MATH 2112/CSCI 2112, Discrete Structures I
 Winter 2007
 Toby Kenney
 Homework Sheet 1
 Solutions and hints

Here are model solutions to the easier questions, and hints for the more difficult questions. For the questions where I have only given hints, you may submit revised solutions for half credit with your solutions to the next assignment. I will give out model solutions to those questions with the solutions and hints for that assignment.

These model solutions do not always list all possible ways of doing the questions.

1 Rewrite these sentences symbolically: (Let $M=$ "Maths is fun.", $L=$ "Dr. Kenney is a good lecturer.", $A=$ "I will get an A.", $H=$ "I will work very hard.")
(a) Maths is fun but Dr Kenney is not a good lecturer.
$M \wedge \neg L$
(b) If I work very hard then if Dr Kenney is a good lecturer then I will get an A.
$H \rightarrow(L \rightarrow A)$
(c) In order for me to get an A, It is necessary that I work very hard.
$A \rightarrow H$
(d) It is not the case that if I work very hard then maths is fun.
$\neg(H \rightarrow M)$

2 Which of the following pairs of propositions are logically equivalent? Justify your answers.
(a) p and $(p \rightarrow q) \rightarrow p$

The truth table is:

p	q	$p \rightarrow q$	$(p \rightarrow q) \rightarrow p$
0	0	1	0
0	1	1	0
1	0	0	1
1	1	1	1

So they are equivalent.
(b) $p \wedge \neg q$ and $\neg p \rightarrow \neg q$

If p and q are both true, then $\neg p \rightarrow \neg q$ is true, but $p \wedge \neg q$ is false, so the two propositions are not logically equivalent.
(c) $p \rightarrow(q \vee p)$ and $p \vee q$

If p and q are both false, then $p \rightarrow(q \vee p)$ is true, but $p \vee q$ is false, so the two propositions are not logically equivalent.

3 Use De Morgan's Laws to write out the negation of the following sentences: (a) I will work very hard or I will fail.

I will not work very hard, and (or but) I will not fail.
(b) Maths is fun and I will work very hard.

Either maths is not fun or I will not work very hard.
(c) Maths is not fun, and I will not work very hard.

Either maths is fun or I will work very hard.

4 Show the following logical equivalences using the equivalences in 1.1.1.: (a) $(p \wedge(q \vee \neg q)) \wedge(p \vee(q \wedge \neg q))$ and p
$q \vee \neg q$ is a tautology (1.1.1.5), so $p \wedge(q \vee \neg q) \equiv p$ by (1.1.1.4). Similarly, $q \wedge \neg q$ is a contradiction (1.1.1.5), so $p \vee(q \wedge \neg q) \equiv p$ by (1.1.1.4). Therefore, $(p \wedge(q \vee \neg q)) \wedge(p \vee(q \wedge \neg q)) \equiv p \wedge p \equiv p$ by (1.1.1.7).
(b) $q \vee(\neg \neg q \wedge p)$ and q
$q \vee(\neg \neg q \wedge p) \equiv q \vee(q \wedge p) \equiv q$ using (1.1.1.6) and (1.1.1.10).
(c) $\neg q \vee(\neg \neg q \wedge p)$ and $\neg q \vee p$
$\neg q \vee(\neg \neg q \wedge p) \equiv \neg q \vee(q \wedge p) \equiv(\neg q \vee q) \wedge(\neg q \vee p) \equiv(q \vee \neg q) \wedge(\neg q \vee p) \equiv \neg q \vee p$ using (1.1.1.6), (1.1.1.3), (1.1.1.1), (1.1.1.5), and (1.1.1.4).

5 Show that if for any propositions p, q, and r (not necessarily primitive propositions) $p \vee r \equiv p \vee q$ and $p \wedge r \equiv p \wedge q$ then we must have $q \equiv r$.

Hints:

You want to show $q \equiv r$, given $p \wedge q \equiv p \wedge r$ and $p \vee q \equiv p \vee r$. Start with the equivalences $q \equiv q \vee(q \wedge p) \equiv q \vee(p \wedge q) \equiv q \vee(p \wedge r)$. You still need to use the equivalence $p \vee q \equiv p \vee r$.

Alternatively, use truth tables: Recall that for any propositions s and t, $s \equiv t$ if and only if the proposition $s \leftrightarrow t$ is a tautology.

6 Using the rules of inference in table 1.3.1, and the logical equivalences in table 1.1.1, show that the following conclusions follow frow the premises given: (State which rule of inference you are using at each step.)
(a) From $(p \rightarrow(p \rightarrow p)) \rightarrow(p \rightarrow p)$ and $p \rightarrow(p \rightarrow p)$, deduce $p \rightarrow p$.

This follows in one step by modus ponens.
(b) From $p \wedge(q \vee r)$, deduce $(p \vee q) \vee s$.

$$
p \wedge(q \vee r)
$$

$p \quad$ by specialisation
$p \vee q \quad$ by generalisation
$(p \vee q) \vee r$ by generalisation
(c) From $p \rightarrow q$ and $(p \rightarrow r) \vee(q \rightarrow r)$, deduce $p \rightarrow r$.

Hint:

It might seem that elimination is a good way to show the result, but this approach won't work because we can't prove $\neg(q \rightarrow r)$ (you can see from the truth table that it doesn't follow).
In fact, we need to use a division into cases argument. For this we will have to show $(p \rightarrow r) \rightarrow(p \rightarrow r)$ and $(q \rightarrow r) \rightarrow(p \rightarrow r)$. The first is a tautology. The second will have to be deduced by transitivity from $(q \rightarrow r) \rightarrow(q \rightarrow r)$ and $(q \rightarrow r) \rightarrow(p \rightarrow q)$. The first is a tautology, so we just need to prove $(q \rightarrow r) \rightarrow(p \rightarrow q)$ from $p \rightarrow q$.

7 Find Boolean expressions for the following logic circuits:
(a) $(p \wedge q) \vee \neg p$
(b) $(p \vee q) \wedge(\neg q \vee r)$

8 Write the converse and the contrapositive of the following propositions:
(a) If n is prime, then either n is odd, or $n=2$.

Converse: "If either n is odd or $n=2$, then n is prime."
Contrapositive: "If it is not the case that either n is odd or $n=2$, then n is not prime."
(b) If the angle $A B C$ is a right-angle, then $A C$ is a diameter of the circle passing through A, B and C.

Converse: "If $A C$ is a diameter of the circle passing through A, B and C, then the angle $A B C$ is a right angle."
Contrapositive: "If $A C$ is not a diameter of the circle passing through A, B and C, then the angle $A B C$ is not a right angle."

