denotational

semantics because the semantic domain is based on valuations over pure quantum

states, as opposed to the semantics defined in section 3.2 which is based on density

matrices.

For a given quantum calculus pattern P = (K, I, F,R), and a given E ⊆ K, let

SE = {〈q, |φ〉〉 | q ∈ E ∧ |φ〉 ∈ Hq}.
We are now ready to define the denotational semantics of quantum calculus

patterns:

Definition 3.4 (Pure denotational semantics) For a given quantum calculus

pattern P = (K, I, F,R):

• For any action a from H to H′, [[a]] : H → V ≤1(H′) is:

[[M ]] = λ |φ〉 . 〈φ|M †M |φ〉 η M|φ〉√
〈φ|M†M|φ〉

Notice that [[M ]](|φ〉) = 0 if 〈φ|M †M |φ〉 = 0.

[[M,a]] = λ |φ〉 . ([[M ]](|φ〉) + [[a]](|φ〉))
• ∀q ∈ F, [[q]] : Hq → V ≤1(SF ) is

[[q]] = λ |φ〉 .η〈q,|φ〉〉

Notice that for every q ∈ F , [[q]] is a continuous function.

• ∀q ∈ K \F , let Eq = [Hq → V ≤1(SF )] be the set of continuous functions from Hq

to V ≤1(SF ). Let E be the cartesian product of all Eq’s for q ∈ K \ F . Elements

of E are |K \ F |-tuples 〈gq〉q∈K\F of continuous functions such that gq ∈ Eq.

For any q ∈ K \ F , if q =
∑

i[ai].qi is in R, let χq : E → Eq:

χq = λ〈gp〉p∈K\F .





∑

i|qi∈K\F
g�qi

◦ [[ai]] +
∑

i|qi∈F

[[qi]]
� ◦ [[ai]]





Let Ψ : E → E be the function:

Ψ = λX. 〈χq(X)〉
q∈K\F

Since, the DCPO structure carries over to the sets of continuous functions

Eq, for any q ∈ K \ F , and over cartesian product, (E ,v) is a DCPO where

〈fq〉q∈K\F v 〈gq〉q∈K\F if for any q ∈ K \ F , and for any |φ〉 ∈ Hq, fq(|φ〉) v
gq(|φ〉).

Moreover, Ψ is continuous, thus, according to the fixed point theorem, for every

q ∈ K \ F , let [[q]] : Eq be such that :
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〈[[q]]〉
q∈K\F = Fix (Ψ)

Let (Xn)n∈N be an increasing sequence such that X0 = ⊥ and Xn+1 = Ψ(Xn),

then

〈[[q]]〉
q∈K\F = limn→∞Xn

• [[P]] : SI → V ≤1(SF ) is

[[P]] = λ 〈q, |φ〉〉 .[[q]](|φ〉)

Adequacy between operational and denotational semantics is established by the

following theorem:

Theorem 3.5 (Adequacy) For any pattern P = (K, I, F,R), for any 〈q, |φ〉〉 ∈
SI , and for any 〈p, |ψ〉〉 ∈ SF ,

〈q, |φ〉〉 →∗
p 〈p, |ψ〉〉 ⇐⇒ [[P]](〈q, |φ〉〉)(〈p, |ψ〉〉) = p

3.2 Observable Denotational Semantics

The denotational semantics for quantum calculus patterns introduced in the previ-

ous section does not take into account quantum properties like indistinguishability

of some probability distributions over quantum states. For instance, probability dis-

tribution 1/2 on state |0〉 and 1/2 on state |1〉 is indistinguishable from probability

distribution 1/2 on state |+〉 = (|0〉+ |1〉)/
√

2 and 1/2 on state |−〉 = (|0〉−|1〉)/
√

2.

Notice that denotational semantics developed by Kashefi [5] and Selinger [10] take

into account this phenomenon. Following Selinger, we introduce a denotational se-

mantics based on density matrices. Let D(H) be the set of density matrices over

H, i.e. the set of positive matrices ρ ∈ L(H,H) such that Tr(ρ) ≤ 1. For any

ρ1, ρ2 ∈ D(H), ρ1 v ρ2 if and only if ρ2 − ρ1 is positive.

Theorem 3.6 [10] (D(H),v) is a DCPO.

For a given pattern P = (K, I, F,R), and for any q1, . . . , qd ∈ K, let S\
{q1,...,qd} =

D(Hq1
) × . . . ×D(Hqd

) be a set of d-tuples of density matrices. For any E ⊆ K,

S\
E is isomorphic to a set of functions which associates with any q ∈ E an element

of Hq. As a consequence, functional notations will be used to represent elements of

S\
E .

In the pure denotational semantics, the domain SE is nothing but a set of pairs

composed of a quantum state and a classical process, because discrete distribution

makes sense with both of quantum states and classical processes. In the observable

denotational semantics, the quantum states will be abstracted into density matrices

which encodes probability distributions. Such an encoding can be exported to the

classical part of the computation, like in [10]. The main idea consists in considering

the set of classical processes {q0, . . . , qd} as basis states. The whole Hilbert space

of the this system is then Hq0
⊗ . . . ⊗ Hqd

. The density matrices over this large

Hilbert space are necessary block diagonal. As a consequence, tensor product can

be replaced by cartesian product, leading to S \
{q0,...,qd}.
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One can prove, whenever E is finite, that (S \
E ,v) is a DCPO, where v is defined

pointwise.

In definition 3.7, an observable denotational semantics [[.]]\ over density matrices

is given.

Definition 3.7 (Observable denotational semantics) For a given quantum

calculus pattern P = (K, I, F,R):

• For any action a from H to H′, [[a]]\ : D(H) → D(H′) is :

[[M ]]\ = λρ.M †ρM

[[M,a]]\ = λρ.([[M ]]\(ρ) + [[a]]\(ρ))

• ∀q ∈ F , [[q]]\ : D(Hq) → S\
F ,

[[q]]\ = λρ.λp.δq,pρ

• ∀q ∈ K \ F , let E \
q = [D(Hq) → S\

F ] be the set of continuous functions from

D(Hq) to S\
F . Let E \ be the cartesian product of all E \

q’s for q ∈ K \F . Elements

of E \ are |K \ F |-tuples 〈gq〉q∈K\F of continuous functions such that gq ∈ E \
q. For

any q ∈ K \ F , if q =
∑

i[ai].qi is in R, let χ\
q : E \ → E \

q:

χ\
q = λ〈gp〉p∈K\F .





∑

i|qi∈K\F
gqi

◦ [[ai]]
\ +

∑

i|qi∈F

[[qi]]
\ ◦ [[ai]]

\





Let Ψ : E \ → E \ be the function:

Ψ = λX.
〈

χ\
q(X)

〉

q∈K\F
Since, the DCPO structure carries over to the sets of continuous functions

E \
q, for any q ∈ K \ F , and over cartesian product, (E \,v) is a DCPO where

〈fq〉q∈K\F v 〈gq〉q∈K\F if for any q ∈ K\F , and for any ρ ∈ D(Hq), fq(ρ) v gq(ρ).

Moreover, Ψ is continuous, thus, according to the fixed point theorem, for every

q ∈ K \ F , let [[q]]\ : E \
q be such that :

〈

[[q]]\
〉

q∈K\F
= Fix (Ψ)

Let (Xn)n∈N be an increasing sequence such that X0 = ⊥ and Xn+1 = Ψ(Xn),

then
〈

[[q]]\
〉

q∈K\F
= limn→∞Xn

• [[P]]\ : S\
I → S\

F is

[[P]]\ = λs.
∑

q∈I

[[q]]\(s(q))

Like in the previous section, it is easy to check that combinators used in the

semantics are continuous, thus the least fixed point used to define [[.]]\ does exist.
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S\
I

[[.]]\ - S\
F

V ≤1(SI)

αI

6

[[.]]� - V ≤1(SF )

αF

6

Fig. 1. [[.]]\ is an exact α-abstraction of [[.]]�

3.3 Exact abstraction

The relationship between semantics [[.]] and [[.]]\ is established by the way of an

abstraction function:

Definition 3.8 For a given pattern P = (K, I, F,R), and for any E ⊆ K, let

αE : V ≤1(SE) → S\
E be an abstraction function s.t. :

αE = λν.λq.
∑

|φ〉∈Hq

ν(〈q, |φ〉〉) |φ〉〈φ|

Theorem 3.9 [[.]]\ is an exact α-abstraction of [[.]]�, i.e. for any pattern P =

(K, I, F,R),

[[P]]\ ◦ αI = αF ◦ [[P]]�

The proof is based on continuity of αE for any E ⊆ K.

4 Perspectives

One of the main perspectives is to use the quantum calculus, and more precisely the

measurement-only quantum calculus, in order to prove properties of measurement-

based quantum computations, for instance in terms of universal families of projective

measurements. This is work in progress.

Another perspective is to study equivalences of quantum calculus patterns (in-

tuitively two quantum calculus patterns P1, P2 are equivalent if [[P1]] = [[P2]]), and

more precisely which transformations on quantum calculus patterns preserve their

semantics, leading perhaps to a notion of normalization. However, finding trans-

formations of patterns for solving loops (i.e. transforming recursive definitions of

processes, like q = M.q + . . ., into non-recursive definitions) turns out to be a great

challenge. Approximation based on abstract interpretation [2] may be a helpful

technique to achieve these transformations.
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