MATH 2112/CSCI 2112, Discrete Structures I Winter 2007

Toby Kenney Homework Sheet 6 Hints & Model Solutions

Sheet 5

3 (b) Prove that there are infinitely many prime numbers congruent to 3 modulo 4.

Proof. Suppose there are only finitely many primes of this form. Let them be p_1, p_2, \ldots, p_k . Now consider $p_1p_2\cdots p_k$. If k is even then this is congruent to 1 modulo 4, in which case $p_1p_2\cdots p_k + 2 \equiv 3 \pmod{4}$. Therefore, $p_1p_2\cdots p_k + 2$ has a prime factor congruent to 3 modulo 4. This can't be any of p_1, p_2, \ldots, p_k , so it contradicts the assumption that p_1, p_2, \ldots, p_k were the only such primes.

On the other hand, if k is odd then $p_1p_2\cdots p_k$ is congruent to 3 modulo 4, in which case $p_1p_2\cdots p_k + 4 \equiv 3 \pmod{4}$. Therefore, $p_1p_2\cdots p_k + 4$ has a prime factor congruent to 3 modulo 4. This can't be any of p_1, p_2, \ldots, p_k , so it contradicts the assumption that p_1, p_2, \ldots, p_k were the only such primes.

Therefore, in either case, p_1, p_2, \ldots, p_k are not the only such primes, so there must be infinitely many.

6 Observe that $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\left(\sqrt{2} \times \sqrt{2}\right)} = \sqrt{2}^2 = 2$. Prove that there are two irrational numbers α and β such that α^{β} is rational.

Proof. Either $\sqrt{2}^{\sqrt{2}}$ is rational or it is irrational. In the first case, we can set $\alpha = \sqrt{2}$ and $\beta = \sqrt{2}$, then α and β are irrational, but α^{β} is rational. On the other hand, if $\sqrt{2}^{\sqrt{2}}$ is irrational, then setting $\alpha = \sqrt{2}^{\sqrt{2}}$ and $\beta = \sqrt{2}$ gives a pair of numbers such that α and β are irrational but α^{β}

Sheet 6

is rational.

1 Show that if m > 1 and n > 1 are natural numbers such that 6|mn, then it is possible to cover an $m \times n$ chessboard with 3×2 tiles. [Hint: if 3|mand 2|n, or 2|m and 3|n, this should be easy. If 6|m and n > 2, divide into two cases: n = 2k + 3 and n = 2k. Prove each of these by induction on k.]

Proof. If m = 2k and n = 3l, then we can cover the $m \times n$ chessboard with a k by l block of 3×2 tiles. Similarly if m = 3k, and n = 2l. On the other hand, if m = 6k, we can cover an $m \times 2$ chessboard by putting 2k 3×2 tiles in a row, Therefore, if we can cover an $m \times n$ chessboard, then we can cover an $m \times (n + 2)$ chessboard, by just placing our covering of the $m \times 2$ chessboard next to our covering of the $m \times n$ chessboard. Thus, we can cover all $m \times 2l$ chessboards.

We can also cover an $m \times 3$ chessboard by placing 3k tiles side by side. Therefore, using the same induction step as before, we can cover all $m \times (3+2l)$ chessboards.

2 Consider the set of ordered pairs (m,n) of natural numbers, ordered by (k,l) < (m,n) if either k < m or (k = m and l < n). [This is called the lexicographic order; it is the way words are ordered in the dictionary.] For example, (1,7) < (2,1), and (3,4) < (3,5). Show that this set is a well-order.

Proof. Let A be any non-empty subset of this set. We need to show that A has a smallest element. We consider the set of natural numbers m, for which there is an n such that $(m, n) \in A$. This is a non-empty subset of the natural numbers, so it has a least element m_0 because the natural numbers are a well-order.

Now we consider the set of natural numbers n such that $(m_0, n) \in A$. This is a non-empty subset of the natural numbers, so it has a least element n_0 . We will show that (m_0, n_0) is the least element of A. Given any element (k, l) of A, we know that there is an n with $(k, n) \in A$, since n = l works. Therefore, since m_0 was the smallest natural number with this property, we must have $m_0 \leq k$. If $m_0 < k$, then by definition of the order on our set, $(m_0, n_0) < (k, l)$. On the other hand, if $m_0 = k$ then $(m_0, l) \in A$, so by definition of n_0 , we must have $n_0 \leq l$. Thus $(m_0, n_0) < (k, l)$. Since (k, l) was an arbitrary element of A, (m_0, n_0) must be the smallest element of A, so A has a smallest element.

3 Show that
$$\sum_{i=1}^{n} i^2(i+1) = \frac{n(n+1)(n+2)(3n+1)}{12}$$
.

Proof. Induction on *n*. When n = 0 the result obviously holds. Suppose the formula works for some value of *n*. We want the show that it works for n + 1, i.e. that $\sum_{i=1}^{n+1} = \frac{(n+1)(n+2)(n+3)(3(n+1)+1)}{12}$. But $\sum_{i=0}^{n+1} i^2(i+1) = \sum_{i=0}^{n} i^2(i+1) + (n+1)^2(n+2) = \frac{n(n+1)(n+2)(3n+1)}{12} + (n+1)^2(n+2) = (n+1)(n+2)\left(\frac{n(3n+1)+12(n+1)}{12}\right) = (n+1)(n+2)\frac{3n^2+13n+12}{12} = \frac{(n+1)(n+2)(n+3)(3n+4)}{12}$, so the formula works for n+1.

4 What is wrong with the following proof that all maths lecturers are the same age?

The problem with the proof given is that when n = 1, the induction step doesn't work, because the set l_2, \ldots, l_n is empty, so the fact that l_2, \ldots, l_n have ages both a_1 and a_2 is vacuously true, and does not imply that $a_1 = a_2$.

5 Prove that if $m, n < 2^k$ then Euclid's algorithm finds the greastest common divisor of m and n in at most 2k steps.

Proof. Induction on k. If k = 1, then m and n have to both be 1, so Euclid's algorithm finishes in just one step.

Now suppose that we know that if $m, n < 2^{k-1}$, then Euclid's algorithm finds the greatest common divisor in at most 2(k-1) steps. Without loss of generality, suppose n < m. The first step of Euclid's algorithm is to find q and r such that m = nq + r, where r < n. We also know that $r \leq m - n$. Therefore, 2r < n + m - n = m, so $r < 2^{k-1}$. Similarly, when we apply Euclid's algorithm to n and r, we get $n = q_1r + r_1$, where $r_1 < 2^{k-1}$. Therefore, when we apply Euclid's algorithm to r and r_1 , it finds the greatest common divisor in at most 2(k-1) steps. Therefore, when we add the first two steps m = qn + r and $n = q_1r + r_1$, we have at most 2k steps in total.

6 In Sheet 4, Question 3 (a), you were asked to prove that any positive integer congruent to 3 modulo 4 is divisible by a prime that is also congruent to 3 modulo 4. You did this by contradiction, using the fact that the product of any collection of primes all congruent to 1 modulo 4 is also congruent to 1 modulo 4 (proving this requires induction). Now prove the same result by strong induction. [Hint: If n is prime, the result is obviously true. If not, then n = ab, where a and b must both be odd, a > 1 and b > 1, and one of them must be congruent to 3 modulo 4.]

Proof. Strong induction on n. If n = 3, then n is prime, so the result holds.

Now let $n \equiv 3 \pmod{4}$ and suppose the result holds for all numbers less than *n* that are congruent to 3 modulo 4. We want to show that it holds for *n*. If *n* is prime, there is nothing to prove. If *n* is not prime, then n = ab for positive integers *a* and *b* both greater than 1. Since *n* is odd, *a* and *b* must both be odd. If *a* and *b* were both congruent to 1 modulo 4, then their product *n* would also be congruent to 1 modulo 4, and it isn't, so at least one of *a* and *b* is congruent to 3 modulo 4 (in fact exactly one of *a* and *b* is congruent to 1 modulo 4). Without loss of generality, suppose $a \equiv 3 \pmod{4}$. Now since a < n, by our induction hypothesis, *a* is divisible by a prime p satisfying $p \equiv 3 \pmod{4}$. By transitivity of divisibility, p|n, so the result also holds for n. Therefore, by strong induction, it holds for all positive integers congruent to 3 modulo 4.

Bonus Question

7 An $n \times n$ magic square is an $n \times n$ array containing each of the numbers $1, \ldots, n^2$ exactly once, such that every row, column and diagonal has the same sum. The following is a 3×3 magic square:

2	9	4
$\tilde{7}$	5	3
6	1	8

Show that for any positive integer, k, there is a $3^k \times 3^k$ magic square.

Hint:

Call an $n \times n$ array a weak magic square if the sums of its rows, columns and diagonals are all the same. Try to get the $3^n \times 3^n$ magic square as a sum of weak $3^n \times 3^n$ magic squares.

For example, if you replace each entry of a magic square by a 3×3 array all containing the same number as that entry, then the result will be a weak magic square.