MATH 1115, Mathematics for Commerce
 WINTER 2011
 Toby Kenney
 Homework Sheet 4
 Due: Wednesday 16th February: 2:30 PM

Each multiple choice question is worth one mark, other questions are worth two marks.

1. A business makes 3 kinds of product. These products require 4 different kinds of components. The number of each type of component required to make each product is represented by the table

	Component A	Component B	Component C	Component D
Product 1	1	2	0	3
Product 2	3	0	4	0
Product 3	2	2	1	1

These 4 components are made from 3 different kinds of raw materials. The matrix that gives the quantity of each raw material needed for each component is given by the table

	Raw material X	Raw material Y	Raw material Z
Component A	0	2	3
Component B	1	5	1
Component C	2	2	0
Component D	1	1	1

The cost per unit for each raw material is given by the table

Raw material X	20
Raw material Y	50
Raw material Z	5

The cost for raw materials for producing products 1,2 , and 3 are respectively:
(A) 525,1085 , and 655
(B) 720,635 and 990
(C) 930,855 , and 890
(D) 890, 905, and 995
(E) 795, 910, and 840
2. For the system of equations:

x	$+3 y$	$-z$	$=$	4
$2 x$	$-y$	$+z$	$=$	3
$5 x$	$+y$	$+z$	$=$	8

(A) The solution includes $x=3$
(B) The solution includes $y=4$
(C) The solution includes $z=7$
(D) There is no solution.
(E) There are infinitely many solutions.
3. An economy with 3 sectors has Leontief matrix
$A=\left(\begin{array}{lll}0.3 & 0.3 & 0.4 \\ 0.3 & 0.5 & 0.3 \\ 0.4 & 0.4 & 0.2\end{array}\right)$
The production required to meet external demand $\left(\begin{array}{l}30 \\ 20 \\ 40\end{array}\right)$ is:
(A) (-700-800-700)
(B) (700 800700)
(C) (300 200400)
(D) (45-5 0)
(E) It is not possible to satisfy this external demand
4. The first row of the inverse of the matrix
$A=\left(\begin{array}{lll}2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 1 & 0\end{array}\right)$
is:
(A) $(3-4-1)$
(B) $(3-31)$
(C) $\left(\begin{array}{lll}\frac{1}{2} & \frac{1}{3} & \frac{1}{4}\end{array}\right)$
(D) $\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$
(E)The matrix is not invertible
5. The maximum value of $2 x+4 y$ subject to the constraints:

x	$+2 y$	\leqslant	4
$2 x$	$-y$	\geqslant	1
$5 x$	$+y$	\leqslant	15
$x, y \geqslant 0$			

is:
(A) 8 and there is only one value of x, y where it is attained
(B) 6 and there is only one value of x, y where it is attained
(C) 8 and it is attained by infinitely many values of x, y.
(D) 6 and it is attained by infinitely many values of x, y.
(E) There is no maximum value
6. (a) Write out an initial simplex tableau for the problem maximise $x+2 y+4 z$
subject to

x	$+3 y$	$+z$	\leqslant	7
$2 x$	$-y$	$+3 z$	\leqslant	8
$5 x$	$+y$	$-z$	\leqslant	15
x	$+y$	$+5 z$	\leqslant	10
$x, y, z \geqslant 0$				

starting at the BFS $x=y=z=0$.
(b) Use the simplex method to find the maximum value and the values of x, y and z where it is attained.

