MATH 1115, Mathematics for Commerce WINTER 2011 Toby Kenney Homework Sheet 4 Model Solutions

Each multiple choice question is worth one mark, other questions are worth two marks.

1. A business makes 3 kinds of product. These products require 4 different kinds of components. The number of each type of component required to make each product is represented by the table

	Component A	Component B	Component C	Component D
Product 1		2	0	3
Product 2	3	0	4	0
Product 3	2	2	1	1

These 4 components are made from 3 different kinds of raw materials. The matrix that gives the quantity of each raw material needed for each component is given by the table

	Raw material X	Raw material Y	Raw material Z
Component A	0	2	3
Component B	1	5	1
Component C	2	2	0
Component D	1	1	1

The cost per unit for each raw material is given by the table

Raw material X	20
Raw material Y	50
Raw material Z	5

The cost for raw materials for producing products 1, 2, and 3 are respectively:

- (A) 525, 1085, and 655
- (B) 720, 635 and 990
- (C) 930, 855, and 890
- (D) 890, 905, and 995
- (E) 795, 910, and 840

2. For the system of equations:

x	+3y	-z	=	4
2x	-y	+z	=	3
5x	+y	+z	=	8

- (A) The solution includes x = 3
- (B) The solution includes y = 4
- (C) The solution includes z = 7

(D) There is no solution.

(E) There are infinitely many solutions.

3. An economy with 3 sectors has Leontief matrix

$$A = \left(\begin{array}{rrrr} 0.3 & 0.3 & 0.4 \\ 0.3 & 0.5 & 0.3 \\ 0.4 & 0.4 & 0.2 \end{array}\right)$$

The production required to meet external demand $\begin{pmatrix} 30\\ 20\\ 40 \end{pmatrix}$ is:

- (A) (-700 -800 -700)
- (B) (700 800 700)
- (C) (300 200 400)
- (D) (45 5 0)

(E) It is not possible to satisfy this external demand

4. The first row of the inverse of the matrix

$$A = \begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 1 & 0 \end{pmatrix}$$

is:
(A) (3 -4 -1)

- (B) (3 3 1)
- (C) $\left(\frac{1}{2} \ \frac{1}{3} \ \frac{1}{4}\right)$
- (D) (1 1 0)

(E)The matrix is not invertible

5. The maximum value of 2x + 4y subject to the constraints:

x	+2y	\leq	4
2x	-y	\geq	1
5x	+y	\leq	15
$x, y \ge 0$			

is:

(A) 8 and there is only one value of x, y where it is attained

(B) 6 and there is only one value of x, y where it is attained

(C) 8 and it is attained by infinitely many values of x, y.

- (D) 6 and it is attained by infinitely many values of x, y.
- (E) There is no maximum value
- 6. (a) Write out an initial simplex tableau for the problem maximise x + 2y + 4z subject to

x	+3y	+z	\leq	7
2x	-y	+3z	\leqslant	8
5x	+y	-z	\leqslant	15
x	+y	+5z	\leq	10
$x,y,z \geqslant 0$				

starting at the BFS x = y = z = 0. Let P = x + 2y + 4z

x	y	z	s_1	s_2	s_3	s_4	P	
1	3	1	1	0	0	0	0	7
2	-1	3	0	1	0	0	0	8
5	1	-1	0	0	1	0	0	15
1	1	5	0	0	0	${ s_4 \\ 0 \\ 0 \\ 0 \\ 1 }$	0	10
-1	-2	-4	0	0	0	0	1	0

(b) Use the simplex method to find the maximum value and the values of x, y and z where it is attained.

From the initial tableau, we choose z as the entering model [we could choose x or y instead, but we choose z because its entry in the bottom row is most negative.]

From the four rows, the maximum amounts by which we can increase z are 7, $\frac{8}{3}$, unlimited and 2 respectively. Therefore, the most we can increase x by is 2, and the departing variable is s_4 . We now use row operations to get a new simplex tableau. We divide row 4 by 5, subtract the new row 4 from row 1, subtract 3 times the new row 4 from row 2, add the new row 4 to row 3, and add 4 times the new row 4 to row 5 to get:

x	y	z	s_1	s_2	s_3	s_4	P	
0.8	2.8	0	1	0	0	s_4 -0.2	0	5
1.4	-1.6	0	0	1	0	-0.6	0	2
5.2	1.2	0	0	0	1	$-0.6 \\ 0.2$	0	17
0.2	0.2	1	0	0	0	0.2	0	2
-0.2	-1.2	0	0	0	0	0.8	1	8

From this, we decide that the next entering variable should be y. [x is also possible, but the entry for y is more negative, so we choose y.]

From the four rows, the maximum amounts by which we can increase y are $\frac{5}{2.8}$, unlimited, $\frac{17}{1.2}$ and 10 respectively. Therefore, the most we can increase y by is $\frac{5}{2.8}$, and the departing variable is s_1 .

We now use row operations to get a new simplex tableau. We divide row 1 by 2.8, add 1.6 times the new row 1 to row 2, subtract 1.2 times the new row 1 from row 3, subtract 0.2 times the new row 1 to row 4, and add 1.2 times the new row 1 to row 5 to get:

x	y	z	s_1	s_2	s_3	s_4	P	
$\frac{2}{7}$	1	0	$\frac{1}{28}$	0	0	$-\frac{0.2}{2.8}$	0	$\frac{5}{28}$
$1.4 + \frac{3.2}{7}$	0	0	$\frac{1:6}{2.8}$	1	0	$-0.6 - \frac{0.32}{2.8}$	0	$2^{1.0} + \frac{8}{2.8}$
$5.2 - \frac{1.2}{2.8}$	0	0	$\frac{2.0}{-\frac{1.2}{2.0}}$	0	1	$\frac{0.24}{2.8} + 0.2^{2.8}$	0	$17 - \frac{2.8}{2.8}$
$\frac{1}{7}$ 2.8	0	1	$-\frac{6:2}{2.8}$	0	0	$\frac{1}{2.8} + 0.2$ $0.2 - \frac{0.04}{2.8}$	0	$2 - \frac{1}{2.8}^{2.8}$
$\frac{2.4}{7} - 0.2$	0	0	$\frac{1.2}{2.8}$	0	0	$0.8 - \frac{0.24}{2.8}$	1	$8 + \frac{6}{2.8}$

We can check that the entries on the bottom row are all non-negative, (≥ 0) so this BFS is the optimal solution.

The solution is:

 $x = 0, y = \frac{5}{2.8} = \frac{25}{14}, z = 2 - \frac{1}{2.8} = \frac{4.6}{2.8} = \frac{23}{14}$ and $P = 8 + \frac{6}{2.8} = \frac{28.4}{2.8} = \frac{71}{7}$. [or to two decimal places, x = 0, y = 1.79, z = 1.64 and P = 10.14.]