MATH 2051, Problems in Geometry
 Fall 2007
 Toby Kenney
 Midterm Examination
 Wednesday 24th October, 10:35-11:20 AM
 Friday 26th October, 10:35-11:20 AM
 Calculators not permitted.

Note that diagrams are not drawn to scale. Scale drawing does not constitute a proof. Justify all your answers.

Section A

1 Let $A B C$ be a triangle with incentre I, inradius r, and circumradius R. Let the feet of the perpendiculars from I to $B C, A C$ and $A B$ be D, E and F respectively.

(a) Show that $A F=s-a$ (where s is the semiperimeter and $a=B C)$.

Since tangents from a point are equal, we know that $A F=A E, B F=B D$ and $C E=C D$, so $A F+A E=b+c-B F-C E=b+c-B D-C D=b+c-a$. Therefore, $A F=\frac{b+c-a}{2}=s-a$.
(b) By calculating $F E$ in two different ways, show that $A I^{2}=\frac{2 r(s-a)}{\sin A}$, where $A=\angle B A C$.
Since $\angle I E A=\angle I F A=90^{\circ}$, the quadrilateral $A E I F$ is cyclic, and $A I$ is a diameter, so by the extended sine rule on triangle $A E F, F E=A I \sin A$. On the other hand, if we let X be the point where $A I$ meets $F E$, then from the right-angled triangles $I F X$ and $I E X, F E=2 r \cos \frac{A}{2}$. From triangle $A I E$, we get that $\cos \frac{A}{2}=\frac{s-a}{A I}$. Therefore, $A I \sin A=F E=\frac{2 r(s-a)}{A I}$, so $A I^{2}=\frac{2 r(s-a)}{\sin A}$
(c) The same methods applied to $D E$ and $D F$ give $B I^{2}=\frac{2 r(s-a)}{\sin B}$ and $C I^{2}=\frac{2 r(s-c)}{\sin C}$. By cancelling various different expressions for the area (or otherwise) deduce that AI.BI.CI $=4 r^{2} R$.

Multiplying these formulae together, we get:

$$
\begin{aligned}
& A I^{2} B I^{2} C I^{2}=\frac{8 r^{3}(s-a)(s-b)(s-c)}{\sin A \sin B \sin C}=\frac{8 R^{2} r^{4} s(s-a)(s-b)(s-c)}{s r R^{2} \sin A \sin B \sin C}= \\
& \frac{16 R^{2} r^{4}(\triangle A B C)^{2}}{(\triangle A B C)^{2}}=16 R^{2} r^{4}
\end{aligned}
$$

so $A I . B I . C I=4 r^{2} R$.

Section B

2 Let $A B C$ be a triangle such that all three angles are less than 120°. Let P be a point in the triangle such that $\angle A P B=\angle B P C=\angle C P A=120^{\circ}$. Let $x=A P, y=B P, z=C P, a=B C, b=A C$ and $c=A B$.

(a) Prove that $\triangle A B C=\frac{\sqrt{3}}{4}(x y+x z+y z)$.

$$
\begin{aligned}
& \triangle A B C=\triangle B P C+\triangle A P C+\triangle A P B= \\
& \frac{1}{2} y z \sin 120^{\circ}+\frac{1}{2} x z \sin 120^{\circ}+\frac{1}{2} x y \sin 120^{\circ}= \\
& \frac{\sqrt{3}}{4}(x y+x z+y z)
\end{aligned}
$$

(b) Prove that $2(x+y+z)^{2}=\left(a^{2}+b^{2}+c^{2}\right)+4 \sqrt{3} \triangle A B C$.
[Hint: $\cos 120^{\circ}=\frac{1}{2}, \sin 120^{\circ}=\frac{\sqrt{3}}{2}$.]
Using the cosine rule on triangle $B P C$, we get $a^{2}=y^{2}+z^{2}+y z$. Using the cosine rule on the triangles $A P B$ and $A P C$ as well, and adding the three equations gives us

$$
a^{2}+b^{2}+c^{2}=2\left(x^{2}+y^{2}+z^{2}\right)+x y+y z+x z
$$

On the other hand,

$$
\begin{aligned}
& 2(x+y+z)^{2}=2\left(x^{2}+y^{2}+z^{2}\right)+4(x y+y z+x z)= \\
& a^{2}+b^{2}+c^{2}+3(x y+y z+x z)
\end{aligned}
$$

From (a), we know that $\triangle A B C=\frac{\sqrt{3}}{4}(x y+x z+y z)$. Therefore, $3(x y+$ $x z+y z)=4 \sqrt{3} \triangle A B C$, so $2(x+y+z)^{2}=a^{2}+b^{2}+c^{2}+4 \sqrt{3} \triangle A B C$.
3 Let $A B C D$ be a parallelogram, and let P, Q, R and S be internal points on $A B, B C, C D$ and $D A$ respectively (i.e. P lies between A and B etc.) such that $P Q R S$ is a parallelogram.
(a) Show that triangles APS and $C R Q$ are congruent.

Extend $P S$ and $D C$ to meet at T. By alternate angles $\angle S P A=\angle S T C$, and by corresponding angles, $\angle S T C=\angle Q R C$. Similarly, $\angle P S A=$ $\angle R Q C$. Also, since $P Q R S$ is a parallellogram, $S P=R Q$, so triangles $A P S$ and $C R Q$ are congruent by SAS.
(b) Let X be the point where $P R$ and $A C$ intersect. Prove that $A X=C X$.

Since triangles $A P S$ and $C R Q$ are congruent, $A P=C R$. By alternate angles, $\angle A C R=\angle C A P$, and $\angle C R P=\angle A P R$, so by ASA, triangles $A P X$ and $C R X$ are congruent. Therefore, $A X=C X$.

4 Let $A B C D$ be a cyclic quadrilateral, with circumcircle Γ_{1} having centre O_{1}. Let the diagonals $A C$ and $D B$ meet at X (inside Γ_{1}). Let Γ_{2} and Γ_{3} be the circumcircles of the triangles $A B X$ and $C D X$ respectively. Let Y be the other point where Γ_{2} and Γ_{3} meet (i.e. the point which is not $X)$. Suppose Y is nearer than X to $B C$. Show that $O Y B C$ is cyclic. [Hint: extend the line $X Y$ to a point Q past Y. Calculate $\angle B Y C$ as $\angle B Y Q+\angle Q Y C$.

Since the angle at the centre is twice the angle at the circumference, $\angle B O C=2 \angle B A C$. On the other hand, since opposite angles in a cyclic quadrilateral add up to $180^{\circ}, \angle X Y B=180^{\circ}-\angle B A C$, so $\angle Q Y B=$ $\angle B A C$. Similarly, $\angle Q Y C=\angle B D C=\angle B A C$, so $\angle B Y C=2 \angle B A C=$ $\angle B O C$, so by the converse of angles in the same segment, $B O Y C$ is cyclic.

