MATH 1115, Mathematics for Commerce
 WINTER 2011
 Toby Kenney
 Homework Sheet 4
 Model Solutions

Each multiple choice question is worth one mark, other questions are worth two marks.

1. A business makes 3 kinds of product. These products require 4 different kinds of components. The number of each type of component required to make each product is represented by the table

	Component A	Component B	Component C	Component D
Product 1	1	2	0	3
Product 2	3	0	4	0
Product 3	2	2	1	1

These 4 components are made from 3 different kinds of raw materials. The matrix that gives the quantity of each raw material needed for each component is given by the table

	Raw material X	Raw material Y	Raw material Z
Component A	0	2	3
Component B	1	5	1
Component C	2	2	0
Component D	1	1	1

The cost per unit for each raw material is given by the table

Raw material X	20
Raw material Y	50
Raw material Z	5

The cost for raw materials for producing products 1,2 , and 3 are respectively:
(A) 525,1085 , and 655
(B) 720,635 and 990
(C) 930,855 , and 890
(D) 890, 905, and 995
(E) 795,910 , and 840
2. For the system of equations:

x	$+3 y$	$-z$	$=$	4
$2 x$	$-y$	$+z$	$=$	3
$5 x$	$+y$	$+z$	$=$	8

(A) The solution includes $x=3$
(B) The solution includes $y=4$
(C) The solution includes $z=7$
(D) There is no solution.
(E) There are infinitely many solutions.
3. An economy with 3 sectors has Leontief matrix
$A=\left(\begin{array}{lll}0.3 & 0.3 & 0.4 \\ 0.3 & 0.5 & 0.3 \\ 0.4 & 0.4 & 0.2\end{array}\right)$
The production required to meet external demand $\left(\begin{array}{l}30 \\ 20 \\ 40\end{array}\right)$ is:
(A) (-700-800-700)
(B) (700 800700)
(C) (300 200400)
(D) $(45-50)$
(E) It is not possible to satisfy this external demand
4. The first row of the inverse of the matrix
$A=\left(\begin{array}{lll}2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 1 & 0\end{array}\right)$
is:
(A) (3-4-1)
(B) $\left(\begin{array}{lll}3 & -3 & 1\end{array}\right)$
(C) $\left(\begin{array}{lll}\frac{1}{2} & \frac{1}{3} & \frac{1}{4}\end{array}\right)$
(D) $\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$
(E)The matrix is not invertible
5. The maximum value of $2 x+4 y$ subject to the constraints:

x	$+2 y$	\leqslant	4
$2 x$	$-y$	\geqslant	1
$5 x$	$+y$	\leqslant	15
$x, y \geqslant 0$			

is:
(A) 8 and there is only one value of x, y where it is attained
(B) 6 and there is only one value of x, y where it is attained
(C) 8 and it is attained by infinitely many values of x, y.
(D) 6 and it is attained by infinitely many values of x, y.
(E) There is no maximum value
6. (a) Write out an initial simplex tableau for the problem
maximise $x+2 y+4 z$
subject to

x	$+3 y$	$+z$	\leqslant	7
$2 x$	$-y$	$+3 z$	\leqslant	8
$5 x$	$+y$	$-z$	\leqslant	15
x	$+y$	$+5 z$	\leqslant	10
$x, y, z \geqslant 0$				

starting at the BFS $x=y=z=0$.
Let $P=x+2 y+4 z$

x	y	z	s_{1}	s_{2}	s_{3}	s_{4}	P	
1	3	1	1	0	0	0	0	7
2	-1	3	0	1	0	0	0	8
5	1	-1	0	0	1	0	0	15
1	1	5	0	0	0	1	0	10
-1	-2	-4	0	0	0	0	1	0

(b) Use the simplex method to find the maximum value and the values of x, y and z where it is attained.

From the initial tableau, we choose z as the entering model [we could choose x or y instead, but we choose z because its entry in the bottom row is most negative.]

From the four rows, the maximum amounts by which we can increase z are $7, \frac{8}{3}$, unlimited and 2 respectively. Therefore, the most we can increase x by is 2 , and the departing variable is s_{4}. We now use row operations to get a new simplex tableau. We divide row 4 by 5 , subtract the new row 4 from row 1, subtract 3 times the new row 4 from row 2 , add the new row 4 to row 3 , and add 4 times the new row 4 to row 5 to get:

x	y	z	s_{1}	s_{2}	s_{3}	s_{4}	P	
0.8	2.8	0	1	0	0	-0.2	0	5
1.4	-1.6	0	0	1	0	-0.6	0	2
5.2	1.2	0	0	0	1	0.2	0	17
0.2	0.2	1	0	0	0	0.2	0	2
-0.2	-1.2	0	0	0	0	0.8	1	8

From this, we decide that the next entering variable should be y. $[x$ is also possible, but the entry for y is more negative, so we choose y.]
From the four rows, the maximum amounts by which we can increase y are $\frac{5}{2.8}$, unlimited, $\frac{17}{1.2}$ and 10 respectively. Therefore, the most we can increase y by is $\frac{5}{2.8}$, and the departing variable is s_{1}.
We now use row operations to get a new simplex tableau. We divide row 1 by 2.8 , add 1.6 times the new row 1 to row 2 , subtract 1.2 times the new row 1 from row 3 , subtract 0.2 times the new row 1 to row 4 , and add 1.2 times the new row 1 to row 5 to get:

x	y	z	s_{1}	s_{2}	s_{3}	s_{4}	P	
$\frac{2}{7}$	1	0	$\frac{1}{2.8}$	0	0	$-\frac{0.2}{2.8}$	0	$\frac{5}{2.8}$
$1.4+\frac{3.2}{7}$	0	0	$\frac{1.6}{2.8}$	1	0	$-0.6-\frac{0.32}{2.8}$	0	$2+\frac{8}{2.8}$
$5.2-\frac{1.2}{2.8}$	0	0	$-\frac{1.2}{2.8}$	0	1	$\frac{0.24}{2.8}+0.2$	0	$17-\frac{6}{2.8}$
$\frac{1}{7}$	0	1	$-\frac{0.2}{2.8}$	0	0	$0.2-\frac{0.04}{2.8}$	0	$2-\frac{1}{2.8}$
$\frac{2.4}{7}-0.2$	0	0	$\frac{1.2}{2.8}$	0	0	$0.8-\frac{0.24}{2.8}$	1	$8+\frac{6}{2.8}$

We can check that the entries on the bottom row are all non-negative, $(\geqslant 0)$ so this BFS is the optimal solution.
The solution is:
$x=0, y=\frac{5}{2.8}=\frac{25}{14}, z=2-\frac{1}{2.8}=\frac{4.6}{2.8}=\frac{23}{14}$ and $P=8+\frac{6}{2.8}=\frac{28.4}{2.8}=\frac{71}{7}$. [or to two decimal places, $x=0, y=1.79, z=1.64$ and $P=10.14$.]

