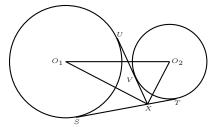
MATH 2051, Problems in Geometry Fall 2007 Toby Kenney Mock Midterm Examination Time allowed: Section A – 45 minutes Section B – 45 minutes **Calculators not permitted.**

Note that diagrams are not drawn to scale. Scale drawing does **not** constitute a proof. Justify all your answers.

Section A

1 Let Γ_1 and Γ_2 be two disjoint circles with centres O_1 and O_2 . Let l_1 be tangent to Γ_1 at S and tangent to Γ_2 at T, both on the same side of the line O_1O_2 . Let l_2 be tangent to Γ_1 and Γ_2 at U and V respectively, on opposite sides of O_1O_2 . Let l_1 and l_2 meet at X. Prove that $\angle O_1XO_2 = 90^\circ$.

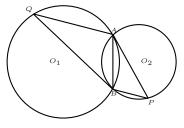


Since tangents from a point are equal, XT = XV, so by SSS, triangles XTO_2 and XVO_2 are congruent. Therefore, $\angle VXO_2 = \angle TXO_2$. Similarly, $\angle SXO_1 = \angle UXO_1$. Therefore

$$\angle O_1 X O_2 = \angle O_1 X U + \angle V X O_2 = \angle S X O_1 + \angle T X O_2 = 180^\circ - \angle O_1 X O_2$$

so $\angle O_1 X O_2 = 90^\circ$.

2 Let Γ_1 and Γ_2 be two circles that intersect at A and B. Let the tangent to Γ_1 at A meet Γ_2 again at P, and let the tangent to Γ_2 at B meet Γ_1 again at Q. Prove that AQ and PB are parallel.



By the alternate segment theorem $\angle QBA = \angle APB$ and $\angle PAB = \angle AQB$, so by angles in a triangle $\angle PBA = \angle QAB$, so by the converse of alternate angles, the lines QA and BP are parallel.

3 Let ABC be a triangle, and let D, E and F be the feet of the altitudes from A, B and C respectively.

(a) Find the lengths DE, DF and EF, and the angles $\angle DEF$, $\angle DFE$ and $\angle EDF$.

Note that the quadrilateral BFEC is cyclic, so $\angle AEF = \angle ABC$ and $\angle AFE = \angle ACB$, so triangles AEF and ABC are similar, so $\frac{EF}{BC} = \frac{AE}{AC} = \cos \angle BAC$. Therefore $EF = BC \cos \angle BAC$. Similarly, $DF = AC \cos \angle ABC$ and $DE = AB \cos \angle ACB$.

By angles in the same segment, $\angle DEH = \angle DCH = 90^{\circ} - \angle ABC$ (from $\triangle BCF$. Similarly, $\angle FEH = 90^{\circ} - \angle ABC$, so $\angle DEF = 180^{\circ} - 2\angle ABC$, and similarly, $\angle EDF = 180^{\circ} - 2\angle BAC \angle DFE = 180^{\circ} - 2\angle ACB$.

(b) Prove that the ratio of areas $\frac{\triangle DEF}{\triangle ABC} = 2 \cos A \cos B \cos C$. [You may use the facts that $\sin 2\theta = 2 \sin \theta \cos \theta$, and $\sin \theta = \sin(180^\circ - \theta)$.] The error of $\triangle DEF$ is

The area of $\triangle DEF$ is

$$\frac{1}{2}DE.DF\sin\angle EDF = \frac{1}{2}AB.AC\cos C\cos B\sin(180^\circ - 2A) = \frac{1}{2}AB.AC\cos C\cos B\sin 2A = AB.AC\cos B\cos C\sin A\cos A = 2\triangle ABC\cos A\cos B\cos C$$

Section B

1 Let ABCD be a square of side 1, and let P, Q, R and S be points on AB, BC, CD, and DA respectively, such that PQRS is a rectangle (all angles 90°), and AS < AP (so $\angle APS < 45^{\circ}$). Prove that PQRS is a square.

Since $\angle SPQ = 90^\circ$, $\angle QPB = 180^\circ - \angle SPA - 90^\circ = \angle PSA$. Also, $\angle PQB = \angle SPA$, so triangles PQB and SPA are similar. In the same way, triangles SPA, PQB, QRC, and RSD are all similar. Since PQ = RS, triangles PQB and RSD are congruent. Similarly, triangles SPA and QRC are congruent.

We therefore have that $\frac{AP}{BQ} = \frac{AS}{BP} = \frac{CQ}{BP} = \frac{1-BQ}{1-AP}$, so AP(1-AP) = BQ(1-BQ). The solutions for this are AP = BQ and AP = 1-BQ = 1-DS = AS. [We can get these by rearranging to $AP-BQ+BQ^2-AP^2 = 0$, and factorising as (AP - BQ)(1 - AP - BQ). It should be clear that they will both be solutions, so this algebra just shows that they are the only solutions.] In the first case, triangles ASP and BPQ are congruent, so PQRS is a square. In the second case $\triangle ASP$ is isosceles which we know is not the case since AP < AS.

2 Let ABCD be a convex quadrilateral (all angles $< 180^{\circ}$), such that the diagonals AC and BD meet at right angles at X. Let R and S be the feet of the perpendiculars from B to CD and DA respectively. Show that if XS = XR, then AB.DC = BC.AD.

Note that BCRX is cyclic (by the converse of angles in the same segment). Therefore, $\angle DRX = \angle DBC$, and $\angle DXR = \angle DCB$, so $\triangle DRX$ and $\triangle DBC$ are similar, so $\frac{RX}{BC} = \frac{DX}{DC}$. Similarly, $\frac{SX}{AB} = \frac{DX}{AC}$, so $\frac{AB}{BC} = \frac{RX.DX.AC}{SX.DX.DC}$. Cancelling and multiplying across, we get AB.DC = BC.AD.