MATH 2112/CSCI 2112, Discrete Structures I
 Winter 2007
 Toby Kenney
 Homework Sheet 6
 Hints \& Model Solutions

Sheet 5

3 (b) Prove that there are infinitely many prime numbers congruent to 3 modulo 4.

Proof. Suppose there are only finitely many primes of this form. Let them be $p_{1}, p_{2}, \ldots, p_{k}$. Now consider $p_{1} p_{2} \cdots p_{k}$. If k is even then this is congruent to 1 modulo 4 , in which case $p_{1} p_{2} \cdots p_{k}+2 \equiv 3(\bmod 4)$. Therefore, $p_{1} p_{2} \cdots p_{k}+2$ has a prime factor congruent to 3 modulo 4. This can't be any of $p_{1}, p_{2}, \ldots, p_{k}$, so it contradicts the assumption that $p_{1}, p_{2}, \ldots, p_{k}$ were the only such primes.
On the other hand, if k is odd then $p_{1} p_{2} \cdots p_{k}$ is congruent to 3 modulo 4 , in which case $p_{1} p_{2} \cdots p_{k}+4 \equiv 3(\bmod 4)$. Therefore, $p_{1} p_{2} \cdots p_{k}+4$ has a prime factor congruent to 3 modulo 4 . This can't be any of $p_{1}, p_{2}, \ldots, p_{k}$, so it contradicts the assumption that $p_{1}, p_{2}, \ldots, p_{k}$ were the only such primes.
Therefore, in either case, $p_{1}, p_{2}, \ldots, p_{k}$ are not the only such primes, so there must be infinitely many.

6 Observe that $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}(\sqrt{2} \times \sqrt{2})=\sqrt{2}^{2}=2$. Prove that there are two irrational numbers α and β such that α^{β} is rational.

Proof. Either $\sqrt{2}^{\sqrt{2}}$ is rational or it is irrational. In the first case, we can set $\alpha=\sqrt{2}$ and $\beta=\sqrt{2}$, then α and β are irrational, but α^{β} is rational. On the other hand, if $\sqrt{2}^{\sqrt{2}}$ is irrational, then setting $\alpha=\sqrt{2}^{\sqrt{2}}$ and $\beta=\sqrt{2}$ gives a pair of numbers such that α and β are irrational but α^{β} is rational.

Sheet 6

1 Show that if $m>1$ and $n>1$ are natural numbers such that $6 \mid m n$, then it is possible to cover an $m \times n$ chessboard with 3×2 tiles. [Hint: if $3 \mid m$ and $2 \mid n$, or $2 \mid m$ and $3 \mid n$, this should be easy. If $6 \mid m$ and $n>2$, divide
into two cases: $n=2 k+3$ and $n=2 k$. Prove each of these by induction on k.]

Proof. If $m=2 k$ and $n=3 l$, then we can cover the $m \times n$ chessboard with a k by l block of 3×2 tiles. Similarly if $m=3 k$, and $n=2 l$. On the other hand, if $m=6 k$, we can cover an $m \times 2$ chessboard by putting $2 k$ 3×2 tiles in a row, Therefore, if we can cover an $m \times n$ chessboard, then we can cover an $m \times(n+2)$ chessboard, by just placing our covering of the $m \times 2$ chessboard next to our covering of the $m \times n$ chessboard. Thus, we can cover all $m \times 2 l$ chessboards.

We can also cover an $m \times 3$ chessboard by placing $3 k$ tiles side by side. Therefore, using the same induction step as before, we can cover all $m \times$ $(3+2 l)$ chessboards.

2 Consider the set of ordered pairs (m, n) of natural numbers, ordered by $(k, l)<(m, n)$ if either $k<m$ or $(k=m$ and $l<n)$. [This is called the lexicographic order; it is the way words are ordered in the dictionary.] For example, $(1,7)<(2,1)$, and $(3,4)<(3,5)$. Show that this set is a well-order.

Proof. Let A be any non-empty subset of this set. We need to show that A has a smallest element. We consider the set of natural numbers m, for which there is an n such that $(m, n) \in A$. This is a non-empty subset of the natural numbers, so it has a least element m_{0} because the natural numbers are a well-order.
Now we consider the set of natural numbers n such that $\left(m_{0}, n\right) \in A$. This is a non-empty subset of the natural numbers, so it has a least element n_{0}. We will show that $\left(m_{0}, n_{0}\right)$ is the least element of A. Given any element (k, l) of A, we know that there is an n with $(k, n) \in A$, since $n=l$ works. Therefore, since m_{0} was the smallest natural number with this property, we must have $m_{0} \leqslant k$. If $m_{0}<k$, then by definition of the order on our set, $\left(m_{0}, n_{0}\right)<(k, l)$. On the other hand, if $m_{0}=k$ then $\left(m_{0}, l\right) \in A$, so by definition of n_{0}, we must have $n_{0} \leqslant l$. Thus $\left(m_{0}, n_{0}\right)<(k, l)$. Since (k, l) was an arbitrary element of $A,\left(m_{0}, n_{0}\right)$ must be the smallest element of A, so A has a smallest element.

3 Show that $\sum_{i=1}^{n} i^{2}(i+1)=\frac{n(n+1)(n+2)(3 n+1)}{12}$.
Proof. Induction on n. When $n=0$ the result obviously holds. Suppose the formula works for some value of n. We want the show that it works for $n+1$, i.e. that $\sum_{i=1}^{n+1}=\frac{(n+1)(n+2)(n+3)(3(n+1)+1)}{12}$. But $\sum_{i=0}^{n+1} i^{2}(i+$ 1) $=\sum_{i=0}^{n} i^{2}(i+1)+(n+1)^{2}(n+2)=\frac{n(n+1)(n+2)(3 n+1)}{12}+(n+1)^{2}(n+$ $2)=(n+1)(n+2)\left(\frac{n(3 n+1)+12(n+1)}{12}\right)=(n+1)(n+2) \frac{3 n^{2}+13 n+12}{12}=$ $\frac{(n+1)(n+2)(n+3)(3 n+4)}{12}$, so the formula works for $n+1$.

4 What is wrong with the following proof that all maths lecturers are the same age?

The problem with the proof given is that when $n=1$, the induction step doesn't work, because the set l_{2}, \ldots, l_{n} is empty, so the fact that l_{2}, \ldots, l_{n} have ages both a_{1} and a_{2} is vacuously true, and does not imply that $a_{1}=a_{2}$.

5 Prove that if $m, n<2^{k}$ then Euclid's algorithm finds the greastest common divisor of m and n in at most $2 k$ steps.

Proof. Induction on k. If $k=1$, then m and n have to both be 1 , so Euclid's algorithm finishes in just one step.
Now suppose that we know that if $m, n<2^{k-1}$, then Euclid's algorithm finds the greatest common divisor in at most $2(k-1)$ steps. Without loss of generality, suppose $n<m$. The first step of Euclid's algorithm is to find q and r such that $m=n q+r$, where $r<n$. We also know that $r \leqslant m-n$. Therefore, $2 r<n+m-n=m$, so $r<2^{k-1}$. Similarly, when we apply Euclid's algorithm to n and r, we get $n=q_{1} r+r_{1}$, where $r_{1}<2^{k-1}$. Therefore, when we apply Euclid's algorithm to r and r_{1}, it finds the greatest common divisor in at most $2(k-1)$ steps. Therefore, when we add the first two steps $m=q n+r$ and $n=q_{1} r+r_{1}$, we have at most $2 k$ steps in total.

6 In Sheet 4, Question 3 (a), you were asked to prove that any positive integer congruent to 3 modulo 4 is divisible by a prime that is also congruent to 3 modulo 4. You did this by contradiction, using the fact that the product of any collection of primes all congruent to 1 modulo 4 is also congruent to 1 modulo 4 (proving this requires induction). Now prove the same result by strong induction. [Hint: If n is prime, the result is obviously true. If not, then $n=a b$, where a and b must both be odd, $a>1$ and $b>1$, and one of them must be congruent to 3 modulo 4.]

Proof. Strong induction on n. If $n=3$, then n is prime, so the result holds.
Now let $n \equiv 3(\bmod 4)$ and suppose the result holds for all numbers less than n that are congruent to 3 modulo 4 . We want to show that it holds for n. If n is prime, there is nothing to prove. If n is not prime, then $n=a b$ for positive integers a and b both greater than 1 . Since n is odd, a and b must both be odd. If a and b were both congruent to 1 modulo 4, then their product n would also be congruent to 1 modulo 4 , and it isn't, so at least one of a and b is congruent to 3 modulo 4 (in fact exactly one of a and b is congruent to 1 modulo 4). Without loss of generality, suppose $a \equiv 3(\bmod 4)$. Now since $a<n$, by our induction hypothesis, a is divisible
by a prime p satisfying $p \equiv 3(\bmod 4)$. By transitivity of divisibility, $p \mid n$, so the result also holds for n. Therefore, by strong induction, it holds for all positive integers congruent to 3 modulo 4.

Bonus Question

7 An $n \times n$ magic square is an $n \times n$ array containing each of the numbers $1, \ldots, n^{2}$ exactly once, such that every row, column and diagonal has the same sum. The following is a 3×3 magic square:

2	9	4
7	5	3
6	1	8

Show that for any positive integer, k, there is a $3^{k} \times 3^{k}$ magic square.

Hint:

Call an $n \times n$ array a weak magic square if the sums of its rows, columns and diagonals are all the same. Try to get the $3^{n} \times 3^{n}$ magic square as a sum of weak $3^{n} \times 3^{n}$ magic squares.
For example, if you replace each entry of a magic square by a 3×3 array all containing the same number as that entry, then the result will be a weak magic square.

