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3 (b) Prove that there are infinitely many prime numbers congruent to 3
modulo 4.

Proof. Suppose there are only finitely many primes of this form. Let
them be p1, p2, . . . , pk. Now consider p1p2 · · · pk. If k is even then this
is congruent to 1 modulo 4, in which case p1p2 · · · pk + 2 ≡ 3 (mod 4).
Therefore, p1p2 · · · pk + 2 has a prime factor congruent to 3 modulo 4.
This can’t be any of p1, p2, . . . , pk, so it contradicts the assumption that
p1, p2, . . . , pk were the only such primes.

On the other hand, if k is odd then p1p2 · · · pk is congruent to 3 modulo 4,
in which case p1p2 · · · pk + 4 ≡ 3 (mod 4). Therefore, p1p2 · · · pk + 4 has a
prime factor congruent to 3 modulo 4. This can’t be any of p1, p2, . . . , pk,
so it contradicts the assumption that p1, p2, . . . , pk were the only such
primes.

Therefore, in either case, p1, p2, . . . , pk are not the only such primes, so
there must be infinitely many.
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1 Show that if m > 1 and n > 1 are natural numbers such that 6|mn, then
it is possible to cover an m× n chessboard with 3× 2 tiles. [Hint: if 3|m
and 2|n, or 2|m and 3|n, this should be easy. If 6|m and n > 2, divide
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into two cases: n = 2k + 3 and n = 2k. Prove each of these by induction
on k.]

Proof. If m = 2k and n = 3l, then we can cover the m × n chessboard
with a k by l block of 3× 2 tiles. Similarly if m = 3k, and n = 2l. On the
other hand, if m = 6k, we can cover an m × 2 chessboard by putting 2k
3× 2 tiles in a row, Therefore, if we can cover an m× n chessboard, then
we can cover an m × (n + 2) chessboard, by just placing our covering of
the m×2 chessboard next to our covering of the m×n chessboard. Thus,
we can cover all m× 2l chessboards.

We can also cover an m × 3 chessboard by placing 3k tiles side by side.
Therefore, using the same induction step as before, we can cover all m×
(3 + 2l) chessboards.

2 Consider the set of ordered pairs (m,n) of natural numbers, ordered by
(k, l) < (m,n) if either k < m or (k = m and l < n). [This is called
the lexicographic order; it is the way words are ordered in the dictionary.]
For example, (1, 7) < (2, 1), and (3, 4) < (3, 5). Show that this set is a
well-order.

Proof. Let A be any non-empty subset of this set. We need to show that
A has a smallest element. We consider the set of natural numbers m, for
which there is an n such that (m,n) ∈ A. This is a non-empty subset
of the natural numbers, so it has a least element m0 because the natural
numbers are a well-order.

Now we consider the set of natural numbers n such that (m0, n) ∈ A. This
is a non-empty subset of the natural numbers, so it has a least element n0.
We will show that (m0, n0) is the least element of A. Given any element
(k, l) of A, we know that there is an n with (k, n) ∈ A, since n = l works.
Therefore, since m0 was the smallest natural number with this property,
we must have m0 6 k. If m0 < k, then by definition of the order on our
set, (m0, n0) < (k, l). On the other hand, if m0 = k then (m0, l) ∈ A, so
by definition of n0, we must have n0 6 l. Thus (m0, n0) < (k, l). Since
(k, l) was an arbitrary element of A, (m0, n0) must be the smallest element
of A, so A has a smallest element.

3 Show that
∑n

i=1 i2(i + 1) = n(n+1)(n+2)(3n+1)
12 .

Proof. Induction on n. When n = 0 the result obviously holds. Suppose
the formula works for some value of n. We want the show that it works
for n + 1, i.e. that

∑n+1
i=1 = (n+1)(n+2)(n+3)(3(n+1)+1)

12 . But
∑n+1

i=0 i2(i +
1) =

∑n
i=0 i2(i + 1) + (n + 1)2(n + 2) = n(n+1)(n+2)(3n+1)

12 + (n + 1)2(n +

2) = (n + 1)(n + 2)
(

n(3n+1)+12(n+1)
12

)
= (n + 1)(n + 2)3n2+13n+12

12 =
(n+1)(n+2)(n+3)(3n+4)

12 , so the formula works for n + 1.
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4 What is wrong with the following proof that all maths lecturers are the
same age?

The problem with the proof given is that when n = 1, the induction step
doesn’t work, because the set l2, . . . , ln is empty, so the fact that l2, . . . , ln
have ages both a1 and a2 is vacuously true, and does not imply that
a1 = a2.

5 Prove that if m,n < 2k then Euclid’s algorithm finds the greastest common
divisor of m and n in at most 2k steps.

Proof. Induction on k. If k = 1, then m and n have to both be 1, so
Euclid’s algorithm finishes in just one step.

Now suppose that we know that if m,n < 2k−1, then Euclid’s algorithm
finds the greatest common divisor in at most 2(k− 1) steps. Without loss
of generality, suppose n < m. The first step of Euclid’s algorithm is to
find q and r such that m = nq + r, where r < n. We also know that
r 6 m − n. Therefore, 2r < n + m − n = m, so r < 2k−1. Similarly,
when we apply Euclid’s algorithm to n and r, we get n = q1r + r1, where
r1 < 2k−1. Therefore, when we apply Euclid’s algorithm to r and r1, it
finds the greatest common divisor in at most 2(k − 1) steps. Therefore,
when we add the first two steps m = qn + r and n = q1r + r1, we have at
most 2k steps in total.

6 In Sheet 4, Question 3 (a), you were asked to prove that any positive inte-
ger congruent to 3 modulo 4 is divisible by a prime that is also congruent to
3 modulo 4. You did this by contradiction, using the fact that the product
of any collection of primes all congruent to 1 modulo 4 is also congruent
to 1 modulo 4 (proving this requires induction). Now prove the same result
by strong induction. [Hint: If n is prime, the result is obviously true. If
not, then n = ab, where a and b must both be odd, a > 1 and b > 1, and
one of them must be congruent to 3 modulo 4.]

Proof. Strong induction on n. If n = 3, then n is prime, so the result
holds.

Now let n ≡ 3 (mod 4) and suppose the result holds for all numbers less
than n that are congruent to 3 modulo 4. We want to show that it holds
for n. If n is prime, there is nothing to prove. If n is not prime, then
n = ab for positive integers a and b both greater than 1. Since n is odd, a
and b must both be odd. If a and b were both congruent to 1 modulo 4,
then their product n would also be congruent to 1 modulo 4, and it isn’t,
so at least one of a and b is congruent to 3 modulo 4 (in fact exactly one of
a and b is congruent to 1 modulo 4). Without loss of generality, suppose
a ≡ 3 (mod 4). Now since a < n, by our induction hypothesis, a is divisible
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by a prime p satisfying p ≡ 3 (mod 4). By transitivity of divisibility, p|n,
so the result also holds for n. Therefore, by strong induction, it holds for
all positive integers congruent to 3 modulo 4.

Bonus Question

7 An n× n magic square is an n× n array containing each of the numbers
1, . . . , n2 exactly once, such that every row, column and diagonal has the
same sum. The following is a 3× 3 magic square:

2 9 4
7 5 3
6 1 8

Show that for any positive integer, k, there is a 3k × 3k magic square.

Hint:

Call an n× n array a weak magic square if the sums of its rows, columns
and diagonals are all the same. Try to get the 3n × 3n magic square as a
sum of weak 3n × 3n magic squares.

For example, if you replace each entry of a magic square by a 3× 3 array
all containing the same number as that entry, then the result will be a
weak magic square.
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