MATH 2051, Problems in Geometry
 Fall 2007
 Toby Kenney
 Mock Midterm Examination
 Time allowed:
 Section A-45 minutes
 Section B-45 minutes
 Calculators not permitted.

Note that diagrams are not drawn to scale. Scale drawing does not constitute a proof. Justify all your answers.

Section A

1 Let Γ_{1} and Γ_{2} be two disjoint circles with centres O_{1} and O_{2}. Let l_{1} be tangent to Γ_{1} at S and tangent to Γ_{2} at T, both on the same side of the line $O_{1} O_{2}$. Let l_{2} be tangent to Γ_{1} and Γ_{2} at U and V respectively, on opposite sides of $O_{1} O_{2}$. Let l_{1} and l_{2} meet at X. Prove that $\angle O_{1} X O_{2}=90^{\circ}$.

Since tangents from a point are equal, $X T=X V$, so by SSS, triangles $X T O_{2}$ and $X V O_{2}$ are congruent. Therefore, $\angle V X O_{2}=\angle T X O_{2}$. Similarly, $\angle S X O_{1}=\angle U X O_{1}$. Therefore
$\angle O_{1} X O_{2}=\angle O_{1} X U+\angle V X O_{2}=\angle S X O_{1}+\angle T X O_{2}=180^{\circ}-\angle O_{1} X O_{2}$
so $\angle O_{1} X O_{2}=90^{\circ}$.
2 Let Γ_{1} and Γ_{2} be two circles that intersect at A and B. Let the tangent to Γ_{1} at A meet Γ_{2} again at P, and let the tangent to Γ_{2} at B meet Γ_{1} again at Q. Prove that $A Q$ and $P B$ are parallel.

By the alternate segment theorem $\angle Q B A=\angle A P B$ and $\angle P A B=\angle A Q B$, so by angles in a triangle $\angle P B A=\angle Q A B$, so by the converse of alternate angles, the lines $Q A$ and $B P$ are parallel.

3 Let $A B C$ be a triangle, and let D, E and F be the feet of the altitudes from A, B and C respectively.

(a) Find the lengths $D E, D F$ and $E F$, and the angles $\angle D E F, \angle D F E$ and $\angle E D F$.
Note that the quadrilateral $B F E C$ is cyclic, so $\angle A E F=\angle A B C$ and $\angle A F E=\angle A C B$, so triangles $A E F$ and $A B C$ are similar, so $\frac{E F}{B C}=$ $\frac{A E}{A C}=\cos \angle B A C$. Therefore $E F=B C \cos \angle B A C$. Similarly, $D F=$ $A C \cos \angle A B C$ and $D E=A B \cos \angle A C B$.
By angles in the same segment, $\angle D E H=\angle D C H=90^{\circ}-\angle A B C$ (from $\triangle B C F$. Similarly, $\angle F E H=90^{\circ}-\angle A B C$, so $\angle D E F=180^{\circ}-2 \angle A B C$, and similarly, $\angle E D F=180^{\circ}-2 \angle B A C \angle D F E=180^{\circ}-2 \angle A C B$.
(b) Prove that the ratio of areas $\frac{\triangle D E F}{\triangle A B C}=2 \cos A \cos B \cos C$. [You may use the facts that $\sin 2 \theta=2 \sin \theta \cos \theta$, and $\sin \theta=\sin \left(180^{\circ}-\theta\right)$.]
The area of $\triangle D E F$ is

$$
\begin{aligned}
& \frac{1}{2} D E \cdot D F \sin \angle E D F=\frac{1}{2} A B \cdot A C \cos C \cos B \sin \left(180^{\circ}-2 A\right)= \\
& \frac{1}{2} A B \cdot A C \cos C \cos B \sin 2 A=A B \cdot A C \cos B \cos C \sin A \cos A= \\
& 2 \triangle A B C \cos A \cos B \cos C
\end{aligned}
$$

Section B

1 Let $A B C D$ be a square of side 1, and let P, Q, R and S be points on $A B$, $B C, C D$, and $D A$ respectively, such that $P Q R S$ is a rectangle (all angles 90°), and $A S<A P$ (so $\angle A P S<45^{\circ}$). Prove that $P Q R S$ is a square.

Since $\angle S P Q=90^{\circ}, \angle Q P B=180^{\circ}-\angle S P A-90^{\circ}=\angle P S A$. Also, $\angle P Q B=\angle S P A$, so triangles $P Q B$ and $S P A$ are similar. In the same way, triangles $S P A, P Q B, Q R C$, and $R S D$ are all similar. Since $P Q=$ $R S$, triangles $P Q B$ and $R S D$ are congruent. Similarly, triangles $S P A$ and $Q R C$ are congruent.
We therefore have that $\frac{A P}{B Q}=\frac{A S}{B P}=\frac{C Q}{B P}=\frac{1-B Q}{1-A P}$, so $A P(1-A P)=$ $B Q(1-B Q)$. The solutions for this are $A P=B Q$ and $A P=1-B Q=1-$ $D S=A S$. [We can get these by rearranging to $A P-B Q+B Q^{2}-A P^{2}=0$, and factorising as $(A P-B Q)(1-A P-B Q)$. It should be clear that they will both be solutions, so this algebra just shows that they are the only solutions.] In the first case, triangles $A S P$ and $B P Q$ are congruent, so $P Q R S$ is a square. In the second case $\triangle A S P$ is isosceles which we know is not the case since $A P<A S$.

2 Let $A B C D$ be a convex quadrilateral (all angles $<180^{\circ}$), such that the diagonals $A C$ and $B D$ meet at right angles at X. Let R and S be the feet of the perpendiculars from B to $C D$ and $D A$ respectively. Show that if $X S=X R$, then $A B \cdot D C=B C \cdot A D$.

Note that $B C R X$ is cyclic (by the converse of angles in the same segment). Therefore, $\angle D R X=\angle D B C$, and $\angle D X R=\angle D C B$, so $\triangle D R X$ and $\triangle D B C$ are similar, so $\frac{R X}{B C}=\frac{D X}{D C}$. Similarly, $\frac{S X}{A B}=\frac{D X}{A C}$, so $\frac{A B}{B C}=$ $\frac{R X \cdot D X \cdot A C}{S X \cdot D X \cdot D C}$. Cancelling and multiplying across, we get $A B \cdot D C=B C \cdot A D$.

