MATH 2051, Problems in Geometry
Fall 2007
Toby Kenney
Midterm Examination
Wednesday 24th October, 10:35-11:20 AM
Friday 26th October, 10:35-11:20 AM
Calculators not permitted.

Note that diagrams are not drawn to scale. Scale drawing does not constitute a proof. Justify all your answers.

Section A - Wednesday 24th October, 10:3511:20 AM

1 Let $A B C$ be a triangle with incentre I, inradius r, and circumradius R. Let the feet of the perpendiculars from I to $B C, A C$ and $A B$ be D, E and F respectively.
(a) Show that $A F=s-a$ (where s is the semiperimeter and $a=B C$).
(b) By calculating $F E$ in two different ways, show that $A I^{2}=\frac{2 r(s-a)}{\sin A}$.
(c) The same methods applied to $D E$ and $D F$ give $B I^{2}=\frac{2 r(s-a)}{\sin B}$ and $C I^{2}=\frac{2 r(s-c)}{\sin C}$. By cancelling various different expressions for the area (or otherwise) deduce that $A I . B I . C I=4 r^{2} R$.

Section B - Friday 26th October, 10:35-11:20 AM

2 Let $A B C$ be a triangle such that all three angles are less than 120°. Let P be a point in the triangle such that $\angle A P B=\angle B P C=\angle C P A=120^{\circ}$. Let $x=A P, y=B P, z=C P, a=B C, b=A C$ and $c=A B$.
(a) Prove that $\triangle A B C=\frac{\sqrt{3}}{4}(x y+x z+y z)$.
(b) Prove that $2(x+y+z)^{2}=\left(a^{2}+b^{2}+c^{2}\right)+4 \sqrt{3} \triangle A B C$.
[Hint: $\cos 120^{\circ}=\frac{1}{2}, \sin 120^{\circ}=\frac{\sqrt{3}}{2}$.]
3 Let $A B C D$ be a parallelogram, and let P, Q, R and S be internal points on $A B, B C, C D$ and $D A$ respectively (i.e. P lies between A and B etc.) such that $P Q R S$ is a parallelogram. Let X be the point where $P R$ and $A C$ intersect. Prove that $A X=C X$.

4 Let $A B C D$ be a cyclic quadrilateral, with circumcircle Γ_{1} having centre O_{1}. Let the diagonals $A C$ and $D B$ meet at X (inside Γ_{1}). Let Γ_{2} and Γ_{3} be the circumcircles of the triangles $A B X$ and $C D X$ respectively. Let Y be the other point where Γ_{2} and Γ_{3} meet (i.e. the point which is not $X)$. Suppose Y is nearer than X to $B C$. Show that $O Y B C$ is cyclic. [Hint: extend the line $X Y$ to a point Q past Y. Calculate $\angle B Y C$ as $\angle B Y Q+\angle Q Y C$.

