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5 Define the repeat of a positive integer as the number obtained by writing
it twice in a row (in decimal). For example, the repeat of 364 is 364364.
Find a positive integer n such that the repeat of n is equal to m2 for some
integer m. [Hint: the repeat of n is always a multiple of n. You may find
the following divisibility test useful: a number is divisible by 11 if and only
if the sum of its odd digits minus the sum of its even digits is divisible by
11. For example, 1254 is divisible by 11 since the sum of its odd digits is
1+5=6 and the sum of its even digits is 2+4=6, so their difference is 0,
which is divisible by 11. You won’t find the answer by trial and error.]

The repeat of a number n with k digits is (10k + 1)n. If this is a square,
then every prime factor of 10k + 1 must divide it, and must therefore also
divide its square root. Thus, the square of every prime factor of 10k + 1
must divide (10k + 1)n, so either its square will divide 10k + 1, or it must
divide n. Since n < 10k +1, if 10k +1 is not divisible by the square of any
prime number, then (10k +1)n cannot be a square. Therefore, we have to
look for a positive integer k such that 10k + 1 is divisible by the square
of some prime. To save time in our search, we can note that if k is even,
then 10k + 1 = 11 × 90 . . . 9091. Therefore, if one of the numbers of the
form 90 . . . 9091 is divisible by 11, then 112 will divide the corresponding
10k + 1. There is a useful test for divisibility by 11: add up the odd
digits and subtract the even ones; if the answer is divisible by 11, then the
original number was. Using this test, we see that if there are 5 ‘9’s in the
number, then it will be divisible by 11. Indeed, 1011+1 = 112×826446281,
so the number 82644628100826446281 is a perfect square. However, this is
not the repeat of a number, because it has a leading 0 – 826446281 has too
few digits. To remedy this problem, we multiply 826446281 by a square
number to increase the number of digits by 2. The square numbers which
do this are 16, 25, 36, 49, 64, 81 and 100. These give us

1322314049613223140496 = 363636363642 (1)
2066115702520661157025 = 454545454552 (2)
2975206611629752066116 = 545454545462 (3)
4049586776940495867769 = 636363636372 (4)
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5289256198452892561984 = 727272727282 (5)
6694214876162942148761 = 818181818192 (6)
8264462810082644628100 = 909090909102 (7)

These are the only solutions less than 1020.

8 Consider the integers whose last digit (in decimal) is 1. The product of any
two such integers is another such integer. Any such integer can therefore
be factored as a product of integers of this type that cannot be written as
non-trivial products of other integers of this type. For example, 7, 211 =
11×21×31, and 11, 21, and 31 cannot be expressed as products of integers
whose last digit is 1.

Can every integer of this type be written in a unique way as such a product?
Give a proof or a counterexample.

This factorisation is not unique – consider 4641 = 21 × 221 = 51 × 91.
The easy way to find this counterexample is to note that by unique
prime factorisation for positive integers, the numbers must be composed
from the same primes multiplied together in two different ways. For
example, we could form the product of the 4 primes p1, p2, p3, and
p4 as either (p1p2)(p3p4) or (p1p4)(p3p2). We want all the bracketed
products to be congruent to 1 modulo 10. Therefore, p2 ≡ p2(p1p4) =
(p2p1)p4 ≡ p4 (mod 10), and similarly p1 ≡ p3 (mod 10). This will work
if p1 ≡ p3 ≡ 3 (mod 10) and p2 ≡ p4 ≡ 7 (mod 10); the smallest col-
lection of primes of this form is 3,7,13,17. Alternatively, we could have
p1 ≡ p2 ≡ p3 ≡ p4 ≡ 9 (mod 10), for example 19 × 29 × 59 × 79 =
551× 4661 = 1121× 2581 = 1501× 1711.
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1 Use Euclid’s algorithm to find the greatest common divisor of the following
pairs of numbers. Write down all the steps involved.

(a) 123,456 and 654,321

654321 = 5× 123456 + 37041
123456 = 3× 37041 + 12333
37041 = 3× 12333 + 42
12333 = 293× 42 + 27

42 = 1× 27 + 15
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27 = 1× 15 + 12
15 = 1× 12 + 3
12 = 4× 3

So the greatest common divisor of 123,456 and 654,321 is 3.

(b) 1,111,111 and 12,121,212

12121212 = 10× 1111111 + 1010102
1111111 = 1× 1010102 + 101009
1010102 = 10× 101009 + 12
101009 = 8417× 12 + 5

12 = 2× 5 + 2
5 = 2× 2 + 1
2 = 2× 1

So the greatest common divisor of 1,111,111 and 12,121,212 is 1.

2 Find integers a and b such that 13579a + 2468b = 1.

13579 = 5× 2468 + 1239
2468 = 1× 1239 + 1229
1239 = 1229 + 10
1229 = 122× 10 + 9

10 = 1× 9 + 1

So working backwards:

1 = 10− 9 = 10− (1229− 122× 10) = 123× 10− 1229
= 123× (1239− 1229)− 1229 = 123× 1239− 124× 1229
= 123× 1239− 124× (2468− 1239) = 247× 1239− 124× 2468
= 247× (13579− 5× 2468)− 124× 2468 = 247× 13579− 1359× 2468

So a = 247, b = −1359 works.
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3 (a) Show that any number congruent to 3 modulo 4 is divisible by a prime
number congruent to 3 modulo 4.[You may assume that the product of any
collection of integers that are all congruent to 1 modulo 4 is also congruent
to 1 modulo 4.]

Proof. Suppose for contradiction that the result is not true. Let n be
congruent to 3 modulo 4, but not divisible by any prime number congruent
to 3 modulo 4. n is odd, so it is not divisible by 2. Therefore, all its prime
factors are odd, so they must be congruent to 1 modulo 4. Their product
is therefore also congruent to 1 modulo 4. This contradicts the fact that
n was congruent to 3 modulo 4. Therefore, by contradiction, n must have
a prime factor congruent to 3 modulo 4.

(b) Prove that there are infinitely many prime numbers congruent to 3
modulo 4.

Hint: This is similar to the proof that there are infinitely many primes.
We start by supposing that there are only finitely many prime numbers
congruent to 3 modulo 4, and let them be p1, p2, . . . , pk. Now we take their
product: N = p1p2 · · · pk. Now divide into two cases: N ≡ 1 (mod 4) and
N ≡ 3 (mod 4). In either case, we can add something to N to get a
number congruent to 3 modulo 4 that isn’t divisible by any of the primes
that are congruent to 3 modulo 4. This will contradict (a).

4 Are the following numbers rational or irrational? Give proofs:

(a)
√

6

This is irrational.

Proof. Suppose
√

6 is rational. Let p, q ∈ Z such that p
q =

√
6, with q 6= 0.

Now let p′ = p
(p,q) and q′ = q

(p,q) , so that (p′, q′) = 1 and p′

q′ =
√

6. Thus
p′2 = 6q′2, so p′2 is even. Therefore, p′ is even. Thus p′ = 2k for some
integer k. Therefore, 4k2 = (2k)2 = 6q′2, so 2k2 = 3q′2. Therefore, q′2

is even, so q′ is even, and thus p′ and q′ have common factor 2. This
contradicts (p′, q′) = 1, so our initial assumption that

√
6 is rational must

be false. Therefore,
√

6 is irrational.

(b)
√

2 +
√

3 [Hint: What is
(√

2 +
√

3
)2

?]

This is irrational:

4



Proof. Suppose that
√

2 +
√

3 is rational. Then (
√

2 +
√

3)2 = 2 + 3 +
2
√

2
√

3 = 5 +
√

6 must also be rational. Now 5 +
√

6 − 5 =
√

6 is the
difference of two rational numbers, and therefore rational, but it is not by
(a), so by contradiction,

√
2 +

√
3 must be irrational.

5 Show that the difference between a rational number and an irrational num-
ber is irrational.

Proof. Let a be a rational number and let b be an irrational numbers. Let
c = a−b. We want to show that c is irrational. Suppose that c is rational.
Then a− c is the difference between two rational numbers, and therefore,
rational. However, a−c = b which is irrational. This is a contradiction, so
our assumption that c is rational must be impossible. Therefore, c must
be irrational.

6 Observe that
(√

2
√

2
)√2

=
√

2(
√

2×
√

2) =
√

2
2

= 2. Prove that there are

two irrational numbers α and β such that αβ is rational.

Hint: This is a division into cases proof: Either
√

2
√

2
is rational or it is

irrational. From either of these cases, we can find α and β. This is an
example of a non-constructive proof of an existential result.

7 (Bonus Question) Prove that if a positive integer n is not a square, then√
n is irrational.

Proof. Let the unique prime factorisation of n be n = pe1
1 pe2

2 · · · pek

k . Now
if e1, e2, . . ., ek are all even, then n would be a square. (If ei = 2fi for
i = 1, . . . , k, then n is the square of pf1

1 pf2
2 · · · pfk

k .) Thus, at least one of
e1, e2, . . . , ek must be odd. Let ei be odd. Now suppose

√
n is rational.

Let
√

n = p
q for p, q ∈ Z with q 6= 0. Let p′ = p

(p,q) and q′ = q
(p,q) . Then

p′2

q′2 = n, so p′2 = nq′2, so pi|p′2. Therefore by unique prime factorisation,
pi|p′ (see Sheet 4 Question 3). Therefore, since (p′, q′) = 1, pi does not

divide q′. Now pei
i |p′2, so we must have p

ei+1
2

i |p′, since if the highest power

of pi dividing p′ were less than p
ei+1

2
i then it would be at most p

ei−1
2

i ,
so the highest power of pi dividing p′2 would be at most pei−1

i , and we

know that pei
i |p′2. Therefore, p

ei+1
2

i |p′, and so pei+1
i |p′2. Let p′2 = pei+1

i k,
then we have pik = q′2, so pi|q′2, and thus, pi|q′ This contradicts the fact
that (p′, q′) = 1, so our assumption that

√
n was rational must be false.

Therefore, if n is not a square, then
√

n is irrational.

8 Find 0 6 n < 2310 satisfying:
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n ≡ 7 (mod 11) (8)
n ≡ 10 (mod 14) (9)
n ≡ 11 (mod 15) (10)

The easy way to do this is to notice that n = −4 satisfies these con-
gruences, so the unique solution with 0 6 n < 2310 (11,14, and 15 are
pairwise coprime) must be congruent to -4 modulo 2310, so it must be
2310− 4 = 2306.

A more generally applicable way is the way used in the proof of the Chinese
Remainder Theorem:

Observe that 14 ≡ 3 (mod 11) and 3×4 ≡ 1 (mod 11), so 10−3×(4×14) ≡
10 − 3 ≡ 7 (mod 11), so n ≡ −4 (mod 11 × 14) is the unique solution to
the first two congruences. Now −4 ≡ 150 (mod 154), so we need to solve
the congruences

n ≡ 150 (mod 154) (11)
n ≡ 11 (mod 15) (12)

Now 154 ≡ 4 (mod 15), and 4× 4 ≡ 1 (mod 15), so 150+11× (4× 154) ≡
11 (mod 15), Also, 11 × 4 = 44 ≡ 14 (mod 15), so n ≡ 150 + 14 × 154 =
2306 (mod 2310) is the unique solution.
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