Math 3790

Sept 20th

1 The Euler Line

Consider triangle $A B C$ where we call the bisecting poing of $\overline{B C} A^{\prime}$, the bisecting point of $\overline{C A} B^{\prime}$, and the bisecting point of $\overline{A B} C^{\prime}$. We need the following definitions:

- The orthocentre H is the intersection of the altitudes that go through A and B; that is the line that goes through A and is perpendicular to $\overline{B C}$ and similar for B.
- The centroid is the intersection of $\overline{B B^{\prime}}$ and $A^{-} A^{\prime}$ (a line that goes from a vertex of a triangle to the bisecting point of the opposite side is called a median
- The circumcentre O is the intersection of the perpendicular bisectors of $\overline{A C}$ and $\overline{B C}$.

In the mid 1700 's Euler discovered that points H, O, and G are always on the same line (this would eventually be called the Euler Line). That is to say the H, O, and G are collinear. Additionally he proved $|\bar{H} G|=2|\overline{G O}|$

In fact Euler proved that triangles $A H G$ and $G O A^{\prime}$ are similar and then claimed that he was done.

Let's verify Euler's result. We need to prove the following four statements (which we will do in groups).

1. $|\overline{A G}|=2\left|\overline{G A^{\prime}}\right|$
2. $|\overline{A H}|=2\left|\overline{A^{\prime}} O\right|$
3. $\angle H A G=\angle O A^{\prime} G$
4. Once we establish (1), (2), and (3), we're done! In other words, how does it follow that H, G, and O must be collinear, with $|\overline{H G}|=2|\overline{G O}|$.

Theorem 1.1. Take three points A, B, and C, and a line that goes through B and separates A and C. Then A, B, C are collinear if and only if the nonadjacent angles of the long segments generated are equal.

Let us go over a few Euclidean geometry basics.
Definition Two triangles $A B C$ and $D E F$ are considered similar if $\angle A B C=$ $\angle D E F, \angle B C A=\angle E F D$, and $\angle C A B=\angle F D E$.

Two triangle $A B C$ and $D E F$ are similar if and only if we have that

$$
\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|C A|}{|F D|}
$$

Definition Two distinct lines x and y, in a plane, are parallel if they do not intersect. If we think of lines as subsets of the plane that means $x \cap y=\emptyset$.

Euclidean geometry begins with the idea that given a line x and a point P not on x (sometimes said not incident to x) there is a unique line y that is parallel to x and incident to P.

Theorem 1.2. If x_{1}, x_{2}, x_{3} are three distinct lines in a plane such that x_{1} is parallel to x_{2} and x_{2} is parallel to x_{3} then x_{1} is parallel to x_{3}.

Proof. Take a point $P \in x_{3}$ and let x_{3}^{\prime} be the unique line that intersects x_{1} and is incident to P. Assume for contradiction that $x_{3}^{\prime} \neq x_{3}$. Then since x_{3} is the unique line incident to P and parallel to x_{2} we have that x_{2} intersects x_{3}^{\prime} at a point Q. Then we have that x_{3}^{\prime} is the unique line parallel to x_{1} and is incident to Q. However x_{2} is also incident to Q and parallel to x_{1} so $x_{2}=x_{3}^{\prime}$. But that means x_{2} and x_{3} are both incident to P which contradicts the fact that x_{2} and x_{3} is parallel.

Theorem 1.3. Given points $A, B,|\overline{A B}|=0$ if and only if $A=B$.
Theorem 1.4. The three medians of a triangle $A B C$ intersect at a common point G. Furthermore, $|\overline{X G}|=2\left|\overline{X^{\prime}} G\right|$, for all $X \in\{A, B, C\}$.

Proof. We have actually already done the majority of the proof. Let's call the intersection of $A^{\prime} A$ and $B^{\bar{\prime}} B$ point G and the intersection of $A^{\prime} A$ and $C^{\bar{\prime}} C$ point G^{\prime}. If we can show that $\left|G^{\prime} G\right|=0$ then we've shown that they are actually the same point. Well G is between A and A^{\prime} and so is G^{\prime}. So

$$
\left|\overline{G^{\prime}} G\right|=||\overline{G A}|-| \overline{G^{\prime}} A \| .
$$

Well $\left|\overline{A A^{\prime}}\right|=|\overline{A G}|+\left|\overline{G A^{\prime}}\right|$ since G is a midpoint of $\overline{A A^{\prime}}$. And we showed earlier that $|\overline{A G}|=2\left|\overline{G^{\prime}}{ }^{\prime}\right|$ so

$$
\begin{aligned}
\left|\overline{A A^{\prime}}\right| & =2\left|\overline{G A^{\prime}}\right|+\left|\overline{G A^{\prime}}\right| \\
& =3\left|\overline{G A^{\prime}}\right|
\end{aligned}
$$

or in other words

$$
\left|G A A^{-}\right|=\left|A^{-} A^{\prime}\right| / 3 .
$$

This last fact is based completely on the two facts that G is a midpoint of $A^{-} A^{\prime}$ and $|\overline{A G}|=2\left|\overline{G A^{\prime}}\right|$. But G^{\prime} is also a midpoint of $|\overline{A G}|=2\left|\widehat{G A^{\prime}}\right|$ and our proof that $|\overline{A G}|=2\left|\overline{G A^{\prime}}\right|$ gives us that $\left|\overline{A G^{\prime}}\right|=2\left|G^{\prime} A^{\prime}\right|$ if we replace B with C. So

$$
\left|G^{\prime} A^{\prime}\right|=\left|A^{-} A^{\prime}\right| / 3 .
$$

Giving us that

So $G=G^{\prime}$.
Finally do $\overline{C C^{\prime}}$ and $\overline{B B^{\prime}}$ intersect at G also? Yes, since we know that $G \in \overline{C C^{\prime}}$ and $G \in \overline{B B^{\prime}}$, and two distinct lines can have at most one intersection.

Definition We call this point G the centroid or centre of mass of triangle $A B C$.
Another method for proving 3 lines are concurrent is by construction. For example we can prove that the 3 perpendicular bisectors of a triangle are concurrent.

Theorem 1.5. Take a triangle $A B C$. Then the three perpendicular bisect at a single point H.

Proof. We start with $A^{\bar{\prime}} H$ and $\overline{B^{\bar{\prime}} H \text {. Since }\left|\overline{C A^{\prime}}\right|=\left|\overline{B^{\prime}}\right| \text { and } 90^{\circ}=\angle C A^{\prime} H=~=~=~}$ $\angle B A^{\prime} H$ we have that triangles $C A^{\prime} H \cong B A^{\prime} H$. So $|\overline{B H}|=|\overline{C H}|$. Similarly $|\overline{A H}|=|\overline{C H}|$. So we have that $\left|\overline{B C^{\prime}}\right|=\left|\overline{A C^{\prime}}\right|$ and $|\overline{A H}|=|\overline{B H}|$. Thus $C^{\prime} A H \cong C^{\prime} B H$. So $\angle A C^{\prime} H=\angle B C^{\prime} H=90^{\circ}$. So $H C^{\prime}$ is the perpendicular bisector of $\overline{A B}$. So H is "incident" to the perpendicular bisector of $\overline{A B}$.

