MATH 1115, Mathematics for Commerce WINTER 2011

Toby Kenney

Homework Sheet 4 Due: Wednesday 16th February: 2:30 PM

Each multiple choice question is worth one mark, other questions are worth two marks.

1. A business makes 3 kinds of product. These products require 4 different kinds of components. The number of each type of component required to make each product is represented by the table

	Component A	Component B	Component C	Component D
Product 1	1	2	0	3
Product 2	3	0	4	0
Product 3	2	2	1	1

These 4 components are made from 3 different kinds of raw materials. The matrix that gives the quantity of each raw material needed for each component is given by the table

	Raw material X	Raw material Y	Raw material Z
Component A	0	2	3
Component B	1	5	1
Component C	2	2	0
Component D	1	1	1

The cost per unit for each raw material is given by the table

Raw material X	20
Raw material Y	50
Raw material Z	5

The cost for raw materials for producing products 1, 2, and 3 are respectively:

- (A) 525, 1085, and 655
- (B) 720, 635 and 990
- (C) 930, 855, and 890 $\,$
- (D) 890, 905, and 995 $\,$
- (E) 795, 910, and 840

2. For the system of equations:

x	+3y	-z	=	4
2x	-y	+z	=	3
5x	+y	+z	=	8

- (A) The solution includes x = 3
- (B) The solution includes y = 4
- (C) The solution includes z = 7
- (D) There is no solution.
- (E) There are infinitely many solutions.
- 3. An economy with 3 sectors has Leontief matrix

$$A = \left(\begin{array}{rrrr} 0.3 & 0.3 & 0.4 \\ 0.3 & 0.5 & 0.3 \\ 0.4 & 0.4 & 0.2 \end{array}\right)$$

The production required to meet external demand $\begin{pmatrix} 30\\ 20\\ 40 \end{pmatrix}$ is:

- (A) (-700 -800 -700)
- (B) (700 800 700)
- (C) (300 200 400)
- (D) (45 5 0)
- (E) It is not possible to satisfy this external demand
- 4. The first row of the inverse of the matrix

$$A = \begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 1 & 0 \end{pmatrix}$$

is:
(A) (3 -4 -1)
(B) (3 -3 1)
(C) ($\frac{1}{2} \ \frac{1}{3} \ \frac{1}{4}$)
(D) (1 1 0)

(E)The matrix is not invertible

5. The maximum value of 2x + 4y subject to the constraints:

x	+2y	\leq	4
2x	-y	\geq	1
5x	+y	\leqslant	15
$x, y \ge 0$			

is:

(A) 8 and there is only one value of x, y where it is attained

(B) 6 and there is only one value of x, y where it is attained

(C) 8 and it is attained by infinitely many values of x, y.

(D) 6 and it is attained by infinitely many values of x, y.

- (E) There is no maximum value
- 6. (a) Write out an initial simplex tableau for the problem maximise x + 2y + 4zsubject to

x	+3y	+z	\leq	7
2x	-y	+3z	\leq	8
5x	+y	-z	\leq	15
x	+y	+5z	\leq	10
$x,y,z \geqslant 0$				

starting at the BFS x = y = z = 0.

(b) Use the simplex method to find the maximum value and the values of x, y and z where it is attained.